Multilinear Variable Separation Approach in (4+1)-Dimensional Boiti–Leon–Manna–Pempinelli Equation
Abstract
:1. Introduction
2. Variable Separation Solutions
Dromions, dromion molecules, and their interactions in Figure 1, Figure 2 and Figure 3. | Lumps, lump molecules, and their interactions in Figure 4 and Figure 5. |
Ring solitons, ring soliton molecules, and their interactions in Figure 6 and Figure 7. | The interactions between ring molecules and special oscillating lumps in Figure 8 and Figure 9. |
The interaction between lumps and dromion molecules Figure 10 and Figure 11. | |
3. Nonlinear Excitations and Their Interactions
3.1. Dromions, Dromion Molecules, and Their Interactions
3.1.1. Dromion–Dromion Interactions
3.1.2. Dromion–Dromion Molecule Interactions
3.2. Lumps, Lump Molecules, and Their Interactions
3.2.1. Lump–Lump Interactions
3.2.2. Lump–Lump Molecule Interactions
3.3. Ring Solitons, Ring Soliton Molecules, and Their Interactions
3.3.1. Ring–Ring Interactions
3.3.2. Ring–Ring Molecule Interactions
3.4. Ring Solitons, Lumps, Dromions, and Their Interactions
3.4.1. The Interactions Between Ring Molecules and Special Oscillating Lumps
3.4.2. The Interaction Between Lump and Dromion Molecules
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adomian, G. A new approach to nonlinear partial differential equations. J. Math. Anal. Appl. 1984, 102, 420–434. [Google Scholar] [CrossRef]
- Ullah, N.; Asjad, M.I.; Hussanan, A.; Akgül, A.; Alharbi, W.R.; Algarni, H.; Yahia, I.S. Novel waves structures for two nonlinear partial differential equations arising in the nonlinear optics via Sardar-subequation method. Alex. Eng. J. 2023, 71, 105–113. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Ren, B. Resonance solitons, soliton molecules and hybrid solutions for a (2+1)-dimensional nonlinear wave equation arising in the shallow water wave. Nonlinear Dyn. 2024, 112, 4793–4802. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 1974, 53, 249–315. [Google Scholar] [CrossRef]
- Wu, X.H.; Gao, Y.T. Generalized Darboux transformation and solitons for the Ablowitz-Ladik equation in an electrical lattice. Appl. Math. Lett. 2023, 137, 108476. [Google Scholar] [CrossRef]
- Wang, Q.; Mihalache, D.; Belić, M.R.; Zeng, L.; Lin, J. Soliton transformation between different potential wells. Opt. Lett. 2023, 48, 747–750. [Google Scholar] [CrossRef]
- Ma, W.X. N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation. Math. Comput. Simul. 2021, 190, 270–279. [Google Scholar] [CrossRef]
- Terng, C.L.; Uhlenbeck, K. Bäcklund transformations and loop group actions. Commun. Pure Appl. Math. 2000, 53, 1–75. [Google Scholar] [CrossRef]
- Zhang, Y. A finite difference method for fractional partial differential equation. Appl. Math. Comput. 2009, 215, 524–529. [Google Scholar] [CrossRef]
- Lou, S.Y.; Lu, J.Z. KdV extensions with Painlevé property. J. Phys. A Math. 1996, 29, 4209. [Google Scholar] [CrossRef]
- Dai, C.Q.; Fan, Y.; Zhang, N. Re-observation on localized waves constructed by variable separation solutions of (1+1)-dimensional coupled integrable dispersionless equations via the projective Riccati equation method. Appl. Math. Lett. 2019, 96, 20–26. [Google Scholar] [CrossRef]
- Tang, X.Y.; Lou, S.Y. Multi-linear variable separation approach to nonlinear systems. Front. Phys. China 2009, 4, 235–240. [Google Scholar] [CrossRef]
- Tang, X.Y.; Lou, S.Y. Variable separation solutions for the (2+1)-dimensional Burgers equation. Chin. Phys. Lett. 2003, 20, 335. [Google Scholar]
