Frequency Analysis of Asymmetric Circular Organic Solar Cells Embedded in an Elastic Medium under Hygrothermal Conditions
Abstract
:1. Introduction
2. Refined Plate Theory for Circular Cells
2.1. Main Assumptions
- Compared to the in-plane stresses and , the tranverse normal stress is insignificant.
- Because the displacements are minimal, the strains involved are very small.
- The shear component and the bending component make up the lateral displacement W.
- There are two components for the in-plane displacements:
- (a)
- Bending components and are, respectively, similar to the displacements U and V of the classical plate theory. As a result, the expressions of and are
- (b)
- Shear stresses and are zero at due to the parabolic variations of shear strains and that are caused by the shear components and of the displacements U and V.
2.2. Displacement Field
2.3. Strains and Stresses
2.4. Hygrothermal Field
3. Governing Equations
4. Solution Methods
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abazid, M.A.; Lakhal, A.; Louis, A.K. A stable numerical algorithm for the design of anti-reflection coating for solar cells. Int. J. Renew. Energy Technol. 2016, 7, 97–111. [Google Scholar] [CrossRef]
- Hoppe, H.; Sariciftci, N.S. Organic solar cells: An overview. J. Mater. Res. 2004, 19, 1924–1945. [Google Scholar] [CrossRef]
- Brabec, C.J. Organic photovoltaics: Technology and market. Sol. Energy Mater. Sol. Cells 2004, 83, 273–292. [Google Scholar] [CrossRef]
- Liu, S.; Wang, K.; Wang, B.; Li, J.; Zhang, C. Sunlight irradiation and wind effect on the interlaminar stresses of the organic solar cell. Arch. Appl. Mech. 2021, 91, 3203–3221. [Google Scholar] [CrossRef]
- Joodaki, M.; Salari, M. Investigation of the tensile strain influence on flicker noise of organic solar cells under dark condition. Org. Electron. 2018, 59, 230–235. [Google Scholar] [CrossRef]
- Duc, N.D.; Seung-Eock, K.; Quan, T.Q.; Long, D.D.; Anh, V.M. Nonlinear dynamic response and vibration of nanocomposite multilayer organic solar cell. Compos. Struct. 2018, 184, 1137–1144. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhuang, X.; Zhou, K.; Cai, C.; Hu, Z.; Zhang, J.; Zhu, Y. Vibration treated carbon electrode for highly efficient hole-conductor-free perovskite solar cells. Org. Electron. 2018, 52, 159–164. [Google Scholar] [CrossRef]
- Liao, H.; Deng, Q.; Shen, Y.; Wang, G.; Wang, S.; Mao, Y. Theoretical analysis of doping concentration, layer thickness and barrier height effects on BaSi2 based homojunction solar cells toward high efficiency. Sol. Energy 2020, 201, 857–865. [Google Scholar] [CrossRef]
- Dat, N.D.; Anh, V.M.; Quan, T.Q.; Duc, P.T.; Duc, N.D. Nonlinear stability and optimization of thin nanocomposite multilayer organic solar cell using Bees Algorithm. Thin-Walled Struct. 2020, 149, 106520. [Google Scholar] [CrossRef]
