Raina’s Function-Based Formulations of Right-Sided Simpson’s and Newton’s Inequalities for Generalized Coordinated Convex Functions
Abstract
:1. Introduction
2. Quantum Calculus Preliminaries
3. Identities
4. Main Results
4.1. Simpson-Type Inequalities
4.2. Newton-Type Inequalities
5. Applications
5.1. Applications to Hypergeometric Functions
5.2. Applications to Mittag–Leffler Functions
Applications to Bounded Functions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5, 533–579. [Google Scholar] [CrossRef] [Green Version]
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res. Rep. Coll. 2009, 12. Available online: https://vuir.vu.edu.au/id/eprint/17768 (accessed on 6 April 2023).
- Ernst, T.A. Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Benatti, F.; Fannes, M.; Floreanini, R.; Petritis, D. Quantum Information, Computation and Cryptography: An Introductory Survey of Theory, Technology and Experiments; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Bokulich, A.; Jaeger, G. Philosophy of Quantum Information Theory and Entaglement; Cambridge Uniersity Press: Cambridge, UK, 2010. [Google Scholar]
- Ernst, T.A. The History of q-Calculus and New Method; Department of Mathematics, Uppsala University: Uppsala, Sweden, 2000. [Google Scholar]
- Jackson, F.H. On a q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 282. [Google Scholar] [CrossRef] [Green Version]
- Bermudo, S.; Kórus, P.; Valdés, J.N. On q-Hermite-Hadamard inequalities for general convex functions. Acta Math. Hung. 2020, 162, 364–374. [Google Scholar] [CrossRef]
- Sadjang, P.N. On the fundamental Theorem of (p; q)-calculus and some (p; q)-Taylor formulas. Results Math. 2018, 73, 1–21. [Google Scholar]
- Tunç, M.; Göv, E. Some integral inequalities via (p; q)-calculus on finite intervals. RGMIA Res. Rep. Coll. 2016, 19, 1–12. [Google Scholar]
- Ali, M.A.; Budak, H.; Abbas, M.; Chu, Y.-M. Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second qπ2-derivatives. Adv. Differ. Equ. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Alp, N.; Sarikaya, M.Z.; Kunt, M.; İşcan, İ. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ.–Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite-Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
- Nwaeze, E.R.; Tameru, A.M. New parameterized quantum integral inequalities via η-quasiconvexity. Adv. Differ. Equ. 2019, 2019, 425. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Noor, M.; Nwaeze, E.R.; Chu, Y.-M. Quantum Hermite–Hadamard inequality by means of a Green function. Adv. Differ. Equ. 2020, 2020, 99. [Google Scholar] [CrossRef]
- Budak, H.; Erden, S.; Ali, M.A. Simpson and Newton type inequalities for convex functions via newly defined quantum integrals. Math. Meth. Appl. Sci. 2020, 44, 378–390. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Zhang, Z.; Yildrim, H. Some new Simpson’s type inequalities for co-ordinated convex functions in quantum calculus. Math. Meth. Appl. Sci. 2021, 44, 4515–4540. [Google Scholar] [CrossRef]
- Ali, M.A.; Abbas, M.; Budak, H.; Agarwal, P.; Murtaza, G.; Chu, Y.-M. New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for pre-invex functions. Adv. Differ. Equ. 2021, 2021, 1–21. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Ali, M.A.; Kashuri, A.; Sial, I.B.; Zhang, Z. Some New Newton’s Type Integral Inequalities for Co-Ordinated Convex Functions in Quantum Calculus. Symmetry 2020, 12, 1476. [Google Scholar] [CrossRef]
- Kunt, M.; İşcan, İ.; Alp, N.; Sarikaya, M.Z. (p; q)–Hermite-Hadamard inequalities and (p; q)–estimates for midpoint inequalities via convex quasi-convex functions. Revista Real Academia Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas 2018, 112, 969–992. [Google Scholar] [CrossRef]
