Implementing the MOLS Table for n Up to 500
Abstract
:1. Introduction
Fifteen young ladies in a school walk out three abreast for seven days in succession: it is required to arrange them daily so that no two shall walk twice abreast.
32 golfers play golf once a week, and always in groups of 4. For how many weeks can they play such that no two players play together more than once in the same group?
2. Motivation and Contribution
- The source for some of the constructions can be hard to identify;
- Some of the constructions require additional explanation;
- Some of the constructions contain errors;
- The latest version of the MOLS table [42] is out of date.
- New sets of 8 MOLS for and ;
- New sets of 10 MOLS for.
3. Preliminaries
- V is a set of points;
- G is a partition of V into k groups of size n;
- H is a set of disjoint subsets of V, called holes, with the property that for each , the size of the intersection of with each group is ;
- B is a collection of blocks from V of size k;
- Every unordered pair of elements from V is either contained in a block and not contained in either a group or a hole; contained in a group (and possibly a hole); or contained only in a hole.
4. Summary of Common Constructions
- 1.
- 2.
- If , for prime p and some , then .
- 3.
- If , where each is a prime, then .
- For there exists a transversal design ;
- For any for which D has a block of size there exists an incomplete transversal design of order , block size k and x holes of size 1,
5. Sources and Constructions
5.1. Easy Cases
- ,
- ,
- ,
- ,
- ,
- ,
- .
5.2. Other Cases
- 1.
- ;
- 2.
- ;
- 3.
- ;
- 4.
- .
n | Source | |
---|---|---|
6, 10, 15, 20, 21, 22, 24, 26, 28, 30 | 1, 2, 4, 4, 5, 3, 7, 4, 5, 4 | [42] |
33, 34, 36, 38, 39, 40, 42, 44, 46 | 5, 4, 8, 4, 5, 7, 5, 5, 4 | |
50, 51, 52, 55, 56, 62, 75, 80 | 6, 5, 5, 6, 7, 5, 7, 9 | |
12 | 5 | [78] |
14 | 4 | [59] |
18, 60 | 5, 5 | [60] |
35, 48, 63 | 6, 10, 8 | [38] |
45, 54, 96, 108 | 6, 8, 10, 9 | [39] |
57, 69, 70, 74, 78, 84, 90, 135, 264 | 7, 6, 6, 5, 6, 6, 6, 7, 7 | [48] |
265, 267, 273, 280, 285, 288 | 8, 10, 16, 7, 12, 15 | |
58, 66, 68 | 5, 5, 5 | [7] |
65 | 7 | [47] |
76 | 6 | [79] |
82, 100, 144, 154, 210, 262, 276, 298, 342, 474 | 8, 8, 10, 8, 10, 8, 8, 10, 10, 10 | [57] |
112, 160, 176, 208, 224, 352, 416 | 13, 9, 14, 14, 13, 18, 18 | [68] |
120 | 7 | [46] |
158, 185, 205, 254, 316, 355 | 7, 9, 8, 9, 7, 9 | [14] |
189, 253, 357, 469 | 8, 12, 9, 8 | [80] |
201, 336, 360, 365, 393, 429 | 8, 8, 8, 10, 8, 10 | [81] |
266, 268, 270, 300, 302, 303, 308, 310, 314, | all 7 | [62] |
318, 332, 334, 356, 364, 370, 372, 374, 378, | ||
380, 382, 386, 388, 390, 394, 398, 406, 410, | ||
418, 420, 422, 428, 438, 442, 444, 446, 450, | ||
452, 454, 458, 460, 462, 466, 470, 476, 500 | ||
405 | 8 | [62] |
408 | 8 | [55] |
329, 402, 484, 486 | 9, 7, 8, 8 | Theorem 3 |
6. Implementation of the MOLS Constructions
7. Some Improved Results for 500 < n < 1000
- 1.
- ,
- 2.
- for ,
- 3.
- .
8. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colbourn, C.J.; Dinitz, J.H.; Stinson, D.R. Applications of Combinatorial Designs to Communications, Cryptography, and Networking; London Mathematical Society Lecture Note Series; Cambridge University Press: Cambridge, UK, 1999; Volume 267, pp. 37–100. [Google Scholar] [CrossRef]
- Djordjevic, I.B.; Vasic, B.; Rorison, J. Design of multiweight unipolar codes for multimedia optical CDMA applications based on pairwise balanced designs. J. Light. Technol. 2003, 21, 1850–1856. [Google Scholar] [CrossRef]
- Bailey, R.; Cameron, P. Multi-part balanced incomplete-block designs. Stat. Pap. 2019, 60, 405–426. [Google Scholar] [CrossRef]
- Huber, M. Efficient Two-Stage Group Testing Algorithms for Genetic Screening. Algorithmica 2013, 67, 355–367. [Google Scholar] [CrossRef]
- Keedwell, A.D.; Dénes, J. Latin Squares and Their Applications; Elsevier Science: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Colbourn, C.J.; Dinitz, J.H. Handbook of Combinatorial Designs, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2007. [Google Scholar]
- Hanani, H. Balanced incomplete block designs and related designs. Discret. Math. 1975, 11, 255–369. [Google Scholar] [CrossRef]
- Abel, R.J.R.; Mills, W.H. Some new BIBDs with k=6 and λ=1. J. Comb. Des. 1995, 3, 381–391. [Google Scholar] [CrossRef]
- Abel, R.J.R.; Greig, M. Some new RBIBDs with block size 5 and PBDs with block sizes ≡1(mod 5). Australas. J. Comb. 1997, 15, 177–202. [Google Scholar]
- Abel, R.J.R.; Bluskov, I.; Greig, M.; de Heer, J. Pair Covering and Other Designs with Block Size 6. J. Comb. Des. 2007, 15, 511–533. [Google Scholar] [CrossRef]
- Greig, M. Recursive Constructions of Balanced Incomplete Block Designs with Block Size of 7, 8 or 9. Ars Comb. 2001, 60, 3–54. [Google Scholar]
- Abel, R.J.R.; Greig, M. BIBDs with small block size. In Handbook of Combinatorial Designs; CRC: New York, NY, USA, 2007; pp. 72–79. [Google Scholar]
- Greig, M. Some group divisible design constructions. JCMCC J. Comb. Math. Comb. Comput. 1998, 27, 33–52. [Google Scholar]
- Greig, M. Designs from Projective Planes and PBD bases. J. Comb. Des. 1999, 7, 341–374. [Google Scholar] [CrossRef]
- Rees, R.S. Group-divisible designs with block size k having k+1 groups, for k=4, 5. J. Comb. Des. 2000, 8, 363–386. [Google Scholar] [CrossRef]
- Saurabh, S.; Sinha, K. Some matrix constructions of L2-type Latin square designs. Bull. Inst. Comb. Appl. 2022, 95, 93–104. [Google Scholar]
- Wallis, W.D.; Street, A.P.; Wallis, J.S. Combinatorics: Room Squares, Sum-Free Sets, Hadamard Matrices; Springer: Berlin/Heidelberg, Germany, 1972; Volume 292. [Google Scholar] [CrossRef]
- Mullin, R.C.; Schellenberg, P.J.; Stinson, D.R.; Vanstone, S.A. Some results on the existence of squares. Ann. Discret. Math. 1980, 6, 257–274. [Google Scholar] [CrossRef]
- Keedwell, A.D. Designing tournaments with the aid of Latin squares: A presentation of old and new results. Util. Math. 2000, 58, 65–85. [Google Scholar]
- Bao, L. MASL: Multiple Access Scheduling Based on Latin Squares. In Proceedings of the IEEE MILCOM 2004, Military Communications Conference, Monterey, CA, USA, 31 October–3 November 2004; Volume 1, pp. 315–321. [Google Scholar]
- Pal, S.K.; Kapoor, S.; Arora, A.; Chaudhary, R.; Khurana, J. Design of strong cryptographic schemes based on Latin Squares. J. Discret. Math. Sci. Cryptogr. 2010, 13, 233–256. [Google Scholar] [CrossRef]
- Kirkman, T.P. On a Problem in Combinations. Camb. Dublin Math. J. 1847, 2, 191–204. [Google Scholar]
- Ray-Chaudhuri, D.K.; Wilson, R.M. Solution of Kirkman’s school girl problem. Proc. Symp. Pure Math. 1971, 19, 187–203. [Google Scholar]
- Triska, M. Solution Methods for the Social Golfer Problem. Master’s Thesis, Technische Universität Wien, Vienna, Austria, 2008. [Google Scholar]
- Harvey, W. CSPLib Problem 010: Social Golfers Problem. Available online: http://www.csplib.org/Problems/prob010 (accessed on 7 November 2024).
