Stability Analysis of Milling Based on the Barycentric Rational Interpolation Differential Quadrature Method
Abstract
:1. Introduction
2. Dynamics Model of the Milling Process
3. Algorithm Derivation
3.1. DQM Based on the Barycentric Rational Interpolation
3.1.1. Polynomial Interpolation and the Barycentric Formula
3.1.2. Barycentric Rational Interpolation and Its Differentiation
3.2. Stability Analysis of the Milling Process Based on the Barycentric Rational Interpolation DQM
4. Numerical Validation and Discussion
4.1. Single-Time-Delay Milling Model
4.2. Multiple-Time-Delay Milling Model
5. Conclusions
- Using the barycentric rational interpolation DQM can effectively improve the shortcomings of the classical DQM, avoiding the generation of the ill-conditioned matrix when there are a large number of discrete nodes, thereby improving the stability and accuracy of numerical calculations.
- The proposed method approximates the state equation of the milling system to an algebraic system of equations through interpolation and numerical differentiation techniques, which can quickly obtain the state transition matrix, and thus obtain the SLD of the system.
- The proposed milling stability analysis method is applicable to single-time-delay and multiple-time-delay milling systems, and is suitable for the machining conditions of both large and small radial depths of cutting.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Mass matrix of the milling system | |
Stiffness matrix of the milling system | |
Vibration displacement of the tool in the direction | |
Milling force vector | |
The component of the milling force in the direction | |
The pitch angle between the tooth () and the tooth () | |
The upper bound of the cutting edge participating in cutting on the tooth () | |
The start angle of the tooth | |
The lag angle of the cutting edge at height | |
The diameter of the milling cutter | |
The static component of the milling force | |
The number of teeth | |
The vibration displacement vector of the previous tooth-passing period of the tooth () | |
The spindle period | |
The radial cutting force coefficient | |
Vibration velocity vector | |
Time-varying parameter matrix corresponding to the tooth () in the state equation | |
The Lagrange interpolation basis function | |
The barycentric rational interpolation function | |
The barycentric weight of the barycentric rational interpolation | |
The barycentric rational interpolation basis function | |
The corresponding weighted coefficient of the milling state vector | |
Damping matrix of the milling system | |
Vibration displacement vector | |
Vibration displacement of the tool in the direction | |
The component of the milling force in the direction | |
The angular position of the cutting edge on the tooth () with a height | |
The helix angle of the milling cutter | |
The lower bound of the cutting edge participating in cutting on the tooth () | |
The exit angle of the tooth | |
The tooth sweep angle | |
The spindle speed | |
The dynamic component of the milling force | |
The time delay of the tooth () | |
The dynamic milling force coefficient matrix corresponding to the tooth () | |
The tangential cutting force coefficient | |
The state vector | |
Time-invariant parameter matrix in the state equation | |
The polynomial interpolation function | |
The barycentric weight of the barycentric Lagrange interpolation | |
Blending function | |
The index set | |
Weight coefficient of the barycentric rational interpolation differential quadrature method | |
The Floquet transition matrix | |
DQM | Differential quadrature method |
SLD | Stability lobe diagram |
SDM | Semi-discretization method |
LDQM | Localized differential quadrature method |
DDE | Delay differential equation |
TFEA | Temporal finite element analysis |
FDM | Full-discretization method |
DOF | Degree of freedom |
References
- Munoa, J.; Beudaert, X.; Dombovari, Z.; Altintas, Y.; Budak, E.; Brecher, C.; Stepan, G. Chatter suppression techniques in metal cutting. CIRP Ann. 2016, 65, 785–808. [Google Scholar] [CrossRef]
- Ismail, F.; Soliman, E. A new method for the identification of stability lobes in machining. Int. J. Mach. Tools Manuf. 1997, 37, 763–774. [Google Scholar] [CrossRef]
