Exact Solutions of the Oberbeck–Boussinesq Equations for the Description of Shear Thermal Diffusion of Newtonian Fluid Flows
Abstract
:1. Introduction
2. Problem Statement
3. Construction of the Exact Solution
4. Boundary Value Problem
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ladyzhenskaya, O.A.; Seregin, G.A. Mathematical Problems of Hydrodynamics and Magnetohydrodynamics of a Viscous Incompressible Fluid. Proc. V.A. Steklov Math. Inst. 1960, 59, 115–173. [Google Scholar]
- Serrin, J. Mathematical Principles of Classical Fluid Mechanics. In Fluid Dynamics I/Strömungsmechanik I; Springer: Berlin/Heidelberg, Germany, 1959; p. 139. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics; VI: Fluid Mechanics; Pergamon Press: Oxford, UK, 1959; Volume 10, p. 229. [Google Scholar]
- Andreev, V.K.; Kaptsov, O.V.; Pukhnachev, V.V.; Rodionov, A.A. Applications of Group-Theoretical Methods in Hydrodynamics; Springer Science + Business Media B.V.: Berlin, Germany; Springer: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Carlson, J.A.; Jaffe, A.; Wiles, A. The Millennium Prize Problems. Clay Mathematics Institute; American Mathematical Society: Cambridge, MA, USA, 2006; ISBN 978-0-8218-3679-8. [Google Scholar]
- De Groot, S.R. Thermodynamik Irreversibler Prozesse; North-Holland Publishing Comp.: Amsterdam, The Netherlands, 1951. [Google Scholar]
- Gershuni, G.Z.; Zhukhovitskii, E.M. Convective Stability of Incompressible Fluids; Keter Publishing House: Jerusalem, Israel, 1976; p. 299. [Google Scholar]
- Kochin, N.E.; Kibel, I.A.; Radok, J.R.M.; Roze, N.V. Theoretical Hydromechanics; Interscience Publishers: New York, NY, USA, 1964; p. 569. [Google Scholar]
- Boussinesq, J. Théorie Analytique de la Chaleur; Gauthier-Villars: Paris, France, 1903; Volume 2. [Google Scholar]
- Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability; Marshall, W., Wilkinson, D.H., Eds.; International Series of Monographs on Physics Clarendon Press; Oxford University Press: Oxford, UK, 1961. [Google Scholar]
- Barletta, A.; Celli, M.; Rees, D.A.S. On the Use and Misuse of the Oberbeck–Boussinesq Approximation. Physics 2023, 5, 298–309. [Google Scholar] [CrossRef]
- Mizerski, K.A. The Oberbeck-Boussinesq Convection. In Foundations of Convection with Density Stratification; GeoPlanet: Earth and Planetary Sciences; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Mayeli, P.; Sheard, G.J. Buoyancy-driven flows beyond the Boussinesq approximation: A brief review. Int. Commun. Heat Mass Transf. 2021, 125, 105316. [Google Scholar] [CrossRef]
- Burmasheva, N.V.; Prosviryakov, E.Y. Exact Solutions for Steady Convective Layered Flows with a Spatial Acceleration. Russ. Math. 2021, 65, 8–16. [Google Scholar] [CrossRef]
- Ludwig, C. Diffusion Zwischen Ungleich Erwärmten Orten Gleich Zusammengesetzter. Lösungen. In Enthalten in Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften; Sitzungsbericht; Aus Der K.K. Hof-Und Staatsdruckerei: Wien, Austria, 1856; 540p. [Google Scholar]
- Soret, C. Sur L’état d’équilibre que prend, du point de vue de sa concentration, une dissolution saline primitivement homogène, dont deux parties sont portées à des températures différentes. Arch. Sci. Phys. Natur. 1879, 2, 48–61. [Google Scholar]
- Dufour, L. Ueber die diffusion der gase durch poröse wände und die sie begleitenden temperaturveränderungen. Arc. Phys. Nat. Sci. 1872, 45, 490–492. [Google Scholar] [CrossRef]