- Pegg, E. Math Games: Social Golfer Problem. Available online: http://www.mathpuzzle.com/MAA/54-Golf%20Tournaments/mathgames_08_14_07.html (accessed on 7 November 2024).
- Miller, A.; Barr, M.; Kavanagh, W.; Valkov, I.; Purchase, H.C. Breakout Group Allocation Schedules and the Social Golfer Problem with Adjacent Group Sizes. Symmetry 2021, 13, 13. [Google Scholar] [CrossRef]
- Shen, H. Existence of resolvable group divisible designs with block size four and group size two or three. J. Shanghai Jiaotong Univ. (Engl. Ed.) 1996, 1, 68–70. [Google Scholar]
- Colbourn, C.J. A Steiner 2-Design with an automorphism fixing exactly r+2 points. J. Comb. Des. 1998, 7, 375–380. [Google Scholar] [CrossRef]
- Aguado, A. A 10 Days Solution to the Social Golfer Problem. 2004. Available online: https://www.mathpuzzle.com/MAA/54-Golf%20Tournaments/socgolf1.pdf (accessed on 12 December 2024).
- Liu, K.; Löffler, S.; Hofstedt, P. Solving the Social Golfers Problems by Constraint Programming in Sequential and Parallel. In Proceedings of the 11th International Conference on Agents and Artificial Intelligence (ICAART 2019), Prague, Czech Republic, 19–21 February 2019; Volume 2, pp. 29–39. [Google Scholar]
- Furino, S.; Miao, Y.; Yin, J. Frames and Resolvable Designs: Uses, Constructions and Existence; CRC Press: Boca Raton, FL, USA, 1996; Volume 3. [Google Scholar]
- Colbourn, C.J.; Kløve, T.; Ling, A.C.H. Permutation Arrays for Powerline Communication and Mutually Orthogonal Latin Squares. IEEE Trans. Inf. Theory 2004, 50, 1289–1291. [Google Scholar] [CrossRef]
- Kløve, T. A combinatorial problem motivated by a data transmission application. In Proceedings of the Norsk Informatikkonf (NIK), Bodø, Norway, November 2000; pp. 55–66. [Google Scholar]
- de la Torre, D.R.; Colbourn, C.J.; Ling, A.C.H. An application of permutation arrays to block ciphers. Congr. Numer. 2000, 145, 5–8. [Google Scholar]
- Ferreira, H.C.; Han Vinck, A.J. Interference cancellation with permutation trellis codes. In Proceedings of the 52nd IEEE Vehicular Technology Conference (VTS) Fall 2000, Boston, MA, USA, 24–28 September 2000; Volume 5, pp. 2401–2407. [Google Scholar]
- Chu, W.; Colbourn, C.J.; Dukes, P. Constructions for Permutation Codes in Powerline Communications. Des. Codes Cryptogr. 2004, 32, 51–64. [Google Scholar] [CrossRef]
- Janiszczak, I.; Staszewski, R. Isometry invariant permutation codes and mutually orthogonal Latin squares. J. Comb. Des. 2019, 27, 541–551. [Google Scholar] [CrossRef]
- Abel, R.J.R.; Janiszczak, I.; Staszewski, R. Improvements for lower bounds of mutually orthogonal Latin squares of sizes 54, 96 and 108. arXiv 2024, arXiv:2412.00480. [Google Scholar]
- Brouwer, A.E. The number of mutually orthogonal Latin squares—A table up to order 10,000. Math. Cent. Rep. 1979, ZW, 123. [Google Scholar]
- Colbourn, C.J.; Dinitz, J.H. The CRC Handbook of Combinatorial Designs, 1st ed.; CRC Press: New York, NY, USA, 1996. [Google Scholar] [CrossRef]
