Foliation-Generating Observers Under Lorentz Transformations
Abstract
:1. Introduction
2. Mathematical Preliminaries
2.1. Tetrad Theories of Gravity
2.2. Foliations in Physics
2.2.1. Introduction and Basic Examples
2.2.2. Distributions of Codimension One Foliations
2.2.3. Geometry of Foliations
- Minimal if ;
- Umbilical if ;
- Geodesic if and ;
- A foliation when . The foliation is minimal, totally umbilical or totally geodesic if , , and , respectively.
2.2.4. Relations between Different Observers
3. Foliation Condition under Lorentz Transformations
4. Physical Examples
4.1. Minkowski Spacetime
4.1.1. Boosted Observer
4.1.2. Observer under Lorentz Rotations
4.2. Gödel’s Spacetime
4.3. Spherically Symmetric Spacetime
4.4. Examples in Theories beyond General Relativity
4.4.1. Example 1
4.4.2. Example 2
4.4.3. Example 3
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Geometry of Distributions and Foliations
- A foliation if ;
- Geodesic if ;
- Minimal if ;
- Umbilical if .
- ,
- ,
- ,
References
- Baumgarte, T.W.; Shapiro, S.L. Numerical Relativity: Solving Einstein’s Equations on the Computer; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- Baumgarte, T.W.; Shapiro, S.L. Numerical Relativity: Starting from Scratch; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Saridakis, E.N.; Lazkoz, R.; Salzano, V.; Moniz, P.V.; Capozziello, S.; Jiménez, J.B.; De Laurentis, M.; Olmo, G.J.; Akrami, Y.; Bahamonde, S.; et al. Modified Gravity and Cosmology: An Update by the CANTATA Network; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Hehl, F.W.; McCrea, J.; Mielke, E.W.; Ne’eman, Y. Metric-affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 1995, 258, 1–171. [Google Scholar] [CrossRef]
- Baekler, P.; Hehl, F.W. Beyond Einstein-Cartan gravity: Quadratic torsion and curvature invariants with even and odd parity including all boundary terms. Class. Quant. Grav. 2011, 28, 215017. [Google Scholar] [CrossRef]
- Bahamonde, S.; Dialektopoulos, K.F.; Escamilla-Rivera, C.; Farrugia, G.; Gakis, V.; Hendry, M.; Hohmann, M.; Levi Said, J.; Mifsud, J.; Di Valentino, E. Teleparallel gravity: From theory to cosmology. Rept. Prog. Phys. 2023, 86, 026901. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Heisenberg, L.; Iosifidis, D.; Jiménez-Cano, A.; Koivisto, T.S. General teleparallel quadratic gravity. Phys. Lett. B 2020, 805, 135422. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T.S. The Geometrical Trinity of Gravity. Universe 2019, 5, 173. [Google Scholar] [CrossRef]
- Blixt, D.; Ferraro, R.; Golovnev, A.; Guzmán, M.J. Lorentz gauge-invariant variables in torsion-based theories of gravity. Phys. Rev. D 2022, 105, 084029. [Google Scholar] [CrossRef]
- Poisson, E. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Wojnar, A. Vector Field as an Observer in Curved Space-Time. Master’s Thesis, University of Wroclaw, Wroclaw, Poland, 2011. (In Polish). [Google Scholar]
- Borowiec, A.; Wojnar, A. Geometry of almost-product Lorentzian manifolds and relativistic observer. arXiv 2013, arXiv:1302.1846. [Google Scholar] [CrossRef]
- Blixt, D.; Guzmán, M.J.; Hohmann, M.; Pfeifer, C. Review of the Hamiltonian analysis in teleparallel gravity. Int. J. Geom. Meth. Mod. Phys. 2021, 18, 2130005. [Google Scholar] [CrossRef]
- Capozziello, S.; Finch, A.; Said, J.L.; Magro, A. The 3+1 formalism in teleparallel and symmetric teleparallel gravity. Eur. Phys. J. C 2021, 81, 1141. [Google Scholar] [CrossRef]
- Pati, L.; Blixt, D.; Guzman, M.J. Hamilton’s equations in the covariant teleparallel equivalent of general relativity. Phys. Rev. D 2023, 107, 044071. [Google Scholar] [CrossRef]
- Blagojevic, M. Hamiltonian structure and gauge symmetries of Poincare gauge theory. Ann. Phys. 2001, 10, 367–391. [Google Scholar] [CrossRef]
- Kiriushcheva, N.; Kuzmin, S.V. Darboux coordinates for the Hamiltonian of first order Einstein-Cartan gravity. Int. J. Theor. Phys. 2010, 49, 2859–2890. [Google Scholar] [CrossRef]