- Burmasheva, N.V.; Prosviryakov, E.Y. Exact solution for Couette-type steady convective concentration flows. J. Appl. Mech. Tech. Phys. 2021, 62, 1199–1210. [Google Scholar] [CrossRef]
- Burmasheva, N.V.; Privalova, V.V.; Prosviryakov, E.Y. Layered Marangoni convection with the Navier slip condition. Sādhanā 2021, 46, 55. [Google Scholar] [CrossRef]
- Burmasheva, N.; Prosviryakov, E. Influence of the Dufour Effect on Shear Thermal Diffusion Flows. Dynamics 2022, 2, 367–379. [Google Scholar] [CrossRef]
- Burmasheva, N.V.; Prosviryakov, E.Y. On Marangoni shear convective flows of inhomogeneous viscous incompressible fluids in view of the Soret effect. J. King Saud Univ.–Sci. 2020, 32, 3364–3371. [Google Scholar] [CrossRef]
- Semin, M.; Levin, L. Study of the Influence of Thermal Convection on Temperature Measurement in Thermal Control Boreholes during Artificial Ground Freezing. Fluids 2022, 7, 298. [Google Scholar] [CrossRef]
- Rajesh, V.; Sheremet, M. Natural Convection of Ternary Hybrid Nanofluid in a Differential-Heated Enclosure with Non-Uniform Heating Wall. Micromachines 2023, 14, 1049. [Google Scholar] [CrossRef] [PubMed]
- Astanina, M.S.; Sheremet, M.A. Unsteady Free Convection of Fluid with Variable Viscosity in a Partially Porous Cube Under an Influence of Energy Source. In Recent Advances in Fluid Dynamics; Banerjee, J., Shah, R.D., Agarwal, R.K., Mitra, S., Eds.; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Burmasheva, N.V.; Prosviryakov, E.Y. Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation. J. Samara State Tech. Univ., Ser. Phys. Math. Sci. 2019, 23, 341–360. [Google Scholar] [CrossRef]
- Baranovskii, E.S.; Burmasheva, N.V.; Prosviryakov, E.Y. Exact Solutions to the Navier–Stokes Equations with Couple Stresses. Symmetry 2021, 13, 1355. [Google Scholar] [CrossRef]
- Yariv, E. Effective slip length for longitudinal shear flow over partially invaded grooves: Small solid-fraction approximations. Phys. Rev. Fluids 2023, 8, L012101. [Google Scholar] [CrossRef]
- Fusi, L.; Farina, A.; Rajagopal, K.R.; Vergori, L. Channel flows of shear-thinning fluids that mimic the mechanical response of a Bingham fluid. Int. J. Non-Linear Mech. 2022, 138, 103847. [Google Scholar] [CrossRef]
- Fu, X.; Fu, S.; Ren, H.; Xie, W.; Xu, Y.; Zhang, M.; Liu, Z.; Meng, S. Experimental investigation of vortex-induced vibration of a flexible pipe in bidirectionally sheared flow. J. Fluids Struct. 2022, 114, 103722. [Google Scholar] [CrossRef]
- Rezghi, A.; Zhang, J. Tank-treading dynamics of red blood cells in shear flow: On the membrane viscosity rheology. Biophys. J. 2022, 121, 3393–3410. [Google Scholar] [CrossRef]
- Raghav, M.S.; Jose, S.; Apte, A.; Govindarajan, R. Effects of equatorially-confined shear flow on MRG and Rossby waves. Dyn. Atmos. Ocean. 2022, 100, 101331. [Google Scholar] [CrossRef]
- Batchelor, G.K. An Introduction to Fluid Dynamics; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Ostroumov, G.A. Svobodnaya Konvektsiya v Usloviyakh Vnutrennei Zadachi (Free Convection in Inner Problem Conditions); Gostekhizdat: Moscow, Russia, 1952. [Google Scholar]
- Birikh, R.V. Thermocapillary convection in a horizontal layer of fluid. J. Appl. Mech. Tech. Phys. 1966, 7, 43–44. [Google Scholar] [CrossRef]
- Andreev, V.K.; Bekezhanova, V.B. Stability of Non-Isothermal Fluids. J. Appl. Mech. Tech. Phys. 2013, 54, 171–184. [Google Scholar] [CrossRef]