- Abel, R.J.R.; Colbourn, C.J.; Dinitz, J. Mutually orthogonal latin squares (MOLS). In Handbook of Combinatorial Designs; CRC Press: Boca Raton, FL, USA, 2007; pp. 160–193. [Google Scholar]
- Street, A.P.; Street, D.J. Combinatorics of Experimental Design; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Beth, T.; Jungnickel, D.; Lenz, H. Design Theory, 2nd ed.; Cambridge University Press: Cambridge, UK, 1999; Volume 1. [Google Scholar] [CrossRef]
- MacNeish, H.F. Euler Squares. Ann. Math. 1922, 23, 221–227. [Google Scholar] [CrossRef]
- Bose, R.C.; Shrikhande, S.S. On the Construction of sets of Mutually Orthogonal Latin Squares and the Falsity of Euler’s Conjecture. Trans. Am. Math. Soc. 1960, 95, 191–209. [Google Scholar] [CrossRef]
- Bose, R.C.; Shrikhande, S.S.; Parker, E.T. Further Results on the Construction of Mutually Orthogonal Latin Squares and the Falsity of Euler’s Conjecture. Can. J. Math. 1960, 12, 189–203. [Google Scholar] [CrossRef]
- Brouwer, A.E. Chapter 5—Recursive Constructions of Mutually Orthogonal Latin Squares. In Latin Squares; Dénes, J., Keedwell, A.D., Eds.; Annals of Discrete Mathematics; Elsevier: Amsterdam, The Netherlands, 1991; Volume 46, pp. 149–168. [Google Scholar] [CrossRef]
- Colbourn, C.J.; Dinitz, J.H. Mutually orthogonal Latin squares: A brief survey of constructions. J. Stat. Plan. Inference 2001, 95, 9–48. [Google Scholar] [CrossRef]
- Wilson, R.M. Concerning the number of mutually orthogonal Latin squares. Discret. Math. 1974, 9, 181–198. [Google Scholar] [CrossRef]
- Wojtas, M. New Wilson-type constructions of mutually orthogonal Latin squares. Discret. Math. 1980, 32, 191–199. [Google Scholar] [CrossRef]
- Stinson, D.R. A general construction for group-divisible designs. Discret. Math. 1981, 33, 89–94. [Google Scholar] [CrossRef]
- Brouwer, A.E.; van Rees, G.H.J. More mutually orthogonal latin squares. Discret. Math. 1982, 39, 263–281. [Google Scholar] [CrossRef]
- Abel, R.J.R.; Cavenagh, N. Concerning Eight Mutually Orthogonal Latin Squares. J. Comb. Des. 2007, 15, 255–261. [Google Scholar] [CrossRef]
- Colbourn, C.J.; Dinitz, J.H.; Wojtas, M. Thwarts in Transversal Designs. Des. Codes Cryptogr. 1995, 5, 189–197. [Google Scholar] [CrossRef]
- Wojtas, M. Some new Matrices-minus-diagonal and MOLS. Discret. Math. 1989, 76, 291–292. [Google Scholar] [CrossRef]
- Colbourn, C.J. Some direct constructions for incomplete transversal designs. J. Stat. Plan. Inference 1996, 56, 93–104. [Google Scholar] [CrossRef]
- Abel, R.J.R. Some V(12, t) vectors and designs from difference and quasi-difference matrices. Australas. J. Comb. 2008, 40, 69–85. [Google Scholar]
- Todorov, D.T. Four mutually orthogonal Latin Squares of order 14. J. Comb. Des. 2012, 20, 363–367. [Google Scholar] [CrossRef]
- Abel, R.J.R. Existence of Five MOLS of Orders 18 and 60. J. Comb. Des. 2015, 23, 135–139. [Google Scholar] [CrossRef]
- Colbourn, C.J.; Dinitz, J.H. Making the Mols Table. In Computational and Constructive Design Theory; Wallis, W.D., Ed.; Springer: Boston, MA, USA, 1996; pp. 67–134. [Google Scholar] [CrossRef]
