Certain Class of Close-to-Convex Univalent Functions
Abstract
:1. Introduction
2. Main Results
3. Pascal Distribution Series
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reade, M.O. The Coefficients of Close-to-Convex Functions. Duke Math. J. 1956, 23, 459–462. [Google Scholar] [CrossRef]
- Kaplan, W. Close-to-Convex Schlicht Functions. Mich. Math. J. 1952, 1, 169–185. [Google Scholar] [CrossRef]
- Altıntaş, O.; Irmak, H.; Owa, S.; Srivastava, H.M. Coefficient Bounds for Some Families of Starlike and Convex Functions of Complex Order. Appl. Math. Lett. 2007, 20, 1218–1222. [Google Scholar] [CrossRef]
- Owa, S.; Nunokawa, M.; Saitoh, H.; Srivastava, H.M. Close-to-Convexity, Starlikeness, and Convexity of Certain Analytic Functions. Appl. Math. Lett. 2002, 15, 63–69. [Google Scholar] [CrossRef]
- Kowalczyk, J.; Leś-Bomba, E. On a Subclass of Close-to-Convex Functions. Appl. Math. Lett. 2010, 23, 1147–1151. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; ISBN 978-0-387-90795-6. [Google Scholar]
- Gao, C.; Zhou, S. On a Class of Analytic Functions Related to the Starlike Functions. Kyungpook Math. J. 2005, 45, 123–130. [Google Scholar]
- Naeem, M.; Hussain, S.; Sakar, F.M.; Mahmood, T.; Rasheed, A. Subclasses of Uniformly Convex and Starlike Functions Associated with Bessel Functions. Turk. J. Math. 2019, 43, 2433–2443. [Google Scholar] [CrossRef]
- Rasheed, A.; Hussain, S.; Ghoos Ali Shah, S.; Darus, M.; Lodhi, S. Majorization Problem for Two Subclasses of Meromorphic Functions Associated with a Convolution Operator. AIMS Math. 2020, 5, 5157–5170. [Google Scholar] [CrossRef]
- Sakar, F.; Ghoos, S.; Ali Shah, S.; Hussain, S.; Rasheed, A.; Naeem, M. Q-Meromorphic Closed-to-Convex Functions Related with Janowski Function. Commun. Fac. Sci. Univ. Ank. Ser. A1Mathematics Stat. 2021, 71, 25–38. [Google Scholar] [CrossRef]
- Raghavendar, K.; Swaminathan, A. Close-to-Convexity Properties of Basic Hypergeometric Functions Using Their Taylor Coefficient. J. Math. Appl. 2012, 35, 53–67. [Google Scholar] [CrossRef]
- Aral, A.; Gupta, V.; Agarwal, R. Applications of Q-Calculus in Operator Theory; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-6945-2. [Google Scholar]
- Srivastava, H.M.; Bansal, D. Close-to-Convexity of a Certain Family of q-Mittag-Leffler Functions. J. Nonlinear Var. Anal 2017, 1, 61–69. [Google Scholar]
- Cho, N.E.; Owa, S. Sufficient Conditions for Meromorphic Starlikeness and Close-to-Convexity of Order α. Int. J. Math. Math. Sci. 2001, 26, 317–319. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series; Encyclopedia of Mathematics and Its Applications, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Miller, J. Convex Meromorphic Mappings and Related Functions. Proc. Am. Math. Soc. 1970, 25, 220–228. [Google Scholar] [CrossRef]
- Kanas, S.; Wiśniowska-Wajnryb, A. Conic Domains and Starlike Functions. Rev. Roum. Mathématiques Pures Appliquées 2000, 45, 647–658. [Google Scholar]
- Kanas, S.; Wisniowska, A. Conic Regions and K-Uniform Convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Xu, Q.-H.; Srivastava, H.M.; Li, Z. A Certain Subclass of Analytic and Close-to-Convex Functions. Appl. Math. Lett. 2011, 24, 396–401. [Google Scholar] [CrossRef]
- Bernardi, S.D. Convex and Starlike Univalent Functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Libera, R.J. Some Classes of Regular Univalent Functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [Google Scholar] [CrossRef]
- Pommerenke, C. On Close-to-Convex Analytic Functions. Trans. Am. Math. Soc. 1965, 114, 176. [Google Scholar] [CrossRef]