- Yin, J.P.; Lou, S.Y. Multilinear variable separation approach in (3+1)-dimensions: The Burgers equation. Chin. Phys. Lett. 2003, 20, 1448. [Google Scholar]
- Lou, S.Y.; Tang, X.Y.; Lin, J. Similarity and conditional similarity reductions of a (2+1)-dimensional KdV equation via a direct method. J. Math. Phys. 2000, 41, 8286–8303. [Google Scholar] [CrossRef]
- Tang, X.Y.; Lou, S.Y. Extended multilinear variable separation approach and multivalued localized excitations for some (2+1)-dimensional integrable systems. J. Math. Phys. 2003, 44, 4000–4025. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Nithyanandan, K.; Coillet, A.; Tchofo-Dinda, P.; Grelu, P. Optical soliton molecular complexes in a passively mode-locked fibre laser. Nat. Commun. 2019, 10, 830. [Google Scholar] [CrossRef]
- Liu, X.M.; Yao, X.K.; Cui, Y.D. Real-time dynamics of the build-up of solitons in mode-locked lasers. Phys. Rev. Lett. 2018, 121, 10–1103. [Google Scholar]
- He, W.; Pang, M.; Yeh, D.H.; Huang, J.; Menyuk, C.R.; Russell, P.S.J. Formation of optical supramolecular structures in a fibre laser by tailoring long-range soliton interactions. Nat. Commun. 2019, 10, 5756. [Google Scholar] [CrossRef]
- Ahmad, J.; Akram, S.; Noor, K.; Nadeem, M.; Bucur, A.; Alsayaad, Y. Soliton solutions of fractional extended nonlinear Schrödinger equation arising in plasma physics and nonlinear optical fiber. Sci. Rep. 2023, 13, 10877. [Google Scholar] [CrossRef]
- Wang, X.; Wei, J. Antidark solitons and soliton molecules in a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 2020, 102, 363–377. [Google Scholar] [CrossRef]
- Krupa, K.; Nithyanandan, K.; Andral, U.; Tchofo-Dinda, P.; Grelu, P. Real-time observation of internal motion within ultrafast dissipative optical soliton molecules. Phys. Rev. Lett. 2017, 118, 243901. [Google Scholar] [CrossRef] [PubMed]
- Tao, T. Why are solitons stable? Bull. Am. Math. Soc. 2009, 46, 1–33. [Google Scholar] [CrossRef]
- Ma, H.; Chen, X.; Deng, A. Resonance Y-type soliton and new hybrid solutions generated by velocity resonance for a (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation in a fluid. Nonlinear Dyn. 2023, 111, 7599–7617. [Google Scholar] [CrossRef]
- Ma, Y.L.; Wazwaz, A.M.; Li, B.Q. Soliton resonances, soliton molecules, soliton oscillations and heterotypic solitons for the nonlinear Maccari system. Nonlinear Dyn. 2023, 111, 18331–18344. [Google Scholar] [CrossRef]
- Lou, S.Y. Soliton molecules and asymmetric solitons in three fifth order systems via velocity resonance. J. Phys. Commun. 2020, 4, 041002. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, S.X.; Li, B. Soliton molecules, asymmetric solitons and hybrid solutions for (2+1)-dimensional fifth-order KdV equation. Chin. Phys. Lett. 2019, 36, 120501. [Google Scholar] [CrossRef]
- Sun, J.; Li, Z.; An, H.; Zhu, H. Novel soliton molecules and interaction wave solutions in a (2+1)-dimensional Sawada-Kotera equation: A multi-linear variable separation method. Nonlinear Dyn. 2023, 111, 12541–12552. [Google Scholar] [CrossRef]
- Ren, B.; Lin, J. D’Alembert wave and soliton molecule of the modified Nizhnik-Novikov-Veselov equation. Eur. Phys. J. Plus 2021, 136, 123. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Liu, W. The dynamic characteristics of pure-quartic solitons and soliton molecules. Appl. Math. Model. 2022, 102, 305–312. [Google Scholar] [CrossRef]
- Yan, Z.; Lou, S.Y. Soliton molecules in Sharma-Tasso-Olver-Burgers equation. Appl. Math. Lett. 2020, 104, 106271. [Google Scholar] [CrossRef]