- Abel, R.J.R.; Colbourn, C.J.; Wojtas, M. Concerning seven and eight mutually orthogonal latin squares. J. Comb. Des. 2004, 12, 123–131. [Google Scholar] [CrossRef]
- Wojtas, M. On seven mutually orthogonal Latin squares. Discret. Math. 1977, 20, 193–201. [Google Scholar] [CrossRef]
- Hall, M., Jr. Orthogonal Latin Squares. In Combinatorial Theory; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1986; Chapter 13; pp. 222–237. [Google Scholar] [CrossRef]
- Schellenberg, G.H.J.; Van Rees, H.J.; Vanstone, S.A. Four pairwise orthogonal Latin squares of order 15. Ars Comb. 1978, 6, 141–150. [Google Scholar]
- Todorov, D.T. Four mutually orthogonal Latin Squares of order 20. Ars Comb. 1989, 27, 63–65. [Google Scholar]
- Nazarok, A.V. Five pairwise orthogonal Latin squares of order 21. Issled. Oper. ASU 1991, 1, 54–56. [Google Scholar]
- Abel, R.J.R. On the Existence of Balanced Incomplete Block Designs and Transversal Designs. Ph.D. Thesis, School of Mathematics, Faculty of Science, University of New South Wales, Sydney, Australia, 1995. [Google Scholar]
- Abel, R.J.R.; Zhang, H.; Zhang, X. Three mutually orthogonal idempotent Latin squares of orders 22 and 26. J. Stat. Plan. Inference 1996, 51, 101–106. [Google Scholar] [CrossRef]
- Colbourn, C.J. Four MOLS of order 26. J. Comb. Math. Comb. Comput. 1995, 17, 147–148. [Google Scholar]
- Abel, R.J.R.; Todorov, D. Four MOLS of order 20, 30, 38 and 44. J. Comb. Theory A 1993, 64, 144–148. [Google Scholar] [CrossRef]
- Abel, R.J.R.; Ge, G. Some difference matrix constructions and an almost completion for the existence of triplewhist tournaments TWh(v). Eur. J. Comb. 2005, 26, 1094–1104. [Google Scholar] [CrossRef]
- Wojtas, M. Five mutually orthogonal Latin squares of order 35. J. Comb. Des. 1996, 4, 153–154. [Google Scholar] [CrossRef]
- Abel, R.J.R.; Cheng, Y. Some new MOLS of order 2n p for p a prime power. Australas. J. Comb. 1994, 10, 175–186. [Google Scholar]
- Abel, R.J.R.; Bennett, F.E. The existence of 2-SOLSSOMs. In Designs 2002: Further Computational and Constructive Design Theory; Wallis, W.D., Ed.; Kluwer: Boston, MA, USA, 2003; pp. 1–21. [Google Scholar]
- Wojtas, M. Three new constructions of mutually orthogonal Latin squares. J. Comb. Des. 2000, 8, 218–220. [Google Scholar] [CrossRef]
- Mills, W.H. Some mutually orthogonal Latin squares. Congr. Numer. 1977, 19, 473–487. [Google Scholar]
- Roberts, C.E., Jr. Sets of mutually orthogonal latin squares with “like subsquares”. J. Comb. Theory (Ser. A) 1992, 61, 50–63. [Google Scholar] [CrossRef]
- Colbourn, C.J.; Yin, J.; Zhu, L. Six MOLS of order 76. J. Comb. Math. Comb. Comput. 1995, 19, 207–208. [Google Scholar]
- Brouwer, A.E. A Series of Separable Designs with Application to Pairwise Orthogonal Latin Squares. Eur. J. Comb. 1980, 1, 39–41. [Google Scholar] [CrossRef]
- Colbourn, C.J.; Dinitz, J.H. More Thwarts in Transversal Designs. Finite Fields Their Appl. 1996, 2, 293–303. [Google Scholar] [CrossRef]
- The GAP Group. GAP—Groups, Algorithms, and Programming, Version 4.13.1. 2024. Available online: https://www.gap-system.org (accessed on 7 November 2024).