- Peng, C.; Wang, L.; Liao, T.W. A new method for the prediction of chatter stability lobes based on dynamic cutting force simulation model and support vector machine. J. Sound Vib. 2015, 354, 118–131. [Google Scholar] [CrossRef]
- Quintana, G.; Ciurana, J.; Ferrer, I.; Rodriguez, C.A. Sound mapping for identification of stability lobe diagrams in milling processes. Int. J. Mach. Tools Manuf. 2009, 49, 203–211. [Google Scholar] [CrossRef]
- Campomanes, M.L.; Altintas, Y. An improved time domain simulation for dynamic milling at small radial immersions. J. Manuf. Sci. Eng. 2003, 125, 416–422. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Chen, X. A novel chatter stability criterion for the modelling and simulation of the dynamic milling process in the time domain. Int. J. Adv. Manuf. Technol. 2003, 22, 619–625. [Google Scholar] [CrossRef]
- Sims, N.D. The self-excitation damping ratio: A chatter criterion for time-domain milling simulations. J. Manuf. Sci. Eng. 2005, 127, 433–445. [Google Scholar] [CrossRef]
- Zhongqun, L.; Qiang, L. Solution and analysis of chatter stability for end milling in the time-domain. Chin. J. Aeronaut. 2008, 21, 169–178. [Google Scholar] [CrossRef]
- Altintaş, Y.; Budak, E. Analytical prediction of stability lobes in milling. CIRP Ann.-Manuf. Technol. 1995, 44, 357–362. [Google Scholar] [CrossRef]
- Budak, E.; Altintas, Y. Analytical prediction of chatter stability in milling—Part I: General formulation. J. Dyn. Syst. Meas. Control 1998, 120, 22–30. [Google Scholar] [CrossRef]
- Budak, E.; Altintas, Y. Analytical prediction of chatter stability in milling—Part II: Application of the general formulation to common milling systems. J. Dyn. Syst. Meas. Control 1998, 120, 31–36. [Google Scholar] [CrossRef]
- Bayly, P.; Halley, J.; Mann, B.P.; Davies, M. Stability of interrupted cutting by temporal finite element analysis. J. Manuf. Sci. Eng. 2003, 125, 220–225. [Google Scholar] [CrossRef]
- Mann, B.P.; Young, K.A.; Schmitz, T.L.; Dilley, D.N. Simultaneous stability and surface location error predictions in milling. J. Manuf. Sci. Eng. 2005, 127, 446–453. [Google Scholar] [CrossRef]
- Insperger, T.; Stépán, G. Semi-discretization method for delayed systems. Int. J. Numer. Methods Eng. 2002, 55, 503–518. [Google Scholar] [CrossRef]
- Insperger, T.; Stépán, G. Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int. J. Numer. Methods Eng. 2004, 61, 117–141. [Google Scholar] [CrossRef]
- Insperger, T.; Stépán, G.; Turi, J. On the higher-order semi-discretizations for periodic delayed systems. J. Sound Vib. 2008, 313, 334–341. [Google Scholar] [CrossRef]
- Ding, H.; Ding, Y.; Zhu, L. On time-domain methods for milling stability analysis. Chin. Sci. Bull. 2012, 57, 4336–4345. [Google Scholar] [CrossRef]
- Ding, Y.; Zhu, L.; Zhang, X.; Ding, H. A full-discretization method for prediction of milling stability. Int. J. Mach. Tools Manuf. 2010, 50, 502–509. [Google Scholar] [CrossRef]
- Butcher, E.A.; Ma, H.; Bueler, E.; Averina, V.; Szabo, Z. Stability of linear time-periodic delay-differential equations via Chebyshev polynomials. Int. J. Numer. Methods Eng. 2004, 59, 895–922. [Google Scholar] [CrossRef]
- Butcher, E.A.; Bobrenkov, O.A.; Bueler, E.; Nindujarla, P. Analysis of milling stability by the Chebyshev collocation method: Algorithm and optimal stable immersion levels. J. Comput. Nonlinear Dyn. 2009, 4, 031003. [Google Scholar] [CrossRef]
- Lin, L.; He, M.; Wang, Q.; Deng, C. Chatter Stability Prediction and Process Parameters’ Optimization of Milling Considering Uncertain Tool Information. Symmetry 2021, 13, 1071. [Google Scholar] [CrossRef]
- Ding, Y.; Zhu, L.; Zhang, X.; Ding, H. Numerical integration method for prediction of milling stability. J. Manuf. Sci. Eng. 2011, 133, 031005. [Google Scholar] [CrossRef]
- Niu, J.; Ding, Y.; Zhu, L.; Ding, H. Runge–Kutta methods for a semi-analytical prediction of milling stability. Nonlinear Dyn. 2014, 76, 289–304. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, H.; Meng, G.; Liu, C. A novel approach for the prediction of the milling stability based on the Simpson method. Int. J. Mach. Tools Manuf. 2015, 99, 43–47. [Google Scholar] [CrossRef]
- Mei, Y.; Mo, R.; Sun, H.; He, B.; Wan, N. Stability prediction in milling based on linear multistep method. Int. J. Adv. Manuf. Technol. 2019, 105, 2677–2688. [Google Scholar] [CrossRef]