- Van Tuyen, B. Buckling and free vibration response of organic nanobeams taking the temperature into account. Ain Shams Eng. J. 2023, 14, 102193. [Google Scholar] [CrossRef]
- Liu, S.; Wang, K.; Wang, B.; Li, J.; Zhang, C. Size effect on thermo-mechanical instability of micro/nano scale organic solar cells. Meccanica 2022, 57, 87–107. [Google Scholar] [CrossRef]
- Tien, D.M.; Thom, D.V.; Minh, P.V.; Tho, N.C.; Doan, T.N.; Mai, D.N. The application of the nonlocal theory and various shear strain theories for bending and free vibration analysis of organic nanoplates. Mech. Based Des. Struct. Mach. 2023, 52, 588–610. [Google Scholar] [CrossRef]
- Li, Q.; Wu, D.; Gao, W.; Tin-Loi, F. Size-dependent instability of organic solar cell resting on Winkler–Pasternak elastic foundation based on the modified strain gradient theory. Int. J. Mech. Sci. 2020, 177, 105306. [Google Scholar] [CrossRef]
- Li, Q.; Wu, D.; Gao, W.; Tin-Loi, F.; Liu, Z.; Cheng, J. Static bending and free vibration of organic solar cell resting on Winkler-Pasternak elastic foundation through the modified strain gradient theory. Eur. J. Mech.-A/Solids 2019, 78, 103852. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Q.; Wu, D.; Chen, X.; Yu, Y.; Gao, W. Geometrically nonlinear dynamic analysis of organic solar cell resting on Winkler-Pasternak elastic foundation under thermal environment. Compos. Part B Eng. 2019, 163, 121–129. [Google Scholar] [CrossRef]
- Van Quyen, N.; Duc, N.D. Vibration and nonlinear dynamic response of nanocomposite multi-layer solar panel resting on elastic foundations. Thin-Walled Struct. 2022, 177, 109412. [Google Scholar] [CrossRef]
- Shimpi, R.P. Refined plate theory and its variants. AIAA J. 2002, 40, 137–146. [Google Scholar] [CrossRef]
- Reddy, J.N. A simple higher-order theory for laminated composite plates. J. Appl. Mech. 1984, 51, 745–752. [Google Scholar] [CrossRef]
- Touratier, M. An efficient standard plate theory. Int. J. Eng. Sci. 1991, 29, 901–916. [Google Scholar] [CrossRef]
- Soldatos, K. A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech. 1992, 94, 195–220. [Google Scholar] [CrossRef]
- Karama, M.; Afaq, K.; Mistou, S. Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. Int. J. Solids Struct. 2003, 40, 1525–1546. [Google Scholar] [CrossRef]
- Reddy, J.N. Energy Principles and Variational Methods in Applied Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Sobhy, M.; Alakel Abazid, M. Mechanical and thermal buckling of FG-GPLs sandwich plates with negative Poisson’s ratio honeycomb core on an elastic substrate. Eur. Phys. J. Plus 2022, 137, 1–21. [Google Scholar] [CrossRef]
- Safarpour, M.; Rahimi, A.; Alibeigloo, A.; Bisheh, H.; Forooghi, A. Parametric study of three-dimensional bending and frequency of FG-GPLRC porous circular and annular plates on different boundary conditions. Mech. Based Des. Struct. Mach. 2021, 49, 707–737. [Google Scholar] [CrossRef]