- Brouwer, A.E. Recursive Constructions of Mutually orthogonal Latin Squares. 1985. Available online: https://www.win.tue.nl/~aeb/preprints/6367A.pdf (accessed on 12 December 2024).
- Salzmann, H. Baer Subplanes. Ill. J. Math. 2003, 47, 485–513. [Google Scholar] [CrossRef]
- Hirschfeld, J.W.P. Projective Geometries over Finite Fields; Oxford University Press: Oxford, UK, 1979. [Google Scholar] [CrossRef]
- Berman, G. Finite Projective Plane Geometries and Difference Sets. Trans. Am. Math. Soc. 1953, 74, 492–499. [Google Scholar] [CrossRef]
- Ostrom, T.G.; Sherk, F.A. Finite projective planes with affine subplanes. Can. Math. Bull. 1964, 7, 549–559. [Google Scholar] [CrossRef]
- Cosma, W.; Cannon, J.; Playoust, C. The Magma algebra system. 1. The user language. J. Symb. Comput. 1997, 24, 235–265. [Google Scholar]
- Magma Computational Algebra Systems V2.28-14. 2024. Available online: http://magma.maths.usyd.edu.au/magma/ (accessed on 7 November 2024).
- Jungnickel, D.; Vedder, K. On the Geometry of Planar Difference Sets. Eur. J. Comb. 1984, 5, 143–148. [Google Scholar] [CrossRef]
- Denniston, R.H.F. Some Maximal Arcs in Finite Projective Planes. J. Comb. Theory 1969, 6, 317–319. [Google Scholar] [CrossRef]
- Dukes, P.J.; Ling, A.C.H. A Three-Factor Product Construction for Mutually Orthogonal Latin Squares. J. Comb. Des. 2015, 23, 229–273. [Google Scholar] [CrossRef]
- Abel, R.J.R.; Li, Y. Some constructions for t pairwise orthogonal diagonal Latin squares based on difference matrices. Discret. Math. 2015, 338, 593–607. [Google Scholar] [CrossRef]
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | ∞ | ∞ | 1 | 2 | 3 | 4 | 1 | 6 | 7 | 8 | 2 | 10 | 5 | 12 | 4 | 4 | 15 | 16 | 5 | 18 |
20 | 4 | 5 | 3 | 22 | 7 | 24 | 4 | 26 | 5 | 28 | 4 | 30 | 31 | 5 | 4 | 6 | 8 | 36 | 4 | 5 |
40 | 7 | 40 | 5 | 42 | 5 | 6 | 4 | 46 | 10 | 48 | 6 | 5 | 5 | 52 | 8 | 6 | 7 | 7 | 5 | 58 |
60 | 5 | 60 | 5 | 8 | 63 | 7 | 5 | 66 | 5 | 6 | 6 | 70 | 7 | 72 | 5 | 7 | 6 | 6 | 6 | 78 |
80 | 9 | 80 | 8 | 82 | 6 | 6 | 6 | 6 | 7 | 88 | 6 | 7 | 6 | 6 | 6 | 6 | 10 | 96 | 6 | 8 |
100 | 8 | 100 | 6 | 102 | 7 | 7 | 6 | 106 | 9 | 108 | 6 | 6 | 13 | 112 | 6 | 7 | 6 | 8 | 6 | 6 |
120 | 7 | 120 | 6 | 6 | 6 | 124 | 6 | 126 | 127 | 7 | 6 | 130 | 6 | 7 | 6 | 7 | 7 | 136 | 6 | 138 |
140 | 6 | 7 | 6 | 10 | 10 | 7 | 6 | 7 | 6 | 148 | 6 | 150 | 7 | 8 | 8 | 7 | 6 | 156 | 7 | 6 |
