New Oscillation Theorems for Second-Order Superlinear Neutral Differential Equations with Variable Damping Terms
Abstract
:1. Introduction
- (Y1)
- and are quotients of odd positive integers and
- (Y2)
- , and is not identically zero for large ⊤;
- (Y3)
- , and
- (Y4)
- satisfy , and
2. Preliminaries
3. Oscillation Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Agarwal, R.P.; Zhang, C.; Li, T. New Kamenev-type oscillation criteria for second-order nonlinear advanced dynamic equations. Appl. Math. Comput. 2013, 225, 822–828. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Dosly, O.; Rehak, P. Half-Linear Differential Equations, North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2005; 202p. [Google Scholar]
- Hale, J.K. Functional differential equations. In Oxford Applied Mathematical Sciences; Springer: New York, NY, USA, 1971; p. 3. [Google Scholar]
- Rihan, F.A. Delay Differential Equations and Applications to Biology; Springer Nature Singapore Pte Ltd.: Singapore, 2021. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, W.-T. Nonoscillation and oscillation: Theory for functional differential equations. In Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker, Inc.: New York, NY, USA, 2004; Volume 267. [Google Scholar]
- Baculíková, B.; Džurina, J. Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 2011, 62, 4472–4478. [Google Scholar] [CrossRef]
- Li, T.; Agarwal, R.P.; Bohner, M. Some oscillation results for second-order neutral dynamic equations. Hacet. J. Math. Stat. 2012, 41, 715–721. [Google Scholar]
- Li, T.; Rogovchenko, Y.V. Oscillation theorems for second-order nonlinear neutral delay differential equations. Abstr. Appl. Anal. 2014, 2014, 594190. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. Oscillation of second-order neutral differential equations. Math. Nachr. 2015, 288, 1150–1162. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations. Monatsh. Math. 2017, 184, 489–500. [Google Scholar] [CrossRef]
- Li, T.; Thandapani, E.; Graef, J.R.; Tunc, E. Oscillation of secondorder Emden-Fowler neutral differential equations. Nonlinear Stud. 2013, 20, 1–8. [Google Scholar]
- Thandapani, E.; Padmavathi, S.; Pinelas, S. Classi cations of solutions of second-order nonlinear neutral differential equations of mixed type. Adv. Differ. Equ. 2012, 2012, 226. [Google Scholar] [CrossRef]
- Wong, J.S.W. Necessary and suffcient conditions for oscillation of second order neutral differential equations. J. Math. Anal. Appl. 2000, 252, 342–352. [Google Scholar] [CrossRef]
- Moaaz, O.; Chatzarakis, G.E.; Abdeljawad, T.; Cesarano, C.; Nabih, A. Amended oscillation criteria for second-order neutral differential equations with damping term. Adv. Differ. Equ. 2020, 2020, 553. [Google Scholar] [CrossRef]
- Grace, S.R.; Graef, J.R.; Tunc, E. Oscillatory behavior of second order damped neutral differential equations with distributed deviating arguments. Miskolc Math. Notes 2017, 18, 759–769. [Google Scholar] [CrossRef]
- Tunc, E.; Ozdemin, O. Oscillatory behavior of second-order damped differential equations with a superlinear neutral term. Opusc. Math. 2020, 40, 629–639. [Google Scholar] [CrossRef]
- Agarwal, P.R.; Bohner, M.; Li, T. Oscillatory behavior of second-order half-linear damped dynamic equations. Appl. Math. Comput. 2015, 254, 408–418. [Google Scholar] [CrossRef]
- Bohner, M.; Li, T. Kamenev-type criteria for nonlinear damped dynamic equations. Sci. China Math. 2015, 58, 1445–1452. [Google Scholar] [CrossRef]
- Bohner, M.; Saker, H.S. Oscillation of damped second order nonlinear delay differential equations of Emden-Fowler type. Adv. Dyn. Syst. Appl. 2006, 163–182. [Google Scholar]
- Grace, S.R.; Jadlovska, I. Oscillation criteria for second-order neutral damped differential equations with delay argument. In Dynamical Systems—Analytical and Computational Techniques; Intech: Vienna, Austria, 2017; Chapter 2; pp. 31–53. [Google Scholar] [CrossRef]
- Liu, Q.; Bohner, M.; Grace, R.S.; Li, T. Asymptotic behavior of even-order damped differential equations with p-Laplacian like operators and deviating arguments. J. Inequal. Appl. 2016, 2016, 321. [Google Scholar] [CrossRef]
- Al Themairi, A.; Qaraad, B.; Bazighifan, O.; Nonlaopon, K. Third-order neutral differential equations with damping and distributed delay: New asymptotic properties of solutions. Symmetry 2022, 14, 2192. [Google Scholar] [CrossRef]
- Bohner, M.; Srinivasan, R.; Thandapani, E. Oscillation of second-order damped noncanonical differential equations with superlinear neutral term. J. Inequal. Spec. Funct. 2021, 12, 44–53. [Google Scholar]
- Erbe, L.H.; Kong, Q.; Zhang, B. Oscillation Theory for Functional Differential Equations, Volume 190 of Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker, Inc.: New York, NY, USA, 1995. [Google Scholar]
- Ladde, G.S.; Lakshmikantham, V.; Zhang, B. Oscillation Theory of Differential Equations with Deviating Arguments, Volume 110 of Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker, Inc.: New York, NY, USA, 1987. [Google Scholar]
- Tunc, E.; Grace, S.R. On oscillatory and asymptotic behavior of a second-order nonlinear damped neutral differential equation. Int. J. Differ. Equ. 2016, 2016, 3746368. [Google Scholar] [CrossRef]
- Tunc, E.; Kaymaz, A. On oscillation of second-order linear neutral differential equations with damping term. Dyn. Syst. Appl. 2019, 28, 289–301. [Google Scholar] [CrossRef]
- Tunc, E.; Kaymaz, A. Oscillatory behavior of second-order half-linear neutral differential equations with damping. Adv. Dyn. Syst. Appl. 2019, 14, 213–227. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Moaaz, O.; Li, T.; Qaraad, B. Some oscillation theorems for nonlinear second-order differential equations with an advanced argument. Adv. Differ. Equ. 2020, 2020, 160. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldiaiji, M.; Qaraad, B.; Iambor, L.F.; Elabbasy, E.M. New Oscillation Theorems for Second-Order Superlinear Neutral Differential Equations with Variable Damping Terms. Symmetry 2023, 15, 1630. https://doi.org/10.3390/sym15091630
Aldiaiji M, Qaraad B, Iambor LF, Elabbasy EM. New Oscillation Theorems for Second-Order Superlinear Neutral Differential Equations with Variable Damping Terms. Symmetry. 2023; 15(9):1630. https://doi.org/10.3390/sym15091630
Chicago/Turabian StyleAldiaiji, Munirah, Belgees Qaraad, Loredana Florentina Iambor, and Elmetwally M. Elabbasy. 2023. "New Oscillation Theorems for Second-Order Superlinear Neutral Differential Equations with Variable Damping Terms" Symmetry 15, no. 9: 1630. https://doi.org/10.3390/sym15091630
APA StyleAldiaiji, M., Qaraad, B., Iambor, L. F., & Elabbasy, E. M. (2023). New Oscillation Theorems for Second-Order Superlinear Neutral Differential Equations with Variable Damping Terms. Symmetry, 15(9), 1630. https://doi.org/10.3390/sym15091630