A Novel Detection Algorithm for the Icing Status of Transmission Lines
Abstract
:1. Introduction
- Novel Algorithm: We developed a new detection algorithm for the icing status of transmission lines using 2D MF-DFA.
- Accurate Detection: The algorithm accurately segments and extracts local feature areas, detecting ice-covered areas and measuring icing thickness with high precision.
- Versatility: We demonstrated the algorithm’s adaptability across various environmental conditions and image types, showing potential for broader applications in power grid monitoring.
- Practical Implementation: We provide the detailed MATLAB code in the Appendix A, facilitating the application and further development of the proposed method.
2. Detection Principle of the State of Ice Coverage on Transmission Lines Based on 2D MF-DFA
2.1. Preliminary Concepts
2.2. Proposed Algorithm for Icing Status Detection
- Step 1
- Step 2
- Taking values of s ranging from 2 to 4, each sub-image can be divided into , , and sub-regions for , and 4, respectively, as shown in Figure 5.
- Step 3
- Then, we can obtain the log–log plots of the fluctuation function () versus s. The line fit using the least squares method is shown in Figure 6.
- Step 4
- Blockwise cumulative plane fitting is performed for each extracted local area. The algorithm iterates through the image, extracting a local area of size , with each pixel as its center, as shown in Figure 4b. The local generalized Hurst exponent () for each pixel is calculated within each sub-block. The stored results are depicted in Figure 7.
- Step 5
- Matrix J is filtered to obtain matrix C. The minimum and maximum values of C are used to create an arithmetic progression (), dividing it into f equal parts. Matrix D is created with the same size as C and filled with 255. C is traversed, and the corresponding positions in D are set to 0 if the value at falls within , where ; otherwise, it is left unchanged. Finally, the segmentation results are displayed using the imshow and contourf functions in MATLAB to visualize matrix D.
Algorithm 1 Multiscale Fractal Dimension Calculation for Image Segmentation. |
|
3. Experimental Results
3.1. Experimental Results of Icing Detection
3.1.1. Analysis of Synthetic Images
3.1.2. Detection Results for Line Icing without Background Interference
3.1.3. Detection Results for Line Icing against a Chaotic Background
3.2. Multiple Evaluation Indicators
3.3. Applicability Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- clear;
- TimeSeries=load(’test.txt’);
- Figure~(1)
- plot(TimeSeries, ’-’);
- for i=1:length(TimeSeries)-1
- Return1(i)=log(TimeSeries(i+1))-log(TimeSeries(i));
- end
- m=21; q=linspace(-10,10,m); n=11; s=linspace(5,15,n);