- Sobhy, M. 3-D elasticity numerical solution for magneto-hygrothermal bending of FG graphene/metal circular and annular plates on an elastic medium. Eur. J. Mech.-A/Solids 2021, 88, 104265. [Google Scholar] [CrossRef]
- Golmakani, M.; Vahabi, H. Nonlocal buckling analysis of functionally graded annular nanoplates in an elastic medium with various boundary conditions. Microsyst. Technol. 2017, 23, 3613–3628. [Google Scholar] [CrossRef]
- Demir, O.; Balkan, D.; Peker, R.C.; Metin, M.; Arikoglu, A. Vibration analysis of curved composite sandwich beams with viscoelastic core by using differential quadrature method. J. Sandw. Struct. Mater. 2020, 22, 743–770. [Google Scholar] [CrossRef]
- Sobhy, M. Piezoelectric bending of GPL-reinforced annular and circular sandwich nanoplates with FG porous core integrated with sensor and actuator using DQM. Arch. Civ. Mech. Eng. 2021, 21, 78. [Google Scholar] [CrossRef]
- Shu, C. Differential Quadrature and Its Application in Engineering; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
Layer | Material | Thickness (m) | E (GPa) | (g/cm3) | (K−1) | (wt.%H2O)−1 | |
---|---|---|---|---|---|---|---|
5 | Glass | 69 | |||||
4 | ITO | 116 | |||||
3 | PEDOT:PSS | 1 | |||||
2 | P3HT:PCBM | 6 | |||||
1 | Aluminum | 70 |
n | ||||||
---|---|---|---|---|---|---|
9 | 1.30054 | 1.29443 | 1.28828 | 1.29443 | 1.27584 | 1.26955 |
11 | 1.73167 | 1.72709 | 1.72251 | 1.72709 | 1.71329 | 1.70867 |
13 | 1.95136 | 1.94668 | 1.94200 | 1.94668 | 1.93259 | 1.92788 |
15 | 2.05020 | 2.04445 | 2.03869 | 2.04445 | 2.02707 | 2.02122 |
17 | 2.05268 | 2.04396 | 2.03513 | 2.04396 | 2.01712 | 2.00793 |
Theory | |||||||
---|---|---|---|---|---|---|---|
Hygrothermal | TDPT [18] | 4.914390 | 0.435898 | 0.223034 | 0.205136 | 0.181341 | 0.151995 |
SDPT [19] | 4.920000 | 0.435888 | 0.223039 | 0.205133 | 0.181344 | 0.151997 | |
HDPT [20] | 4.914060 | 0.435898 | 0.223034 | 0.205136 | 0.181341 | 0.151995 | |
EDPT [21] | 4.935520 | 0.435858 | 0.223054 | 0.205122 | 0.181354 | 0.152001 | |
Present | 4.917470 | 0.435894 | 0.223037 | 0.205135 | 0.181342 | 0.151996 | |
Thermal | TDPT [18] | 5.024970 | 0.704606 | 0.323740 | 0.179265 | 0.108809 | 0.072579 |
SDPT [19] | 5.028610 | 0.704371 | 0.323709 | 0.179259 | 0.108809 | 0.072580 | |
HDPT [20] | 5.024710 | 0.704600 | 0.323740 | 0.179265 | 0.108809 | 0.072579 | |
EDPT [21] | 5.038180 | 0.703559 | 0.323607 | 0.179239 | 0.108806 | 0.072581 | |
Present | 5.027050 | 0.704516 | 0.323727 | 0.179262 | 0.108809 | 0.072579 |
10 | 0 | 5.06359 | 5.05314 | 5.04280 | 5.03257 | 5.02244 | 5.01243 |
1 | 4.91207 | 4.90327 | 4.89457 | 4.88598 | 4.87748 | 4.86908 | |
2 | 1.08622 | 1.05971 | 1.03495 | 1.01181 | 0.99018 | 0.97000 | |
