Analysis of → μ+μ− Decays at the Large Hadron Collider
Abstract
:1. Introduction
2. The ATLAS and Effective Lifetime Measurements
2.1. The Measurement
2.2. The Effective Lifetime Measurement
- A fit to the dimuon invariant mass, in the same range as for the BR analysis
- The extraction of the distribution of the component using the sPlot technique [27]
- A binned fit to distribution comparing Monte-Carlo simulated effective lifetime templates corresponding to different values of .
3. Measurement of Decay Properties and Search for Decay at CMS
3.1. Measurement of and Search for Decay
3.2. Measurement of Effective Lifetime
4. Analysis of Decays with LHCb
4.1. Measurement of the Branching Fractions of and
4.2. Measurement of the Effective Lifetime of the Decay
5. Combination of the Measurements by the LHC Experiments
6. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bobeth, C.; Gorbahn, M.; Hermann, T.; Misiak, M.; Stamou, E.; Steinhauser, M. Bs,d → ℓ+ℓ− in the Standard Model with Reduced Theoretical Uncertainty. Phys. Rev. Lett. 2014, 112, 101801. [Google Scholar] [CrossRef] [PubMed]
- Bobeth, C.; Gorbahn, M.; Stamou, E. Electroweak Corrections to Bs,d → ℓ+ℓ−. Phys. Rev. D 2014, 89, 034023. [Google Scholar] [CrossRef]
- Hermann, T.; Misiak, M.; Steinhauser, M. Three-loop QCD corrections to Bs → μ+μ−. J. High Energy Phys. 2013, 12, 097. [Google Scholar] [CrossRef]
- Beneke, M.; Bobeth, C.; Szafron, R. Enhanced electromagnetic correction to the rare B-meson decay Bs,d → μ+μ−. Phys. Rev. Lett. 2018, 120, 011801. [Google Scholar] [CrossRef] [PubMed]
- Beneke, M.; Bobeth, C.; Szafron, R. Power-enhanced leading-logarithmic QED corrections to Bq → μ+μ−. J. High Energy Phys. 2019, 10, 232. [Google Scholar] [CrossRef]
- Altmannshofer, W.; Paradisi, P.; Straub, D.M. Model-Independent Constraints on New Physics in b → s Transitions. J. High Energy Phys. 2012, 4, 8. [Google Scholar] [CrossRef]
- Beaujean, F.; Bobeth, C.; van Dyk, D.; Wacker, C. Bayesian Fit of Exclusive b → s ℓ Decays: The Standard Model Operator Basis. J. High Energy Phys. 2012, 8, 30. [Google Scholar] [CrossRef]
- Aoki, S.; Aoki, Y.; Becirevic, D.; Blum, T.; Colangelo, G.; Collins, S.; Morte, M.D.; Dimopoulos, P.; Dürr, S.; Fukaya, H.; et al. FLAG Review 2019. arXiv 2019, arXiv:1902.08191. [Google Scholar] [CrossRef]
- Bazavov, A.; Bernard, C.; Brown, N.; DeTar, C.; El-Khadra, A.X.; Gámiz, E.; Gottlieb, S.; Heller, U.M.; Komijani, J.; Kronfeld, A.S.; et al. B- and D-meson leptonic decay constants from four-flavor lattice QCD. Phys. Rev. D 2018, 98, 074512. [Google Scholar] [CrossRef]
- Bussone, A.; Carrasco, N.; Dimopoulos, P.; Frezzotti, R.; Lami, P.; Lubicz, V.; Picca, E.; Riggio, L.; Rossi, G.; Simula, S.; et al. Mass of the b quark and B meson decay constants from Nf = 2+1+1 twisted-mass lattice QCD. Phys. Rev. D 2016, 93, 114505. [Google Scholar] [CrossRef]