- N=length(Return1);
- for i=1:N
- Return(i)=Return1(i)-mean(Return1);
- end
- for i=1:n
- Ns(i)=floor(N/s(i));
- end
- for k=1:n
- for i=1:Ns(k)
- for j=1:s(k)
- x(j)=s(k)∗(i-1)+j;
- y(j)=Return(x(j));
- end
- b=polyfit(x,y,2);
- for j=1:s(k)
- jj=s(k)∗(i-1)+j;
- F2(i,j)=(Return(jj)-(b(1)∗(jj)^2+b(2)∗jj+b(3)))^2;
- end
- F2sv(i,k)=mean(F2(i,:));
- end
- for i=Ns(k)+1:2∗Ns(k)
- for j=1:s(k)
- x(j)=N-(i-Ns(k))∗s(k)+j;
- y(j)=Return(x(j));
- end
- b=polyfit(x,y,2);
- for j=1:s(k)
- jj=N-(i-Ns(k))∗s(k)+j;
- F2(i,j)=(Return(jj)-(b(1)∗jj^2+b(2)∗jj+ b(3)))^2;
- end
- F2sv(i,k)=mean(F2(i,:));
- end
- a=F2sv(1:2∗Ns(k),k);
- for l=1:m
- if q(l)~=0
- Fqs(k,l)=(sum(a.^(q(l)/2))/(2∗Ns(k)))^(1/q(l));
- else
- Fqs(k,l)=exp(sum(log(a))/(4∗Ns(k)));
- end
- aa(k)=log(s(k));
- bb(k,l)=log(Fqs(k,l));
- end
- end
- for i=1:m
- PP(i,:)=polyfit(aa(:),bb(:,i),1);
- end
- for i=1:m
- for j=1:n
- bbb(j,i)=PP(i,1)∗aa(j)+PP(i,2);
- end
- end
- Hq=PP(:,1);
- Figure~(2)
- plot(q,Hq,’o’,’linewidth’,2)
- for i=1:m
- Tq(i)=q(i)∗Hq(i)-1;
- end
- Figure~(3)
- plot(q,Tq,’o’,’linewidth’,2)
- for i=1:m-1
- xielv(i)=(Hq(i+1)-Hq(i))/(q(i+1)-q(i));
- alpha(i)=Hq(i)+q(i)∗xielv(i);
- aif(i)=1+q(i)∗(alpha(i)-Hq(i));
- end
- Figure~(4)
- plot(alpha,aif,’o’,’linewidth’,2)
- clear;clc;
- Image1 = imread(’1.jpg’);
- Figure~(1)
- imshow(Image1)
- I1=double(Image1);
- [M N] = size(Image1);
- Windowsize = 11;
- w = (Windowsize-1)/2;
- for q = -10
- for k1 = w+1:M-w
- for k2 = w+1:N-w
- I = I1(k1-w:k1+w,k2-w:k2+w);
- for s = 2:w
- Ms = floor(Windowsize/s);Ns = floor(Windowsize/s);
- X = [];
- F1 = [];
- for i1 = 1:Ms
- for j1 = 1:Ns
- X1 = I((i1-1)∗s+1:i1∗s,(j1-1)∗s+1:j1∗s);
- px = (1:s)’;
- x = px;
- y = px;
- z = cumsum(cumsum(X1)’)’;
- clear z0
- m1 = length(x);
- n1 = length(y);
- a11 = n1∗x’∗x; a12 = sum(sum(x∗y’));
- a13 = n1∗sum(x); a21 = a12;
- a22 = m1∗y’∗y; a23 = m1∗sum(y);
- a31 = a13; a32 = a23; a33 = m1∗n1;
- A = [a11 a12 a13;a21 a22 a23;a31 a32 a33];
- for i = 1:m1
- kk1(i) = sum(x(i)∗z(i,:));
- end
- b1 = sum(kk1);
- for j =1:n1
- kk2(j) = sum(y(j)∗z(:,j));
- end
- b2 = sum(kk2); b3 = sum(sum(z));
- B = [b1 b2 b3]’; coff = A\B;
- a = coff(1);b = coff(2);c = coff(3);
- for i = 1:m1
- for j = 1:n1
- z0(i,j) = a∗x(i)+b∗y(j)+c;
- end
- end
- rr = z-z0;
- F1(i1,j1) = sum(sum(rr.^2))/s^2;
- end
- end
- F(s) = (sum(sum(F1.^(q/2)))/(Ms∗Ns))^(1/q);
- %F(s) = exp(sum(sum(log(sqrt(F1))))/(Ms∗Ns)); % If q = 0;
- end
- s0 = 2:w;
- xx = log(s0);
- yy = log(F(s0));
- p = polyfit(xx,yy,1);
- yy1 = polyval(p,xx);
- p1 = p(1);
- Slide(k1-w,k2-w) = p1;
- end
- end
- end
- save LocalHurstExponentMetrix Slide
- % which is the local Hurst exponent metrix corresponding to Figure~5(c).