3 | 0.83459 | 0.82893 | 0.82442 | 0.82105 | 0.81880 | 0.81767 | |
4 | 0.86837 | 0.87825 | 0.88885 | 0.90013 | 0.91206 | 0.92460 | |
5 | 1.08499 | 1.10139 | 1.11783 | 1.13424 | 1.15056 | 1.16674 | |
20 | 0 | 0.40882 | 0.38455 | 0.36136 | 0.33937 | 0.31870 | 0.29946 |
1 | 0.22459 | 0.23185 | 0.24100 | 0.25170 | 0.26362 | 0.27643 | |
2 | 0.38907 | 0.39328 | 0.39694 | 0.40036 | 0.40380 | 0.40746 | |
3 | 0.43876 | 1.59023 | 0.54061 | 0.51228 | 0.51028 | 0.51255 | |
4 | 0.56135 | 0.56569 | 0.56988 | 0.57386 | 0.57759 | 0.58097 | |
5 | 0.65593 | 0.65689 | 0.65894 | 0.66160 | 0.66463 | 0.66790 | |
30 | 0 | 0.16871 | 0.15026 | 0.13299 | 0.11795 | 0.10627 | 0.09909 |
1 | 0.18233 | 0.18605 | 0.19014 | 0.19480 | 0.19986 | 0.20491 | |
2 | 0.26686 | 0.27101 | 0.27488 | 0.27832 | 0.28089 | 0.28106 | |
3 | 0.33597 | 0.33948 | 0.34296 | 0.34641 | 0.34983 | 0.35319 | |
4 | 0.83529 | 0.41018 | 0.40642 | 0.40695 | 0.40871 | 0.41098 | |
5 | 0.44066 | 0.44349 | 0.44630 | 0.44910 | 0.45188 | 0.45466 |
10 | 0 | 5.03257 | 5.02749 | 5.02245 | 5.01743 | 5.01244 | 5.00747 |
1 | 4.95666 | 4.95200 | 4.94736 | 4.94275 | 4.93817 | 4.93361 | |
2 | 4.88704 | 4.88278 | 4.87854 | 4.87433 | 4.87014 | 1.61646 | |
3 | 1.25400 | 1.23394 | 1.21481 | 1.19652 | 1.17900 | 1.16218 | |
4 | 1.01745 | 1.00627 | 0.99546 | 0.98502 | 0.97494 | 0.96520 | |
5 | 0.88241 | 0.87638 | 0.87065 | 0.86522 | 0.86009 | 0.85526 | |
20 | 0 | 0.33937 | 0.32886 | 0.31870 | 0.30890 | 0.29947 | 0.290432 |
1 | 0.22434 | 0.22144 | 0.21920 | 0.21764 | 0.21677 | 0.21657 | |
2 | 0.25029 | 0.25604 | 0.26207 | 0.26833 | 0.27478 | 0.28138 | |
3 | 0.35001 | 0.35546 | 0.36058 | 0.36535 | 0.36976 | 0.37381 | |
4 | 0.39951 | 0.40121 | 0.40292 | 0.40469 | 0.40651 | 0.40841 | |
5 | 0.43303 | 0.43555 | 0.43801 | 0.44039 | 0.44263 | 0.44466 | |
30 | 0 | 0.11795 | 0.11162 | 0.10627 | 0.10206 | 0.09910 | 0.09749 |
1 | 0.14296 | 0.14931 | 0.15529 | 0.16078 | 0.16565 | 0.16985 | |
2 | 0.19419 | 0.19666 | 0.19921 | 0.20178 | 0.20430 | 0.20665 | |
3 | 0.24398 | 0.24626 | 0.24858 | 0.25092 | 0.25326 | 0.25558 | |
4 | 0.27752 | 0.27907 | 0.28037 | 0.28128 | 0.28146 | 0.28007 | |
5 | 0.31861 | 0.32011 | 0.32169 | 0.32333 | 0.32501 | 0.32672 |
10 | 0 | 5.03257 | 5.02888 | 5.02520 | 5.02154 | 5.01789 | 5.01426 |
1 | 4.97677 | 4.97329 | 4.96984 | 4.96639 | 4.96296 | 4.95955 | |
2 | 4.92432 | 4.92106 | 4.91782 | 4.91458 | 4.91137 | 4.90816 | |
3 | 4.87515 | 4.87210 | 4.86906 | 1.61790 | 1.56341 | 1.52307 | |
4 | 1.28489 | 1.26907 | 1.25384 | 1.23917 | 1.22501 | 1.21132 | |
5 | 1.08890 | 1.07899 | 1.06933 | 1.05991 | 1.05071 | 1.04174 | |
20 | 0 | 0.33937 | 0.33170 | 0.32421 | 0.31691 | 0.30980 | 0.30288 |
1 | 0.24372 | 0.23964 | 0.23587 | 0.23240 | 0.22926 | 0.22645 | |
2 | 0.21824 | 0.21948 | 0.22104 | 0.22292 | 0.22509 | 0.22755 | |
3 | 0.26709 | 0.27173 | 0.27647 | 0.28128 | 0.28615 | 0.29106 | |