- Kiriushcheva, N.; Kuzmin, S.V. The Hamiltonian formulation of N-bein, Einstein-Cartan, gravity in any dimension: The Progress Report. In Proceedings of the CAIMS * SCMAI 2009: 30th Anniversary of the Canadian Applied and Industrial Mathematics Society, London, ON, Canada, 10–14 June 2009; Volume 7. [Google Scholar]
- Ortín, T. Gravity and Strings; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Lee, J.M.; Lee, J.M. Introduction to Smooth Manifolds; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Hawking, S.W.; Ellis, G.F. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Naveira, A. Classification of Riemannian almost-product manifolds. Rend. Di Mat. Di Roma 1983, 3, 577–592. [Google Scholar]
- Gil-Medrano, O. Geometric properties of some classes of Riemannian almost-product manifolds. Rend. Del Circ. Mat. Di Palermo 1983, 32, 315–329. [Google Scholar] [CrossRef]
- Gray, A. Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 1967, 16, 715–737. [Google Scholar]
- Yano, K.; Kon, M. Structures on Manifolds; World Scientific: Singapore, 1985. [Google Scholar]
- Ehlers, J. Contributions to the relativistic mechanics of continuous media. Abh. Akad. Wiss. Lit. Mainz. Nat. Kl. 1961, 11, 793–837. [Google Scholar] [CrossRef]
- Plebanski, J.; Krasinski, A. An Introduction to General Relativity and Cosmology; Cambridge University Press: Cambridge, UK, 2024. [Google Scholar]
- Janssen, B. Gravitación y Geometría: Una Introducción Moderna a la Teoría de la Relatividad General; Universidad de Granada: Granada, Spain, 2022. [Google Scholar]
- Ferraro, R.; Fiorini, F. Remnant group of local Lorentz transformations in f (T) theories. Phys. Rev. D 2015, 91, 064019. [Google Scholar] [CrossRef]
- Nashed, G.G. Regularization of f (T) gravity theories and local Lorentz transformation. Adv. High Energy Phys. 2015, 2015, 680457. [Google Scholar] [CrossRef]
- Golovnev, A.; Koivisto, T. Cosmological perturbations in modified teleparallel gravity models. JCAP 2018, 11, 012. [Google Scholar] [CrossRef]
- Nashed, G.G. A special exact spherically symmetric solution in f (T) gravity theories. Gen. Relativ. Gravit. 2013, 45, 1887–1899. [Google Scholar] [CrossRef]
- Lin, R.H.; Zhai, X.H. New proper tetrad for teleparallel gravity in curved spacetimes. Phys. Rev. D 2019, 99, 024022. [Google Scholar] [CrossRef]
- Tamanini, N.; Boehmer, C.G. Good and bad tetrads in f(T) gravity. Phys. Rev. D 2012, 86, 044009. [Google Scholar] [CrossRef]
- Lucas, T.G.; Obukhov, Y.N.; Pereira, J. Regularizing role of teleparallelism. Phys. Rev. D Part. Fields Gravit. Cosmol. 2009, 80, 064043. [Google Scholar] [CrossRef]
- Krššák, M.; Saridakis, E.N. The covariant formulation of f (T) gravity. Class. Quantum Gravity 2016, 33, 115009. [Google Scholar] [CrossRef]
- Agashe, A. Kinematics in metric-affine geometry. Phys. Scr. 2023, 98, 105210. [Google Scholar] [CrossRef]
- Ferrando, J.J.; Sáez, J.A. On the space-times admitting two shear-free geodesic null congruences. Gen. Relativ. Gravit. 2007, 39, 343–359. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blixt, D.; Jiménez Cano, A.; Wojnar, A. Foliation-Generating Observers Under Lorentz Transformations. Symmetry 2024, 16, 1384. https://doi.org/10.3390/sym16101384
Blixt D, Jiménez Cano A, Wojnar A. Foliation-Generating Observers Under Lorentz Transformations. Symmetry. 2024; 16(10):1384. https://doi.org/10.3390/sym16101384
Chicago/Turabian StyleBlixt, Daniel, Alejandro Jiménez Cano, and Aneta Wojnar. 2024. "Foliation-Generating Observers Under Lorentz Transformations" Symmetry 16, no. 10: 1384. https://doi.org/10.3390/sym16101384
APA StyleBlixt, D., Jiménez Cano, A., & Wojnar, A. (2024). Foliation-Generating Observers Under Lorentz Transformations. Symmetry, 16(10), 1384. https://doi.org/10.3390/sym16101384