- Xu, G.Q.; Wazwaz, A.M. Integrability aspects and localized wave solutions for a new (4+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Nonlinear Dyn. 2019, 98, 1379–1390. [Google Scholar] [CrossRef]
- Rasool, T.; Hussain, R.; Rezazadeh, H.; Gholami, D. The plethora of exact and explicit soliton solutions of the hyperbolic local (4+1)-dimensional BLMP model via GERF method. Results Phys. 2023, 46, 106298. [Google Scholar] [CrossRef]
- Cui, C.J.; Tang, X.Y.; Cui, Y.J. New variable separation solutions and wave interactions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Appl. Math. Lett. 2020, 102, 106109. [Google Scholar] [CrossRef]
- Sakkaravarthi, K.; Singh, S.; Karjanto, N. Exploring the dynamics of nonlocal nonlinear waves: Analytical insights into the extended Kadomtsev-Petviashvili model. Front. Phys. 2023, 11, 1168830. [Google Scholar] [CrossRef]
- Ahmad, J.; Rani, S.; Muhammad, T.; Rehman, S.U. Dispersive soliton solutions to the (4+1)-dimensional Boiti-Leon-Manna-Pempinelli equation via an analytical method. Opt. Quantum Electron. 2024, 56, 904. [Google Scholar] [CrossRef]
- Kumar, M.; Tiwari, A.K. Soliton solutions of BLMP equation by Lie symmetry approach. Comput. Math. Appl. 2018, 75, 1434–1442. [Google Scholar] [CrossRef]
- Nisar, K.S.; Ilhan, O.A.; Abdulazeez, S.T.; Manafian, J.; Mohammed, S.A.; Osman, M.S. Novel multiple soliton solutions for some nonlinear PDEs via multiple Exp-function method. Results Phys. 2021, 21, 103769. [Google Scholar] [CrossRef]
- Jisha, C.R.; Dubey, R.K. Wave interactions and structures of (4+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Nonlinear Dyn. 2022, 110, 3685–3697. [Google Scholar] [CrossRef]
- Kuo, C.K. Novel resonant multi-soliton solutions and inelastic interactions to the (3+1)- and (4+1)-dimensional Boiti-Leon-Manna-Pempinelli equations via the simplified linear superposition principle. Eur. Phys. J. Plus 2021, 136, 77. [Google Scholar] [CrossRef]
- Hosseini, K.; Ma, W.X.; Ansari, R.; Mirzazadeh, M.; Pouyanmehr, R.; Samadani, F. Evolutionary behavior of rational wave solutions to the (4+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Phys. Scr. 2020, 95, 065208. [Google Scholar] [CrossRef]
- Grammaticos, B.; Ramani, A.; Hietarinta, J. Multilinear operators: The natural extension of Hirota’s bilinear formalism. Phys. Lett. A 1994, 190, 65–70. [Google Scholar] [CrossRef]
- Lou, S.Y. Dromion-like structures in a (3+1)-dimensional KdV-type equation. J. Phys. A Math. Gen. 1996, 29, 5989. [Google Scholar] [CrossRef]
- Ma, W.X. Lump solutions to the Kadomtsev-Petviashvili equation. Phys. Lett. A 2015, 379, 1975–1978. [Google Scholar] [CrossRef]
- Gleiser, M. d-Dimensional oscillating scalar field lumps and the dimensionality of space. Phys. Lett. B 2004, 600, 126–132. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.-R.; Ren, B. Multilinear Variable Separation Approach in (4+1)-Dimensional Boiti–Leon–Manna–Pempinelli Equation. Symmetry 2024, 16, 1529. https://doi.org/10.3390/sym16111529
Zhu J-R, Ren B. Multilinear Variable Separation Approach in (4+1)-Dimensional Boiti–Leon–Manna–Pempinelli Equation. Symmetry. 2024; 16(11):1529. https://doi.org/10.3390/sym16111529
Chicago/Turabian StyleZhu, Jia-Rong, and Bo Ren. 2024. "Multilinear Variable Separation Approach in (4+1)-Dimensional Boiti–Leon–Manna–Pempinelli Equation" Symmetry 16, no. 11: 1529. https://doi.org/10.3390/sym16111529
APA StyleZhu, J. -R., & Ren, B. (2024). Multilinear Variable Separation Approach in (4+1)-Dimensional Boiti–Leon–Manna–Pempinelli Equation. Symmetry, 16(11), 1529. https://doi.org/10.3390/sym16111529