- Dowdall, R.J.; Davies, C.T.H.; Horgan, R.R.; Monahan, C.J.; Shigemitsu, J. B-meson decay constants from improved lattice nonrelativistic QCD with physical u, d, s, and c quarks. Phys. Rev. Lett. 2013, 110, 222003. [Google Scholar] [CrossRef] [PubMed]
- Hughes, C.; Davies, C.T.H.; Monahan, C.J. New methods for B meson decay constants and form factors from lattice NRQCD. Phys. Rev. D 2018, 97, 054509. [Google Scholar] [CrossRef]
- De Bruyn, K.; Fleischer, R.; Knegjens, R.; Koppenburg, P.; Merk, M.; Pellegrino, A.; Tuning, N. Probing new physics via the effective lifetime. Phys. Rev. Lett. 2012, 109, 041801. [Google Scholar] [CrossRef]
- Bruyn, K.D.; Fleischer, R.; Knegjens, R.; Koppenburg, P.; Merk, M.; Tuning, N. Branching Ratio Measurements of Decays. Phys. Rev. 2012, D86, 014027. [Google Scholar] [CrossRef]
- Buras, A.J. Relations between Δ M(s, d) and B(s, d) → μ in models with minimal flavor violation. Phys. Lett. B 2003, 566, 115–119. [Google Scholar] [CrossRef]
- King, D.; Lenz, A.; Rauh, T. Bs mixing observables and |Vtd/Vts| from sum rules. J. High Energy Phys. 2019, 5, 34. [Google Scholar] [CrossRef]
- Buras, A.J. Standard Model Predictions for Rare K and B Decays without New Physics Infection. Eur. Phys. J. C 2023, 83, 66. [Google Scholar] [CrossRef]
- HFLAV Group; Amhis, Y.; Banerjee, S.W.; Ben-Haim, E.; Bertholet, E.; Bernlochner, F.U.; Bona, M.; Bozek, A.; Bozzi, C.; Brodzicka, J.; et al. Averages of b-hadron, c-hadron, and τ-lepton properties as of 2021. Phys. Rev. D 2023, 107, 052008. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Study of the rare decays of and B0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector. J. High Energy Phys. 2019, 4, 098. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Study of the rare decays of and B0 into muon pairs from data collected during the LHC Run 1 with the ATLAS detector. Eur. Phys. J. C 2016, 76, 513. [Google Scholar] [CrossRef]
- Hoecker, A.; Speckmayer, P.; Stelzer, J.; Therhaag, J.; von Toerne, E.; Voss, H. TMVA: Toolkit for Multivariate Data Analysis. arXiv 2007, arXiv:physics/0703039. [Google Scholar]
- Tanabashi, M.; Hagiwara, K.; Hikasa, K.; Nakamura, K.; Sumino, Y.; Takahashi, F.; Tanaka, J.; Agashe, K.; Aielli, G.; Amsler, C.; et al. Review of Particle Physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef]
- HFLAV Group; Amhis, Y.; Banerjee, S.; Ben-Haim, E.; Bernlochner, F.; Bozek, A.; Bozzi, C.; Chrza̧szcz, M.; Dingfelder, J.; Duell, S.; et al. Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016. Eur. Phys. J. C 2017, 77, 895. [Google Scholar] [CrossRef]
- Neyman, J. Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability. Phil. Trans. R. Soc. Lond. A 1937, 236, 333–380. Available online: http://rsta.royalsocietypublishing.org/content/236/767/333 (accessed on 1 January 2024).