- Ali, M.A.; Chu, Y.-M.; Budak, H.; Akkurt, A.; Yildrim, H. Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables. Adv. Differ. Equ. 2021, 2021, 25. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Akkurt, A.; Chu, Y.-M. Quantum Ostrowski type inequalities for twice quantum differentiable functions in quantum calculus. Open Math. 2021, 19, 440–449. [Google Scholar] [CrossRef]
- Budak, H.; Ali, M.A.; Tunç, T. Quantum Ostrowski-type integral inequalities for functions of two variables. Math. Meth. Appl. Sci. 2021, 44, 5857–5872. [Google Scholar] [CrossRef]
- Budak, H.; Ali, M.A.; Alp, N.; Chu, Y.-M. Quantum Ostrowski type integral inequalities. J. Math. Inequal. 2021; in press. [Google Scholar]
- Latif, M.A.; Kunt, M.; Dragomir, S.S.; İşcan, İ. Post-quantum trapezoid type inequalities. AIMS Math. 2020, 5, 4011–4026. [Google Scholar] [CrossRef]
- Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 2014, 13. [Google Scholar] [CrossRef] [Green Version]
- Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. (Eds.) Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volume 1, p. 162. [Google Scholar]
- Deng, Y.; Awan, M.U.; Wu, S. Quantum Integral Inequalities of Simpson-Type for Strongly Preinvex Functions. Mathematics 2019, 7, 751. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, A. Special Functions and Their Applications; Dover Publications, Inc.: New York, NY, USA, 1972; pp. 1–322. [Google Scholar]
- Saied, A.I.; ALNemer, G.; Zakarya, M.; Cesarano, C.; Rezk, H.M. Some New Generalized Inequalities of Hardy Type Involving Several Functions on Time Scale Nabla Calculus. Axioms 2022, 11, 662. [Google Scholar] [CrossRef]
- Latif, M.A.; Dragomir, S.S.; Momoniat, E. Some q-analogues of Hermite-Hadamard inequality of functions of two variables on finite rectangles in the plane. J. King Saud.-Univ.-Sci. 2017, 29, 263–273. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.J.; Liko, R.; Kashuri, A.; Hernández Hernández, J.E. New Quantum Estimates of Trapezium-Type Inequalities for Generalized ϕ-Convex Functions. Mathematics 2019, 7, 1047. [Google Scholar] [CrossRef] [Green Version]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2015, 21, 191–203. [Google Scholar]
- Rashid, S.; Butt, S.I.; Kanwal, S.; Ahmad, H.; Wang, M.K. Quantum Integral Inequalities with Respect to Raina’s Function via Coordinated Generalized -convex Functions with Applications. J. Funct. Spaces 2021, 2021, 6631474. [Google Scholar] [CrossRef]
- Budak, H.; Ali, M.A.; Tarhanaci, M. Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions. J. Optim. Theory Appl. 2020, 186, 899–910. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivas-Cortez, M.; Murtaza, G.; Baig, G.M.; Awan, M.U. Raina’s Function-Based Formulations of Right-Sided Simpson’s and Newton’s Inequalities for Generalized Coordinated Convex Functions. Symmetry 2023, 15, 1441. https://doi.org/10.3390/sym15071441
Vivas-Cortez M, Murtaza G, Baig GM, Awan MU. Raina’s Function-Based Formulations of Right-Sided Simpson’s and Newton’s Inequalities for Generalized Coordinated Convex Functions. Symmetry. 2023; 15(7):1441. https://doi.org/10.3390/sym15071441
Chicago/Turabian StyleVivas-Cortez, Miguel, Ghulam Murtaza, Ghulam Murtaza Baig, and Muhammad Uzair Awan. 2023. "Raina’s Function-Based Formulations of Right-Sided Simpson’s and Newton’s Inequalities for Generalized Coordinated Convex Functions" Symmetry 15, no. 7: 1441. https://doi.org/10.3390/sym15071441
APA StyleVivas-Cortez, M., Murtaza, G., Baig, G. M., & Awan, M. U. (2023). Raina’s Function-Based Formulations of Right-Sided Simpson’s and Newton’s Inequalities for Generalized Coordinated Convex Functions. Symmetry, 15(7), 1441. https://doi.org/10.3390/sym15071441