- Nasri, N.; Aissaoui, F.; Bouhali, K.; Frioui, A.; Meftah, B.; Zennir, K.; Radwan, T. Fractional Weighted Midpoint-Type Inequalities for s-Convex Functions. Symmetry 2023, 15, 612. [Google Scholar] [CrossRef]
- Miki, Y. A Note on Close-to-Convex Functions. J. Math. Soc. Jpn. 1956, 8, 256–268. [Google Scholar] [CrossRef]
- Bulboaca, T.; Murugusundaramoorthy, G. Univalent Functions with Positive Coefficients Involving Pascal Distribution Series. Commun. Korean Math. Soc. 2020, 35, 867–877. [Google Scholar] [CrossRef]
- Uralegaddi, B.A.; Ganigi, M.D.; Sarangi, S.M. Univalent Functions with Positive Coefficients. Tamkang J. Math. 1994, 25, 225–230. [Google Scholar] [CrossRef]
- Billing, S.; Gupta, S.; Sukhjit, S. On a Problem in the Theory of Univalent Functions 1. Gen. Math. 2009, 17, 135–139. [Google Scholar]
- Murugusundaramoorthy, G. Univalent Functions with Positive Coefficients Involving Poission Distribution Series. Honam Math. J. 2018, 40, 529–538. [Google Scholar] [CrossRef]
- Janteng, A.; Abdul Halim, S.; Darus, M. Coefficient Inequality for a Function Whose Derivative Has Positive Real Part. JIPAM. J. Inequalities Pure Appl. Math. 2006, 7, 50. [Google Scholar]
- Swaminathan, A. Certain Sufficiency Conditions on Gaussian Hypergeometric Functions. JIPAM. J. Inequal. Pure Appl. Math. 2004, 5, 83. [Google Scholar]
- Shams, S.; Kulkarni, S.R.; Jahangiri, J.M. Classes of Uniformly Starlike and Convex Functions. Int. J. Math. Math. Sci. 2004, 2004, 2959. [Google Scholar] [CrossRef]
- Altinkaya, S.; Yalçin, S.; Çakmak, S. Some Connections between Various Classes of Analytic Functions Associated with the Power Series Distribution. Sak. Univ. J. Sci. 2019, 23, 982–985. [Google Scholar] [CrossRef]
- Çakmak, S.; Yalçin, S.; Altınkaya, Ş. An Application of the Power Series Distribution for Certain Analytic Univalent Function Classes. Lib. Math. 2019, 39, 95–102. [Google Scholar]
- Porwal, S.; Nanjudan, M.; Saravanan, C. Certain Subclasses of Analytic Functions Associated with Mittag–Leffler-Type Poisson Distribution Series. Boletín Soc. Matemática Mex. 2020, 26, 1035–1043. [Google Scholar] [CrossRef]
- Frasin, B.; Gharaibeh, M. Subclass of Analytic Functions Associated with Poisson Distribution Series. Afr. Mat. 2020, 31, 1167–1173. [Google Scholar] [CrossRef]
- Magesh, N.; Porwal, S.; Themangani, R. Some Inclusion Relations of Certain Subclasses of Harmonic Univalent Function Associated with Generalized Distrbution Series. Commun. Korean Math. Soc. 2020, 35, 843–854. [Google Scholar] [CrossRef]
- Gangadharan, M.; Yalçın, S.; Yaşar, E.; Çakmak, S. An Application of the Power Series Distribution for Univalent Function Classes with Positive Coefficients. Int. J. Nonlinear Anal. Appl. 2022, 14, 259–265. [Google Scholar] [CrossRef]
- Heubach, S.; Mansour, T. Compositions of n with Parts in a Set. Congr. Numer. 2004, 168, 127. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhily, S.S.; Lupas, A.A. Certain Class of Close-to-Convex Univalent Functions. Symmetry 2023, 15, 1789. https://doi.org/10.3390/sym15091789
Alhily SS, Lupas AA. Certain Class of Close-to-Convex Univalent Functions. Symmetry. 2023; 15(9):1789. https://doi.org/10.3390/sym15091789
Chicago/Turabian StyleAlhily, Shatha S., and Alina Alb Lupas. 2023. "Certain Class of Close-to-Convex Univalent Functions" Symmetry 15, no. 9: 1789. https://doi.org/10.3390/sym15091789
APA StyleAlhily, S. S., & Lupas, A. A. (2023). Certain Class of Close-to-Convex Univalent Functions. Symmetry, 15(9), 1789. https://doi.org/10.3390/sym15091789