Stochastic Dynamics Analysis of Epidemic Models Considering Negative Feedback of Information
Abstract
:1. Introduction
- (1):
- , for ∀,
- (2):
- , , for ∀, , .
2. The Existence and Uniqueness of Global Positive Solutions
3. Extinction of Disease
3.1. The Extinction of Diseases
3.2. Numerical Simulation
4. Random Ultimate Boundedness
5. Stationary Distribution
6. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tillett, H.E. Infectious diseases of humans: Dynamics and control. Epidemiol. Infect. 1992, 108, 211–212. [Google Scholar] [CrossRef]
- Ruan, S.G.; Wang, W.D. Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. Dierential Equ. 2003, 188, 135–163. [Google Scholar] [CrossRef]
- Funk, S.; Salath, M.; Jansen, V.A. Modelling the inuence of human behaviour on the spread of infectious diseases: A review. J. R. Soc. Interface 2010, 7, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.B.; Michael, Y.L.; Shuai, Z.S. A graph-theoretic approach to the method of global Lyapunov functions. Proc. Am. Math. Soc. 2018, 136, 2793–2802. [Google Scholar] [CrossRef]
- Sun, R.Y. Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence. Comput. Math. Appl. 2010, 60, 2286–2291. [Google Scholar] [CrossRef]
- Sun, G.Q.; Zhang, H.T.; Wang, J.S.; Li, J.; Wang, Y.; Li, L.; Wu, Y.P.; Feng, G.L.; Jin, Z. Mathematical modeling and mechanisms of pattern formation in ecological systems: A review. Nonlinear Dyn. 2021, 104, 1677–1696. [Google Scholar] [CrossRef]
- Liu, M.X.; Fu, X.J. Dynamical analysis of an SIS epidemic model with migration and residence time. Int. J. Biomath. 2021, 14, 141–158. [Google Scholar] [CrossRef]
- Li, Z.; Teng, Z.; Feng, X.; Li, Y.; Zhang, H. Dynamical analysis of an SEIT epidemic model with application to ebola virus transmission in Guinea. Comput. Math. Methods Med. 2015, 2015, 582625. [Google Scholar] [CrossRef]
- Gao, S.; Teng, Z.; Nieto, J.J.; Torres, A. Analysis of an SIR epidemic model with pulse vaccination and distributed time delay. J. Biomed. Biotechnol. 2007, 2007, 064870. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, K.G.; Gau, S.J.; Chen, S. A remark on stationary distribution of a stochastic SIR epidemic model with double saturated rates. Appl. Math. Lett. 2018, 76, 46–52. [Google Scholar] [CrossRef]
- Zhang, X.B.; Chang, S.Q.; Shi, Q.H.; Huo, H.F. Qualitative study of a stochastic SIS epidemic model with vertical transmission. Phys. A Stat. Mech. Its Appl. 2018, 505, 805–817. [Google Scholar] [CrossRef]
- Wang, F.; Wang, S.; Peng, Y. Asymptotic behavior of multigroup SEIR model with nonlinear incidence rates under stochastic perturbations. Discret. Dyn. Nat. Soc. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, D.Q.; Shi, N.Z.; Hayat, T.; Alsaedi, A. Stationary distribution and extinction of a stochastic SIRS epidemic model with standard incidence. Phys. A Stat. Mech. Its Appl. 2017, 409, 510–517. [Google Scholar] [CrossRef]
- Zhao, Y.N.; Jiang, D.Q. The threshold of a stochastic SIRS epidemic model with saturated incidence. Appl. Math. Lett. 2014, 34, 90–93. [Google Scholar] [CrossRef]
- d’Onofrio, A.; Manfredi, P.; Salinelli, E. Vaccinating behaviour, information, and the dynamics of sir vaccine preventable diseases. Theor. Popul. Biol. 2007, 71, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Vargas, D.L.C.; D’Onofrio, A. Global stability of infectious disease models with contact rate as a function of prevalence index. Math. Biosci. Eng. 2017, 14, 1019. [Google Scholar] [CrossRef]
- Hu, R.; Liu, L.; Ren, X.; Liu, X. Global stability of an information-related epidemic model with age-dependent latency and relapse. Ecol. Comple 2018, 36, 30–47. [Google Scholar] [CrossRef]
- Buonomo, B.; d’Onofrio, A.; Lacitignola, D. Global stability of an sir epidemic model with information dependent vaccination. Math. Biosci. 2008, 216, 9–16. [Google Scholar] [CrossRef]
- Buonomo, B.; d’Onofrio, A.; Lacitignola, D. Globally stable endemicity for infectious diseases with information-related changes in contact patterns. Appl. Math. Lett. 2012, 25, 1056–1060. [Google Scholar] [CrossRef]