160 | 9 | 7 | 6 | 162 | 6 | 7 | 6 | 166 | 7 | 168 | 6 | 8 | 6 | 172 | 6 | 6 | 14 | 9 | 6 | 178 |
180 | 6 | 180 | 6 | 6 | 7 | 9 | 6 | 10 | 6 | 8 | 6 | 190 | 7 | 192 | 6 | 7 | 6 | 196 | 6 | 198 |
200 | 7 | 8 | 6 | 7 | 6 | 8 | 6 | 8 | 14 | 11 | 10 | 210 | 6 | 7 | 6 | 7 | 7 | 8 | 6 | 10 |
220 | 6 | 12 | 6 | 222 | 13 | 8 | 6 | 226 | 6 | 228 | 6 | 7 | 7 | 232 | 6 | 7 | 6 | 7 | 6 | 238 |
240 | 7 | 240 | 6 | 242 | 6 | 7 | 6 | 12 | 7 | 7 | 6 | 250 | 6 | 12 | 9 | 7 | 255 | 256 | 6 | 12 |
260 | 6 | 8 | 8 | 262 | 7 | 8 | 7 | 10 | 7 | 268 | 7 | 270 | 15 | 16 | 6 | 13 | 10 | 276 | 6 | 9 |
280 | 7 | 280 | 6 | 282 | 6 | 12 | 6 | 7 | 15 | 288 | 6 | 6 | 6 | 292 | 6 | 6 | 7 | 10 | 10 | 12 |
300 | 7 | 7 | 7 | 7 | 15 | 15 | 6 | 306 | 7 | 7 | 7 | 310 | 7 | 312 | 7 | 10 | 7 | 316 | 7 | 10 |
320 | 15 | 15 | 6 | 16 | 8 | 12 | 6 | 7 | 7 | 9 | 6 | 330 | 7 | 8 | 7 | 6 | 8 | 336 | 6 | 7 |
340 | 6 | 10 | 10 | 342 | 7 | 7 | 6 | 346 | 6 | 348 | 8 | 12 | 18 | 352 | 6 | 9 | 7 | 9 | 6 | 358 |
360 | 8 | 360 | 6 | 7 | 7 | 10 | 6 | 366 | 15 | 15 | 7 | 15 | 7 | 372 | 7 | 15 | 7 | 13 | 7 | 378 |
380 | 7 | 12 | 7 | 382 | 15 | 15 | 7 | 15 | 7 | 388 | 7 | 16 | 7 | 8 | 7 | 7 | 8 | 396 | 7 | 7 |
400 | 15 | 400 | 7 | 15 | 11 | 8 | 7 | 15 | 8 | 408 | 7 | 13 | 8 | 12 | 10 | 9 | 18 | 15 | 7 | 418 |
420 | 7 | 420 | 7 | 15 | 7 | 16 | 6 | 7 | 7 | 10 | 6 | 430 | 15 | 432 | 6 | 15 | 6 | 18 | 7 | 438 |
440 | 7 | 15 | 7 | 442 | 7 | 13 | 7 | 11 | 15 | 448 | 7 | 15 | 7 | 7 | 7 | 15 | 7 | 456 | 7 | 16 |
460 | 7 | 460 | 7 | 462 | 15 | 15 | 7 | 466 | 8 | 8 | 7 | 15 | 7 | 15 | 10 | 18 | 7 | 15 | 6 | 478 |
480 | 15 | 15 | 6 | 15 | 8 | 7 | 8 | 486 | 7 | 15 | 6 | 490 | 6 | 16 | 6 | 7 | 15 | 15 | 6 | 498 |
72 | 77 | 88 | 99 | 104 | 117 | 136 | 143 | 152 | 153 | 171 | 184 | 187 | 200 | 207 | 216 | 221 | 225 | 232 |
7 | 6 | 7 | 8 | 7 | 8 | 7 | 10 | 7 | 8 | 8 | 7 | 10 | 7 | 8 | 7 | 12 | 8 | 7 |
247 | 248 | 261 | 272 | 296 | 297 | 299 | 304 | 319 | 323 | 324 | 325 | 328 | 333 | 341 | 344 | 351 | 368 | 376 |
12 | 7 | 8 | 15 | 7 | 10 | 12 | 15 | 10 | 16 | 8 | 12 | 7 | 8 | 10 | 7 | 12 | 15 | 7 |
391 | 392 | 396 | 400 | 424 | 425 | 432 | 437 | 456 | 459 | 464 | 468 | 472 | 475 | 488 | 493 | 496 | ||
16 | 7 | 8 | 15 | 7 | 16 | 15 | 18 | 7 | 16 | 15 | 8 | 7 | 18 | 7 | 16 | 15 |