References
- Qi, E.; Zhang, Q.; Liu, G.; Zhang, Z.; Wang, M.; Song, Z.; Zhong, C. Fault distance measurement method for wind power transmission lines based on improved NSGA II. Eng. Res. Express 2024, 6, 025302. [Google Scholar] [CrossRef]
- Galli, S.; Scaglione, A.; Wang, Z. For the grid and through the grid: The role of power line communications in the smart grid. Proc. IEEE 2011, 99, 998–1027. [Google Scholar] [CrossRef]
- Huang, J.; Yang, H.; Wang, Y. Forecast of line ice-coating degree using circumfluence index & support vector machine method. In Proceedings of the 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Changsha, China, 26–29 November 2015; pp. 2764–2768. [Google Scholar] [CrossRef]
- Nygaard, B.E.K.; Agustsson, H.; Somfalvi-Toth, K. Modeling wet snow accretion on power lines: Improvements to previous methods using 50 years of observations. J. Appl. Meteorol. Climatol. 2013, 52, 21892203. [Google Scholar] [CrossRef]
- Bonelli, P.; Lacavalla, M.; Marcacci, P.; Mariani, G.; Stella, G. Wet snow hazard for power lines: A forecast and alert system applied in Italy. Nat. Hazards Earth Syst. Sci. 2011, 11, 2419–2431. [Google Scholar] [CrossRef]
- Xu, X.; Niu, D.; Zhang, L.; Wang, Y.; Wang, K. Ice cover prediction of a power grid transmission line based on two-stage data processing and adaptive support vector machine optimized by genetic tabu search. Energies 2017, 10, 1862. [Google Scholar] [CrossRef]
- Farzaneh, M. Insulator flashover under icing conditions. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 1997–2011. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, T.; Yao, T.; Li, X.; Li, J.; Chen, J.; Cai, L.; Jia, R. Flashover performance of UHV & EHV post insulatros under icing conditions. In Proceedings of the 2014 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Des Moines, IA, USA, 19–22 October 2014; pp. 295–298. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, W.; Cui, H. Review of Optical Character Recognition for Power System Image Based on Artificial Intelligence Algorithm. Energy Eng. 2023, 120, 665–679. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Q.; Chen, L.; Zhou, J.; Shao, H. Fault Diagnosis of Industrial Motors with Extremely Similar Thermal Images Based on Deep Learning-Related Classification Approaches. Energy Eng. 2023, 120, 1867–1883. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, J.; Zhang, Y.; Zhao, L.; Jiang, B.; Huang, X. Study on Image Recognition Algorithm for Residual Snow and Ice on Photovoltaic Modules. Energy Eng. 2024, 121, 895–911. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Shao, J.; Li, J. Image recognition of icing thickness on power transmission lines based on a least squares Hough transform. Energies 2017, 10, 415. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Zhang, G.; Li, J.; Zhang, N.; Du, B.; Liu, H.; Xiong, N. Transmission line ice coating prediction model based on EEMD feature extraction. IEEE Access 2019, 7, 40695–407069. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, X.; Zhang, P.; Liu, W. Ice Detection of Transmission Line Based on Image Fusion. In Proceedings of the 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China, 25–27 May 2018; pp. 1224–1228. [Google Scholar] [CrossRef]
- Yan, G.; Wei, C.; Jia, X.; Li, Y.; Chang, W. MAS-Net: Multi-Attention Hybrid Network for Superpixel Segmentation. Symmetry 2024, 16, 1000. [Google Scholar] [CrossRef]
- Wang, W.; Xu, X.; Yang, H. Intelligent Detection of Tunnel Leakage Based on Improved Mask R-CNN. Symmetry 2024, 16, 709. [Google Scholar] [CrossRef]
- Su, B.; Xu, G. Automatic detection method for iced transmission lines under complex background. In Proceedings of the 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), Xiamen, China, 18–20 October 2019; pp. 1555–1560. [Google Scholar] [CrossRef]
- Wang, W.; Yousaf, M.; Liu, D.; Sohail, A. A comparative study of the genetic deep learning image segmentation algorithms. Symmetry 2022, 14, 1977. [Google Scholar] [CrossRef]
- Wang, X.; Hu, J.; Wu, B.; Du, L.; Sun, C. Study on edge extraction methods for image-based icing on-line monitoring on overhead transmission lines. In Proceedings of the 2008 International Conference on High Voltage Engineering and Application, Chongqing, China, 9–13 November 2018; pp. 661–665. [Google Scholar] [CrossRef]