- Mei, Y.; Mo, R.; Sun, H.; He, B.; Bu, K. Stability analysis of milling process with multiple delays. Appl. Sci. 2020, 10, 3646. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, J.-W.; Tie, D.; Wan, M.; Zhang, W.-H. An efficient and accurate chatter prediction method of milling processes with a transition matrix reduction scheme. Mech. Syst. Signal Process. 2023, 182, 109535. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, C.; Ding, Y.; Ding, H. Prediction of chatter stability in high speed milling using the numerical differentiation method. Int. J. Adv. Manuf. Technol. 2017, 89, 2535–2544. [Google Scholar] [CrossRef]
- Ding, Y.; Zhu, L.; Zhang, X.; Ding, H. Stability analysis of milling via the differential quadrature method. J. Manuf. Sci. Eng. 2013, 135, 044502. [Google Scholar] [CrossRef]
- Bellman, R.; Kashef, B.; Casti, J. Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations. J. Comput. Phys. 1972, 10, 40–52. [Google Scholar] [CrossRef]
- Bellman, R.; Casti, J. Differential quadrature and long-term integration. J. Math. Anal. Appl. 1971, 34, 235–238. [Google Scholar] [CrossRef]
- Zong, Z.; Lam, K. A localized differential quadrature (LDQ) method and its application to the 2D wave equation. Comput. Mech. 2002, 29, 382–391. [Google Scholar] [CrossRef]
- Mei, Y.; He, B.; He, S.; Ren, X. Stability Analysis in Milling Based on the Localized Differential Quadrature Method. Micromachines 2023, 15, 54. [Google Scholar] [CrossRef]
- Floater, M.S.; Hormann, K. Barycentric rational interpolation with no poles and high rates of approximation. Numer. Math. 2007, 107, 315–331. [Google Scholar] [CrossRef]
- Gradišek, J.; Kalveram, M.; Insperger, T.; Weinert, K.; Stépán, G.; Govekar, E.; Grabec, I. On stability prediction for milling. Int. J. Mach. Tools Manuf. 2005, 45, 769–781. [Google Scholar] [CrossRef]
- Altintas, Y. Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Sauer, T. Numerical Analysis, 2nd ed.; Pearson Education, Inc.: Boston, MA, USA, 2012. [Google Scholar]
- Berrut, J.-P.; Trefethen, L.N. Barycentric lagrange interpolation. SIAM Rev. 2004, 46, 501–517. [Google Scholar] [CrossRef]
- Schneider, C.; Werner, W. Some new aspects of rational interpolation. Math. Comput. 1986, 47, 285–299. [Google Scholar] [CrossRef]
- Altıntas, Y.; Engin, S.; Budak, E. Analytical stability prediction and design of variable pitch cutters. J. Manuf. Sci. Eng. 1999, 121, 173–178. [Google Scholar] [CrossRef]
- Tao, J.; Qin, C.; Liu, C. Milling stability prediction with multiple delays via the extended Adams-Moulton-based method. Math. Probl. Eng. 2017, 2017, 7898369. [Google Scholar] [CrossRef]
Stability Analysis Methods | References |
---|---|
Experimental-based methods | [2,3,4] |
Time-domain simulation methods | [5,6,7,8] |
Dynamic analysis methods | [9,10,11,12,13,14,15,16,18,19,20,22,23,24,25,26,27,28,29,33] |
mt (kg) | ζ | ωn (rad/s) | Kt (N/m2) | Kn (N/m2) | N |
---|---|---|---|---|---|
0.03393 | 0.011 | 5793 | 6 × 108 | 2 × 108 | 2 |
Radial Immersion: 1 | Radial Immersion: 0.6 | Radial Immersion: 0.2 | |
---|---|---|---|
1st-SDM | 460.98 | 321.87 | 280.20 |
) | 56.96 | 54.26 | 52.92 |
) | 56.45 | 55.17 | 53.10 |
mt (kg) | ζ | ωn (rad/s) | Kt (N/m2) | Kn (N/m2) |
---|---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, Y.; He, B.; He, S.; Ren, X.; Zhang, Z. Stability Analysis of Milling Based on the Barycentric Rational Interpolation Differential Quadrature Method. Symmetry 2024, 16, 384. https://doi.org/10.3390/sym16040384
Mei Y, He B, He S, Ren X, Zhang Z. Stability Analysis of Milling Based on the Barycentric Rational Interpolation Differential Quadrature Method. Symmetry. 2024; 16(4):384. https://doi.org/10.3390/sym16040384
Chicago/Turabian StyleMei, Yonggang, Bingbing He, Shangwen He, Xin Ren, and Zeqi Zhang. 2024. "Stability Analysis of Milling Based on the Barycentric Rational Interpolation Differential Quadrature Method" Symmetry 16, no. 4: 384. https://doi.org/10.3390/sym16040384
APA StyleMei, Y., He, B., He, S., Ren, X., & Zhang, Z. (2024). Stability Analysis of Milling Based on the Barycentric Rational Interpolation Differential Quadrature Method. Symmetry, 16(4), 384. https://doi.org/10.3390/sym16040384