4 | 0.34161 | 0.34590 | 0.35005 | 0.35404 | 0.35786 | 0.36150 | |
5 | 0.38862 | 0.39027 | 0.39181 | 0.39326 | 0.39463 | 0.39595 | |
30 | 0 | 0.11795 | 0.11325 | 0.10906 | 0.10542 | 0.10240 | 0.10003 |
1 | 0.11585 | 0.12017 | 0.12471 | 0.12940 | 0.13416 | 0.13895 | |
2 | 0.17643 | 0.17822 | 0.17981 | 0.18126 | 0.18263 | 0.18397 | |
3 | 0.20128 | 0.20313 | 0.20493 | 0.20662 | 0.20813 | 0.20930 | |
4 | 0.24090 | 0.24240 | 0.24400 | 0.24565 | 0.24733 | 0.24902 | |
5 | 0.26644 | 0.26798 | 0.26949 | 0.27098 | 0.27242 | 0.27383 |
Load | |||||||
---|---|---|---|---|---|---|---|
0 | 4.94110 | 4.94279 | 4.94429 | 4.94561 | 4.94678 | 4.94779 | |
20 | 5.10778 | 5.10778 | 5.10766 | 5.10742 | 5.10708 | 5.10663 | |
40 | 5.30476 | 5.30335 | 5.30187 | 5.30031 | 5.29869 | 5.29699 | |
60 | 5.53539 | 5.53280 | 5.53016 | 5.52748 | 5.52474 | 5.52196 | |
80 | 5.80475 | 5.80113 | 5.79747 | 5.79377 | 5.79005 | 5.78630 | |
100 | 6.12064 | 6.11605 | 6.11143 | 6.10679 | 6.10213 | 6.09745 | |
Thermal | 0 | 4.90736 | 4.90946 | 4.91137 | 4.91309 | 4.91463 | 4.91600 |
( K | 20 | 5.06754 | 5.06789 | 5.06810 | 5.06820 | 5.06818 | 5.06804 |
) | 40 | 5.25741 | 5.25630 | 5.25510 | 5.25383 | 5.25247 | 5.25105 |
60 | 5.48006 | 5.47773 | 5.47533 | 5.47289 | 5.47039 | 5.46785 | |
80 | 5.74010 | 5.73670 | 5.73326 | 5.72979 | 5.72629 | 5.72275 | |
100 | 6.04458 | 6.04021 | 6.03580 | 6.03138 | 6.02693 | 6.02246 | |
Hygrothermal | 0 | 1.26959 | 1.15219 | 1.01976 | 0.86528 | 0.67357 | 0.39326 |
( K | 20 | 4.95464 | 4.95616 | 4.95750 | 4.95868 | 4.95970 | 4.96057 |
) | 40 | 5.12388 | 5.12374 | 5.12349 | 5.12313 | 5.12266 | 5.12210 |
60 | 5.32366 | 5.32214 | 5.32055 | 5.31889 | 5.31716 | 5.31536 | |
80 | 5.55748 | 5.55479 | 5.55206 | 5.54928 | 5.54645 | 5.54358 | |
100 | 5.83057 | 5.82685 | 5.82311 | 5.81933 | 5.81552 | 5.81169 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alali, M.; Abazid, M.A.; Sobhy, M. Frequency Analysis of Asymmetric Circular Organic Solar Cells Embedded in an Elastic Medium under Hygrothermal Conditions. Symmetry 2024, 16, 577. https://doi.org/10.3390/sym16050577
Alali M, Abazid MA, Sobhy M. Frequency Analysis of Asymmetric Circular Organic Solar Cells Embedded in an Elastic Medium under Hygrothermal Conditions. Symmetry. 2024; 16(5):577. https://doi.org/10.3390/sym16050577
Chicago/Turabian StyleAlali, Muneer, Mohammad A. Abazid, and Mohammed Sobhy. 2024. "Frequency Analysis of Asymmetric Circular Organic Solar Cells Embedded in an Elastic Medium under Hygrothermal Conditions" Symmetry 16, no. 5: 577. https://doi.org/10.3390/sym16050577
APA StyleAlali, M., Abazid, M. A., & Sobhy, M. (2024). Frequency Analysis of Asymmetric Circular Organic Solar Cells Embedded in an Elastic Medium under Hygrothermal Conditions. Symmetry, 16(5), 577. https://doi.org/10.3390/sym16050577