- Schwarz, K.G. Plane-Parallel Advective Flow in a Horizontal Incompressible Fluid Layer with Rigid Boundaries. Fluid Dyn. 2014, 49, 438–442. [Google Scholar] [CrossRef]
- Goncharova, O.; Kabov, O. Gas Flow and Thermocapillary Effects of Fluid Flow Dynamics in a Horizontal Layer. Micrograv. Sci. Technol. 2009, 21 (Suppl. 1), 129–137. [Google Scholar] [CrossRef]
- Andreev, V.K.; Ryzhkov, I.I. On thermocapillary instability of a fluid column with a co-axial gas flow. J. Sib. Fed. Univ. Math. Phys. 2013, 6, 3–17. [Google Scholar]
- Bazant, M.Z. Exact solutions and physical analogies for unidirectional flows. Phys. Rev. Fluids 2016, 1, 024001. [Google Scholar] [CrossRef]
- Subin, P.J. Different families of new exact solutions for planar and nonplanar second grade fluid flows. Chin. J. Phys. 2022, 77, 1225–1235. [Google Scholar] [CrossRef]
- El Moutaouakil, L.; Boukendil, M.; Hidki, R.; Charqui, Z.; Zrikem, Z.; Abdelbaki, A. Analytical solution for natural convection of a heat-generating fluid in a vertical rectangular cavity with two pairs of heat source/sink. Therm. Sci. Eng. Prog. 2023, 40, 101738. [Google Scholar] [CrossRef]
- Saqib, M.; Ali, F.; Khan, I.; Sheikh, N.A.; Jan, S.A.A. Samiulhaq. Exact solutions for free convection flow of generalized Jeffrey fluid: A Caputo-Fabrizio fractional model. Alex. Eng. J. 2018, 57, 1849–1858. [Google Scholar] [CrossRef]
- Song, J.-J.; Li, P.-X.; Chen, L.; Li, C.-H.; Li, B.-W.; Huang, L.-Y. A review on Rayleigh-Bénard convection influenced by the complicating factors. Int. Commun. Heat Mass Transf. 2023, 144, 106784. [Google Scholar] [CrossRef]
- Bekezhanova, V.B.; Stepanova, I.V. Evaporation convection in two-layers binary mixtures: Equations, structure of solution, study of gravity and thermal diffusion effects on the motion. Appl. Math. Comput. 2022, 414, 126424. [Google Scholar] [CrossRef]
- Molati, M.; Murakawa, H. Exact solutions of nonlinear diffusion-convection-reaction equation: A Lie symmetry analysis approach. Commun. Nonlinear Sci. Numer. Simul. 2019, 67, 253–263. [Google Scholar] [CrossRef]
- Burmasheva, N.V.; Prosviryakov, E.Y. Exact solution of Navier–Stokes equations describing spatially inhomogeneous flows of a rotating fluid. Tr. Instituta Mat. Mekhaniki URO RAN 2020, 26, 79–87. [Google Scholar]
- Burmasheva, N.V.; Prosviryakov, E.Y. Exact solutions to the Navier–Stokes equations describing stratified fluid flows. J. Samara State Tech. Univ. Ser. Phys. Math. Sci. 2021, 25, 491–507. [Google Scholar] [CrossRef]
- Lin, C.C. Note on a class of exact solutions in magneto-hydrodynamics. Arch. Ration. Mech. Anal. 1957, 1, 391–395. [Google Scholar] [CrossRef]
- Sidorov, A.F. Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory. J. Appl. Mech. Tech. Phys. 1989, 30, 197–203. [Google Scholar] [CrossRef]
- Aristov, S.N. Eddy Currents in Thin Fluid Layers. Ph.D. Thesis, Institute of Automation and Control Processes, Vladivostok, Russia, 1990. (In Russian). [Google Scholar]
- Burmasheva, N.V.; Prosviryakov, E.Y. Exact solutions to the Oberbeck–Boussinesq equations for shear flows of a viscous binary fluid with allowance made for the Soret effect. The Bulletin of Irkutsk State University. Ser. Math. 2021, 37, 17–30. [Google Scholar]
- Karlin, L.N.; Klyukov, E.Y.; Kutko, V.P. Small–Scale Structure of Hydrophysical Fields of the Upper Ocean Layer; M.: Hydrometeoizdat, Moscow, 1988; 162p. [Google Scholar]