- ATLAS Collaboration. Measurement of the → μμ Effective Lifetime with the ATLAS Detector. J. High Energy Phys. 2023, 9, 199. [Google Scholar] [CrossRef]
- Workman, R.L.; Burkert, V.D.; Crede, V.; Klempt, E.; Thoma, U.; Tiator, L.; Agashe, K.; Aielli, G.; Allanach, B.C.; Amsler, C.; et al. Review of Particle Physics. Progr. Theor. Exp. Phys. 2022, 2022, 083C01, 2023 update. [Google Scholar] [CrossRef]
- Pivk, M.; Le Diberder, F. sPlot: A statistical tool to unfold data distributions. Nucl. Instrum. Meth. A 2005, 555, 356–369. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of the → μ+μ− decay properties and search for the B0 → μ+μ− decay in proton–proton collisions at = 13 TeV. Phys. Lett. B 2022, 842, 137955. [Google Scholar] [CrossRef]
- CMS Collaboration; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Brandstetter, J.; Dragicevic, M.; Erö, J.; Valle, E.D.; et al. Measurement of properties of → μ+μ− decays and search for B0 → μ+μ− with the CMS experiment. J. High Energy Phys. 2020, 4, 188. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar] [CrossRef]
- LHCb Collaboration; Aaij, R.; Beteta, C.A.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; et al. Precise measurement of the fs/fd ratio of fragmentation fractions and of decay branching fractions. Phys. Rev. D 2021, 104, 032005. [Google Scholar] [CrossRef]
- Read, A.L. Presentation of search results: The CL(s) technique. J. Phys. 2002, G28, 2693–2704. [Google Scholar] [CrossRef]
- LHCb Collaboration; Aaij, R.; Abellán Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; et al. Measurement of the → μ+μ− decay properties and search for the B0 → μ+μ− and → μ+μ−γ decays. Phys. Rev. D 2022, 105, 012010. [Google Scholar] [CrossRef]
- LHCb Collaboration; Aaij, R.; Abellán Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; et al. Analysis of Neutral B-Meson Decays into Two Muons. Phys. Rev. Lett. 2022, 128, 041801. [Google Scholar] [CrossRef] [PubMed]
- LHCb Collaboration; Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; et al. Measurement of the → μ+μ− branching fraction and effective lifetime and search for B0 → μ+μ− decays. Phys. Rev. Lett. 2017, 118, 191801. [Google Scholar] [CrossRef] [PubMed]
- Archilli, F.; Baldini, W.; Bencivenni, G.; Bondar, N.; Bonivento, W.; Cadeddu, S.; Campana, P.; Cardini, A.; Ciambrone, P.; Vidal, X.C.; et al. Performance of the muon identification at LHCb. J. Instrum. 2013, 8, P10020. [Google Scholar] [CrossRef]
- Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.-J.; Lugovsky, K.S.; Pianori, E.; Robinson, D.J.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Skwarnicki, T. A Study of the Radiative Cascade Transitions between the Upsilon-Prime and Upsilon Resonances. Ph.D. Thesis, Institute of Nuclear Physics, Krakow, Poland, 1986. Available online: https://inspirehep.net/literature/230779 (accessed on 1 January 2024).
- ATLAS, CMS and LHCb Collaborations. Combination of the ATLAS, CMS and LHCb Results on the → μ+μ- Decays; Technical Report; ATLAS-CONF-2020-049, CMS-PAS-BPH-20-003, LHCb-CONF-2020-002; CERN: Geneva, Switzerland, 2020. [Google Scholar]
- CMS and LHCb Collaborations; Khachatryan, V.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; et al. Observation of the rare → μ+μ− decay from the combined analysis of CMS and LHCb data. Nature 2015, 522, 68–72. [Google Scholar] [CrossRef]
- ATLAS and CMS Collaborations. Snowmass White Paper Contribution: Physics with the Phase-2 ATLAS and CMS Detectors. Technical Report; ATL-PHYS-PUB-2022-018. 2022. Available online: https://cds.cern.ch/record/2805993 (accessed on 17 January 2024).
- LHCb Collaboration; Aaij, R.; Adeva, B.; Adinolfi, M.; Aidala, C.; Ajaltouni, Z.; Akar, S.; Albicocco, P.; Albrecht, J.; Alessio, F.; et al. Physics case for an LHCb Upgrade II: Opportunities in flavour physics, and beyond, in the HL-LHC era. arXiv 2018, arXiv:1808.08865. [Google Scholar] [CrossRef]
- Buras, A.J.; Fleischer, R.; Girrbach, J.; Knegjens, R. Probing New Physics with the Bs → μ+μ− Time-Dependent Rate. J. High Energy Phys. 2013, 7, 77. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.-F.; Mombächer, T.; De Sanctis, U.
Analysis of
Chen K-F, Mombächer T, De Sanctis U.
Analysis of
Chen, Kai-Feng, Titus Mombächer, and Umberto De Sanctis.
2024. "Analysis of
Chen, K. -F., Mombächer, T., & De Sanctis, U.
(2024). Analysis of