91 | 105 | 115 | 129 | 133 | 141 | 145 | 147 | 155 | 161 | 165 | 168 | 177 | 192 | 195 | 203 | 209 |
7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 9 | 7 | 7 | 7 | 11 |
213 | 215 | 217 | 219 | 231 | 235 | 237 | 240 | 245 | 249 | 255 | 259 | 275 | 279 | 287 | 301 | 305 |
7 | 7 | 8 | 10 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 12 | 13 | 9 | 7 | 7 | 15 |
309 | 312 | 315 | 320 | 321 | 327 | 339 | 345 | 350 | 363 | 369 | 371 | 375 | 377 | 381 | 384 | 385 |
7 | 7 | 10 | 15 | 15 | 7 | 7 | 7 | 8 | 7 | 15 | 15 | 15 | 13 | 12 | 15 | 15 |
387 | 395 | 399 | 403 | 404 | 407 | 411 | 412 | 413 | 414 | 415 | 417 | 423 | 427 | 435 | 440 | 441 |
15 | 7 | 7 | 15 | 11 | 15 | 13 | 8 | 12 | 10 | 9 | 15 | 15 | 7 | 15 | 7 | 15 |
445 | 447 | 448 | 451 | 453 | 455 | 465 | 471 | 473 | 477 | 480 | 481 | 483 | 485 | 489 | 495 | 497 |
13 | 11 | 15 | 15 | 7 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 7 | 15 | 7 | 15 |
n | #MOLS | Page | Required Changes | ||
---|---|---|---|---|---|
112 | 13 | 107 | c13, r11 | : | |
176 | 14 | 110 | c9, r3 | : | |
c9, r22 | : | ||||
c10, r22 | : | ||||
c12, r20 | : | ||||
208 | >14 | 111 | c3, r20 | : | |
c11, r24 | : | ||||
224 | 13 | 108 | c4, r12 | : | |
352 | 18 | 113 | c9, r7 | : | |
c9, r18 | : | ||||
c15, r2 | : | ||||
c19, r19 | : | ||||
416 | 18 | 114 | c3, r2 | : | |
c4, r17 | : | ||||
c8, r20 | : | ||||
c10, r25 | : | ||||
c12, r2 | : | ||||
c15, r19 | : | ||||
c16, r19 | : | ||||
544 | 18 | 115 | c4, r23 | : | |
c5, r17 | : | ||||
c7, r7 | : | ||||
c18, r33 | : | ||||
c19, r9 | : | ||||
640 | 9 | 106 | c7, r2 | : | |
896 | 13 | 109 | c5, r2 | : | |
c14, r14 | : |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, A.; Abel, R.J.R.; Valkov, I.; Fraser, D. Implementing the MOLS Table for n Up to 500. Symmetry 2024, 16, 1678. https://doi.org/10.3390/sym16121678
Miller A, Abel RJR, Valkov I, Fraser D. Implementing the MOLS Table for n Up to 500. Symmetry. 2024; 16(12):1678. https://doi.org/10.3390/sym16121678
Chicago/Turabian StyleMiller, Alice, R. Julian R. Abel, Ivaylo Valkov, and Douglas Fraser. 2024. "Implementing the MOLS Table for n Up to 500" Symmetry 16, no. 12: 1678. https://doi.org/10.3390/sym16121678
APA StyleMiller, A., Abel, R. J. R., Valkov, I., & Fraser, D. (2024). Implementing the MOLS Table for n Up to 500. Symmetry, 16(12), 1678. https://doi.org/10.3390/sym16121678