- Ershkov, S.V. Non-stationary helical flows for incompressible 3D Navier-Stokes equations. Appl. Math. Comput. 2016, 274, 611–614. [Google Scholar] [CrossRef]
- Thambynayagam, R.K.M. A class of exact solutions of the Navier–Stokes equations in three and four dimensions. Eur. J. Mech. B/Fluids 2023, 100, 12–20. [Google Scholar] [CrossRef]
- Nadeem, S.; Akhtar, S.; Alharbi, F.M.; Saleem, S.; Issakhov, A. Analysis of heat and mass transfer on the peristaltic flow in a duct with sinusoidal walls: Exact solutions of coupled PDEs. Alex. Eng. J. 2022, 61, 4107–4117. [Google Scholar] [CrossRef]
- Pukhnachev, V.V. Symmetries in the Navier–Stokes equations. Uspekhi Mekhaniki 2006, 1, 6–76. [Google Scholar]
- Ershkov, S.; Prosviryakov, E.; Leshchenko, D. Exact solutions for isobaric inhomogeneous Couette flows of a vertically swirling fluid. J. Appl. Computat. Mech. 2023, 9, 521–528. [Google Scholar]
- Korobkov, M.V.; Pileckas, K.; Pukhnachov, V.V.; Russo, R. The flux problem for the Navier–Stokes equations. Russ. Math. Surv. 2014, 69, 1065–1122. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zaitsev, V.F. Handbook of Nonlinear Partial Differential Equations; Chapman & Hall: Boca Raton, FL, USA; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Ershkov, S.V.; Christianto, V.; Shamin, R.V.; Giniyatullin, A.R. About analytical ansatz to the solving procedure for Kelvin–Kirchhoff equations. Eur. J. Mech. B/Fluids 2020, 79C, 87–91. [Google Scholar] [CrossRef]
- Ershkov, S.V. Non-stationary creeping flows for incompressible 3D Navier–Stokes equations. Eur. J. Mech. B/Fluids 2017, 61, 154–159. [Google Scholar] [CrossRef]
- Ershkov, S.V. On Existence of General Solution of the Navier-Stokes Equations for 3D Non-Stationary Incompressible Flow. Int. J. Fluid Mech. Res. 2015, 42, 206–213. [Google Scholar] [CrossRef]
- Joseph, S.P. New classes of periodic and non-periodic exact solutions for Newtonian and non-Newtonian fluid flows. Int. J. Eng. Sci. 2022, 180, 103740. [Google Scholar] [CrossRef]
- Fushchich, V.I.; Popovich, R.O. Symmetry reduction and exact solutions of the Navier–Stokes equations. I. J. Nonlinear Math. Phys. 1994, 1, 75–113. [Google Scholar] [CrossRef]
- Fushchich, V.I.; Popovich, R.O. Symmetry reduction and exact solutions of the Navier–Stokes equations. II. J. Nonlinear Math. Phys. 1994, 1, 156–188. [Google Scholar] [CrossRef]
- Ludlow, D.K.; Clarkson, P.A.; Bassom, A.P. Nonclassical symmetry reductions of the three-dimensional incompressible Navier–Stokes equations. J. Phys. A 1998, 31, 7965–7980. [Google Scholar] [CrossRef]
- Meleshko, S.V. A particular class of partially invariant solutions of the Navier–Stokes equations. Nonlinear Dyn. 2004, 36, 47–68. [Google Scholar] [CrossRef]
- Shapeev, V.P.; Sidorov, A.F.; Yanenko, N.N. Methods of Differential Constrains and Its Applications in Gas Dynamics; Nauka: Novosibirsk, Russia, 1984; p. 272. (In Russian) [Google Scholar]
- Baranovskii, E.S. Optimal boundary control of nonlinear-viscous fluid flows. Sb. Math. 2020, 211, 505–520. [Google Scholar] [CrossRef]
- Baranovskii, E.S.; Artemov, M.A. Existence of optimal control for a nonlinear-viscous fluid model. Int. J. Differ. Equ. 2016, 2016, 9428128. [Google Scholar] [CrossRef]
- Burmasheva, N.; Ershkov, S.; Prosviryakov, E.; Leshchenko, D. Exact Solutions of Navier–Stokes Equations for Quasi-Two-Dimensional Flows with Rayleigh Friction. Fluids 2023, 8, 123. [Google Scholar] [CrossRef]