- Bao, X.; Jia, H.; Lang, C. Dragonfly algorithm with opposition-based learning for multilevel thresholding color image segmentation. Symmetry 2019, 11, 716. [Google Scholar] [CrossRef]
- Hu, M.; He, J.; Alsabaan, M. Image Identification Method of Ice Thickness on Transmission Line Based on Visual Sensing. Mob. Netw. Appl. 2023, 28, 1783–1792. [Google Scholar] [CrossRef]
- Zhong, Y.P.; Zuo, Q.; Zhou, Y.; Zhang, C. A new image-based algorithm for icing detection and icing thickness estimation for transmission lines. In Proceedings of the 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), San Jose, CA, USA, 15–19 July 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Yue, S.; Yuan, M.; Lu, T.; Shivakumara, P.; Blumenstein, M.; Shi, J.; Kumar, G.H. Rotation invariant angle-density based features for an ice image classification system. Expert Syst. Appl. 2020, 162, 113744. [Google Scholar] [CrossRef]
- Hu, T.; Shen, L.; Wu, D.; Duan, Y.; Song, Y. Research on transmission line ice-cover segmentation based on improved U-Net and GAN. Electr. Power Syst. Res. 2023, 221, 109405. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, X.; Hao, Y.; Li, L.; Li, H.; Li, R.; Luo, B. Recognition of natural ice types on in-service glass insulators based on texture feature descriptor. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 535–542. [Google Scholar] [CrossRef]
- Huang, X.; Wei, X. A new on-line monitoring technology of transmission line conductor icing. In Proceedings of the 2012 IEEE International Conference on Condition Monitoring and Diagnosis, Bali, Indonesia, 23–27 September 2012; pp. 581–585. [Google Scholar] [CrossRef]
- Kantelhardt, J.-W.; Zschiegner, S.-A.; Koscielny-Bunde, E. Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A 2002, 316, 87–114. [Google Scholar] [CrossRef]
- Alshehri, A.A.; Daws, T.; Ezekiel, S. Medical image segmentation using multifractal analysis. Int. J. Adv. Sci. Eng. Inf. Technol. 2020, 10, 420–429. [Google Scholar] [CrossRef]
- Du, G.; Yeo, T.S. A novel multifractal estimation method and its application to remote image segmentation. IEEE Trans. Geosci. Remote Sens. 2002, 40, 980–982. [Google Scholar] [CrossRef]
- Wang, F.; Li, J.W.; Shi, W.; Liao, G.P. Leaf image segmentation method based on multifractal detrended fluctuation analysis. J. Appl. Phys. 2013, 114, 214905. [Google Scholar] [CrossRef]
- Korchiyne, R.; Sbihi, A.; Farssi, S.M.; Touahni, R.; Alaoui, M.T. Medical image texture segmentation using multifractal analysis. In Proceedings of the 2012 International Conference on Multimedia Computing and Systems, Tangiers, Morocco, 10–12 May 2012; pp. 422–425. [Google Scholar] [CrossRef]
- Xia, Y.; Feng, D.; Zhao, R.; Zhang, Y. Multifractal signature estimation for textured image segmentation. Pattern Recognit. Lett. 2010, 31, 163–169. [Google Scholar] [CrossRef]
- Wang, D.; Yue, J.; Li, J.; Xu, Z.; Zhao, W.; Zhu, R. Research on sag monitoring of ice-accreted transmission line arcs based on stereovision technique. Electr. Power Syst. Res. 2023, 225, 109794. [Google Scholar] [CrossRef]
Image | Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%) | IoU (%) |
---|---|---|---|---|---|
Figure 11d | 99.09 | 99.57 | 91.60 | 95.42 | 91.24 |
Figure 12d | 97.17 | 89.65 | 93.68 | 91.62 | 84.54 |
Ice Grade | Ice Thickness (mm) | Ice Cover | Training Set | Test Set | Total |
---|---|---|---|---|---|
I | 0 | Ice-free | 920 | 426 | 1346 |
II | 0–5 | Light icing | 764 | 345 | 1109 |
III | 5–10 | Moderate icing | 243 | 107 | 350 |
IV | >10 | Heavy icing | 80 | 39 | 119 |
Total | / | / | 2007 | 917 | 2924 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, D.; Hu, Y.; Qian, H.; Qi, G.; Wang, Y. A Novel Detection Algorithm for the Icing Status of Transmission Lines. Symmetry 2024, 16, 1264. https://doi.org/10.3390/sym16101264
Dai D, Hu Y, Qian H, Qi G, Wang Y. A Novel Detection Algorithm for the Icing Status of Transmission Lines. Symmetry. 2024; 16(10):1264. https://doi.org/10.3390/sym16101264
Chicago/Turabian StyleDai, Dongxu, Yan Hu, Hao Qian, Guoqiang Qi, and Yan Wang. 2024. "A Novel Detection Algorithm for the Icing Status of Transmission Lines" Symmetry 16, no. 10: 1264. https://doi.org/10.3390/sym16101264
APA StyleDai, D., Hu, Y., Qian, H., Qi, G., & Wang, Y. (2024). A Novel Detection Algorithm for the Icing Status of Transmission Lines. Symmetry, 16(10), 1264. https://doi.org/10.3390/sym16101264