- Wang, W.D.; Ruan, S.G. Simulating the SARS outbreak in Beijing with limited data. J. Theor. Biol. 2004, 227, 369–379. [Google Scholar] [CrossRef]
- Meyer, K.C. The role of immunity and inflammation in lung senescence and susceptibility to infection in the elderly. Semin. Respir. Crit. Care Med. 2010, 31, 561–574. [Google Scholar] [CrossRef] [PubMed]
- McCluskey, C.C. Complete global stability for an SIR epidemic model with delay–Distributed or discrete—ScienceDirect. Nonlinear Anal. Real World Appl. 2010, 11, 55–59. [Google Scholar] [CrossRef]
- Sun, X.; Zuo, W.; Jiang, D.; Hayat, T. Unique stationary distribution and ergodicity of a stochastic Logistic model with distributed delay. Phys. A Stat. Mech. Its Appl. 2018, 512, 864–881. [Google Scholar] [CrossRef]
- Roxana, L.C. Global stability of an SAIRD epidemiological model with negative feedback. In Advances in Continuous and Discrete Models; Springer: Cham, Switzerland, 2022; p. 41. [Google Scholar]
- ksendal, B. Stochastic differential equations: An introduction with applications. J. Am. Stat. Assoc. 2006, 51, 1731–1732. [Google Scholar]
- Allen, L.J.S. An introduction to stochastic epidemic models. In Mathematical Epidemiology; Springer: Berlin/Heidelberg, Germany, 2008; pp. 81–130. [Google Scholar]
- Beddington, J.R.; May, R.M. Harvesting natural populations in a randomly fluctuating environment. Science 1977, 197, 463–465. [Google Scholar] [CrossRef]
- Lan, G.; Huang, Y.; Wei, C.; Zhang, S. A stochastic SIS epidemic model with saturating contact rate. Phys. A Stat. Mech. Its Appl. 2019, 529, 121504. [Google Scholar] [CrossRef]
- Mao, X.R. Stochastic Differential Equations and Applications; Elsevier: Amsterdam, The Netherlands, 2011; pp. 47–90. [Google Scholar]
- Tan, Y.P.; Cai, Y.L.; Wang, X.Q.; Peng, Z.H.; Wang, K.; Ya, R.X.; Wang, W.M. Stochastic dynamics of an SIS epidemiological model with media coverage. Math. Comput. Simul. 2023, 204, 1–27. [Google Scholar] [CrossRef]
- Dieu, N.T.; Nguyen, D.H.; Du, N.H.; Yin, G. Classification of asymptotic behavior in a stochastic SIR Model. Soc. Ind. Appl. Math. 2015, 15, 1062–1084. [Google Scholar] [CrossRef]
- Liu, W.; Zheng, Q. A stochastic SIS epidemic model incorporating media coverage in a two patch setting. Appl. Math. Comput. 2015, 262, 160–168. [Google Scholar] [CrossRef]
- Kiessler, P.C. Statistical Inference for Ergodic Diffusion Processes; Springer: New York, NY, USA, 2004. [Google Scholar]
- Higham, D.J. An algorithmic introduction to numerical simulation of stochastic differential equations. Siam Rev. 2001, 43, 525–546. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, X.; Wang, W.; Zhao, M. Stochastic dynamics of a SIRS epidemic model with ratio-dependent incidence rate. Abstr. Appl. Anal. 2013, 2013, 415–425. [Google Scholar] [CrossRef]
- Han, T. Stationary solution, extinction and density function for a high-dimensional stochastic SEI epidemic model with general distributed delay. Appl. Math. Comput. 2021, 405, 126236. [Google Scholar] [CrossRef]
- Zuo, W.; Zhou, Y. Density function and stationary distribution of a stochastic SIR model with distributed delay. Appl. Math. Lett. 2022, 129, 107931. [Google Scholar] [CrossRef]
- Khasminskii, R. Stochastic Stability of Differential Equations; Springer: New York, NY, USA, 2011; pp. 70–73. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Luo, W.; Chen, H.; Zhao, Y. Stochastic Dynamics Analysis of Epidemic Models Considering Negative Feedback of Information. Symmetry 2023, 15, 1781. https://doi.org/10.3390/sym15091781
Wu W, Luo W, Chen H, Zhao Y. Stochastic Dynamics Analysis of Epidemic Models Considering Negative Feedback of Information. Symmetry. 2023; 15(9):1781. https://doi.org/10.3390/sym15091781
Chicago/Turabian StyleWu, Wanqin, Wenhui Luo, Hui Chen, and Yun Zhao. 2023. "Stochastic Dynamics Analysis of Epidemic Models Considering Negative Feedback of Information" Symmetry 15, no. 9: 1781. https://doi.org/10.3390/sym15091781
APA StyleWu, W., Luo, W., Chen, H., & Zhao, Y. (2023). Stochastic Dynamics Analysis of Epidemic Models Considering Negative Feedback of Information. Symmetry, 15(9), 1781. https://doi.org/10.3390/sym15091781