A Note on the Infinitesimal Bending of a Rectifying Curve
Abstract
:1. Introduction
2. Preliminaries
3. The Infinitesimal Bending of a Rectifying Curve
3.1. Constant Curvature
3.2. Constant Torsion
3.3. Other Cases
4. Geometrical Interpretations, Conclusions, and Further Developments
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Velimirović, L.S.; Cvetković, M.D.; Ćirić, M.S.; Velimirović, N. Analysis of Gaudi surfaces at small deformations. Appl. Math. Comput. 2012, 218, 6999–7004. [Google Scholar] [CrossRef]
- Romano, A.; Marasco, A. Finite and infinitesimal deformations. In Continuum Mechanics Using Mathematica®. Modeling and Simulation in Science, Engineering and Technology; Birkhäuser: New York, NY, USA, 2014; pp. 88–113. [Google Scholar]
- Fomenko, V.T. Some results in the theory of infinitesimal bending of surfaces. Math. USSR-Sb. 1967, 1, 351. [Google Scholar] [CrossRef]
- Velimirović, L. Infinitesimal bending of curves. Mat. Bilt. Skopje 2001, 25, 25–36. [Google Scholar]
- Najdanović, M.S.; Velimirović, L.S. Second order infinitesimal bending of curves. Filomat 2017, 31, 4127–4137. [Google Scholar] [CrossRef]
- Najdanović, M.S.; Velimirović, L.S. Infinitesimal bending of curves on the ruled surfaces. Bull. Nat. Sci. Res. 2018, 8, 46–51. [Google Scholar] [CrossRef]
- Velimirović, L.S. Change of geometric magnitudes under infinitesimal bending. Facta Univ. Ser. Mech. Autom. Control Robot. 2001, 3, 135–148. [Google Scholar]
- Najdanovic, M.S. Infinitesimal bending influence on the Willmore energy of curves. Filomat 2015, 29, 2411–2419. [Google Scholar] [CrossRef]
- Velimirovic, L.; Najdanovic, M. On the Willmore energy of curves under second order infinitesimal bending. Miskolc Math. Notes 2016, 17, 979–987. [Google Scholar]
- Jimenez, M.I. Infinitesimal bendings of complete Euclidean hypersurfaces. Manuscripta Math. 2018, 157, 513–527. [Google Scholar] [CrossRef]
- Dajczer, M.; Jimenez, M.I. Infinitesimal Variations of Submanifolds; Ensaios Matematicos Sociedade Brasileira de Matematica: Rio de Janeiro, Brazil, 2021. [Google Scholar]
- Maksimovic, M.; Velimirovic, L.; Najdanović, M. Infinitesimal bending of DNA helices. Turk. J. Math. 2021, 45, 520–528. [Google Scholar] [CrossRef]
- Najdanović, M.; Maksimović, M.; Velimirović, L. Curves on ruled surfaces under infinitesimal bending. Bull. Nat. Sci. Res. 2021, 11, 38–43. [Google Scholar] [CrossRef]
- Gözütok, U.; Çoban, H.A.; Sağiroğlu, Y. Ruled surfaces obtained by bending of curves. Turk. J. Math. 2020, 44, 300–306. [Google Scholar] [CrossRef]
- Dajczer, M.; Jimenez, M.I.; Vlachos, T. Conformal infinitesimal variations of Euclidean hypersurfaces. Ann. Mat. Pura Appl. 2021, 2, 743–768. [Google Scholar] [CrossRef]
- Maksimović, M.D.; Rančić, S.R.; Najdanović, M.S.; Velimirović, L.S.; Ljajko, E.S. On the torsional energy of torus knots under infinitesimal bending. Analele Ştiinţifice Univ. Ovidius Constanţa Ser. Mat. 2023, 31, 181–197. [Google Scholar]
- Najdanović, M.S.; Rančić, S.R.; Velimirović, L.S. Total torsion and spherical curves bending. Mediterr. J. Math. 2024, 21, 74. [Google Scholar] [CrossRef]
- Najdanović, M.S. Characterization of dual curves using the theory of infinitesimal bending. Math. Methods Appl. Sci. 2024, 47, 8626–8637. [Google Scholar] [CrossRef]
- Chen, B.Y. When does the position vector of a space curve always lie in its rectifying plane? Am. Math. Mon. 2003, 110, 147–152. [Google Scholar] [CrossRef]
- Kim, D.S.; Chung, H.S.; Cho, K.H. Space curves satisfying τ/k = as + b. Honam Math. J. 1993, 15, 5–9. [Google Scholar]
- Chen, B.Y.; Dillen, F. Rectifying curves as centrodes and extremal curves. Bull. Inst. Math. Acad. Sin. 2005, 33, 77. [Google Scholar]
- Lucas, P.; Ortega-Yagues, J.A. Rectifying curves in the three-dimensional sphere. J. Math. Anal. Appl. 2015, 421, 1855–1868. [Google Scholar] [CrossRef]
- Deshmukh, S.; Chen, B.Y.; Alshammari, S.H. On rectifying curves in Euclidean 3-space. Turk. J. Math. 2018, 42, 609–620. [Google Scholar] [CrossRef]
- Chen, B.Y. Rectifying curves and geodesics on a cone in the Euclidean 3-space. Tamkang J. Math. 2017, 48, 209–214. [Google Scholar] [CrossRef]
- Jianu, M.; Achimescu, S.; Daus, L.; Mihai, A.; Roman, O.A.; Tudor, D. Characterization of rectifying curves by their involutes and evolutes. Mathematics 2021, 9, 3077. [Google Scholar] [CrossRef]
- Mihai, A.; Olteanu, A. Infinitesimal bendings of rectifying curves on special surfaces. 2024; submitted. [Google Scholar]
- Li, Y.; Abdel-Aziz, H.; Serry, H.; El-Adawy, F.; Saad, M. Geometric visualization of evolved ruled surfaces via alternative frame in Lorentz-Minkowski 3-space. AIMS Math. 2024, 9, 25619–25635. [Google Scholar] [CrossRef]
- Li, Y.; Güler, E. Right conoids demonstrating a time-like axis within Minkowski four-dimensional space. Mathematics 2024, 12, 2421. [Google Scholar] [CrossRef]
- Li, Y.; Güler, E.; Toda, M. Family of right conoid hypersurfaces with light-like axis in Minkowski four-space. AIMS Math. 2024, 9, 18732–18745. [Google Scholar] [CrossRef]
- Burlacu, A.; Mihai, A. Applications of differential geometry of curves in roads design. Rom. J. Transp. Infrastruct. 2023, 12, 1–13. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broscăţeanu, Ş.-C.; Mihai, A.; Olteanu, A. A Note on the Infinitesimal Bending of a Rectifying Curve. Symmetry 2024, 16, 1361. https://doi.org/10.3390/sym16101361
Broscăţeanu Ş-C, Mihai A, Olteanu A. A Note on the Infinitesimal Bending of a Rectifying Curve. Symmetry. 2024; 16(10):1361. https://doi.org/10.3390/sym16101361
Chicago/Turabian StyleBroscăţeanu, Ştefan-Cezar, Adela Mihai, and Andreea Olteanu. 2024. "A Note on the Infinitesimal Bending of a Rectifying Curve" Symmetry 16, no. 10: 1361. https://doi.org/10.3390/sym16101361
APA StyleBroscăţeanu, Ş. -C., Mihai, A., & Olteanu, A. (2024). A Note on the Infinitesimal Bending of a Rectifying Curve. Symmetry, 16(10), 1361. https://doi.org/10.3390/sym16101361