- Meleshko, S.V.; Pukhnachev, V.V. On a class of partially invariant solutions of the Navier-Stokes equations. J. Appl. Mech. Tech. Phys. 1999, 40, 208–216. [Google Scholar] [CrossRef]
- Christianto, V.; Smarandache, F. An Exact Mapping from Navier-Stokes Equation to Schroedinger Equation. Prog. Phys. 2008, 1, 38–39. [Google Scholar]
- Pukhnachev, V.V. Group properties of the Navier-Stokes equations in a plane case Prikl. Mekh. Tekh. Fiz. 1960, 1, 83–90. [Google Scholar]
- Aristov, S.N.; Schwarz, K.G. Vortex Flows of Advective Nature in a Rotating Fluid Layer; Perm State University: Perm, Russia, 2006; p. 154. (In Russian) [Google Scholar]
- Aristov, S.N.; Schwarz, K.G. Vortex Currents in Thin Fluid Layers; Perm State University: Perm, Russia, 2011; p. 207. (In Russian) [Google Scholar]
- Alekseev, G.; Tereshko, D. Stability of optimal controls for the stationary Boussinesq equations. Int. J. Differ. Equat. 2011, 2011, 535736. [Google Scholar] [CrossRef]
- Pukhnachev, V.V. Non-stationary Analogues of the Birikh Solution. Izv. Altai State Univ. 2011, 69, 62–69. (In Russian) [Google Scholar]
- Birikh, R.V.; Pukhnachev, V.V. An axial convective flow in a rotating tube with a longitudinal temperature gradient. Dokl. Phys. 2011, 56, 47–52. [Google Scholar] [CrossRef]
- Polyanin, A.D. Exact solutions to the Navier-Stokes equations with generalized separation of variables. Dokl. Phys. 2001, 46, 726–731. [Google Scholar] [CrossRef]
- Baranovskii, E.S. Steady flows of an Oldroyd fluid with threshold slip. Commun. Pure Appl. Anal. 2019, 18, 735–750. [Google Scholar] [CrossRef]
- Baranovskii, E.S. On flows of Bingham-type fluids with threshold slippage. Adv. Math. Phys. 2017, 2017, 7548328. [Google Scholar] [CrossRef]
- Korobkov, M.; Pileckas, K.; Russo, R. On the Flux Problem in the Theory of Steady Navier–Stokes Equations with Nonhomogeneous Boundary Condition. Arch. Ration. Mech. Anal. 2013, 207, 185–213. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Methods of Separation of Variables and Exact Solutions of Nonlinear Equations of Mathematical Physics; Institute for Problems of Mechanics of RAS: Moscow, Russia, 2020; p. 384. [Google Scholar]
- Koptev, A.V. Nonlinear Effects in Poiseuille Problem. J. Sib. Fed. Univ.-Math. Phys. 2013, 6, 308–314. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ershkov, S.; Burmasheva, N.; Leshchenko, D.D.; Prosviryakov, E.Y. Exact Solutions of the Oberbeck–Boussinesq Equations for the Description of Shear Thermal Diffusion of Newtonian Fluid Flows. Symmetry 2023, 15, 1730. https://doi.org/10.3390/sym15091730
Ershkov S, Burmasheva N, Leshchenko DD, Prosviryakov EY. Exact Solutions of the Oberbeck–Boussinesq Equations for the Description of Shear Thermal Diffusion of Newtonian Fluid Flows. Symmetry. 2023; 15(9):1730. https://doi.org/10.3390/sym15091730
Chicago/Turabian StyleErshkov, Sergey, Natalya Burmasheva, Dmytro D. Leshchenko, and Evgeniy Yu. Prosviryakov. 2023. "Exact Solutions of the Oberbeck–Boussinesq Equations for the Description of Shear Thermal Diffusion of Newtonian Fluid Flows" Symmetry 15, no. 9: 1730. https://doi.org/10.3390/sym15091730
APA StyleErshkov, S., Burmasheva, N., Leshchenko, D. D., & Prosviryakov, E. Y. (2023). Exact Solutions of the Oberbeck–Boussinesq Equations for the Description of Shear Thermal Diffusion of Newtonian Fluid Flows. Symmetry, 15(9), 1730. https://doi.org/10.3390/sym15091730