Sharp Bounds on Toeplitz Determinants for Starlike and Convex Functions Associated with Bilinear Transformations
Abstract
:1. Introduction, Definitions and Motivation
2. Main Results
3. Concluding Remarks and Observations
Funding
Data Availability Statement
Conflicts of Interest
References
- Duren, P.L. Univalent Functions; Grundlehren der mathematischen wissenchaffen, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Sakaguchi, K. On a certain univalent mapping. J. Math. Soc. Jpn. 1959, 11, 72–75. [Google Scholar] [CrossRef]
- Das, R.N.; Singh, P. On subclasses of schlicht mapping. Indian J. Pure Appl. Math. 1977, 8, 864–872. [Google Scholar]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Petersburg Beach, FL, USA, 4–7 June 1992; International Press: Cambridge, MA, USA, 1992; pp. 157–169. [Google Scholar]
- Ravichandran, V. Starlike and convex functions with respect to conjugate points. Acta Math. Acad. Paedagog. Nyí Regyháziensis New Ser. 2004, 20, 31–37. [Google Scholar]
- Khatter, K.; Ravichandran, V.; Kumar, S.S. Estimates for initial coefficients of certain starlike functions with respect to symmetric points. In Applied Analysis in Biological and Physical Sciences; Springer: Aligarh, India, 2016. [Google Scholar]
- Ganesh, K.; Bharavi, S.R.; Rajya, L.K. Third Hankel determinant for a class of functions with respect to symmetric points associated with exponential function. WSEAS Trans. Math. 2020, 19, 13. [Google Scholar] [CrossRef]
- Zaprawa, P. On coefficient problems for functions starlike with respect to symmetric points. Boletín Soc. Matemática Mex. 2022, 28, 17. [Google Scholar] [CrossRef]
- Milin, I.M. Univalent Functions and Orthonormal Systems; AMS Translations of Mathematical Monographs: Proovidence, RI, USA, 1977; Volume 49. [Google Scholar]
- Ye, K.; Lim, L.H. Every matrix is a product of Toeplitz matrices. Found. Comput. Math. 2016, 16, 577–598. [Google Scholar] [CrossRef]
- Grenander, U.; Szegö, G. Toeplitz Forms and Their Applications; University of California Press: Berkcley, CA, USA, 1958. [Google Scholar]
- Thomas, D.K.; Halim, S.A. Toeplitz matrices whose elements are the coefficients of starlike and close-to-convex functions. Bull. Malays. Math. Sci. Soc. 2017, 40, 1781–1790. [Google Scholar] [CrossRef]
- Ali, M.F.; Thomas, D.K.; Vasudevarao, A. Toeplitz determinants whose elements are the coefficients of analytic and univalent functions. Bull. Aust. Math. Soc. 2018, 97, 253–264. [Google Scholar] [CrossRef]
- Cudna, K.; Kwon, O.S.; Lecko, A.; Sim, Y.J.; Smiarowska, B. The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order α. Boletín Soc. Matemática Mex. 2020, 26, 361–375. [Google Scholar] [CrossRef]
- Obradović, M.; Tuneski, N. Hermitian Toeplitz determinants for the class of univalent functions. Armen. J. Math. 2021, 13, 1–10. [Google Scholar]
- Sun, Y.; Wang, Z.G. Sharp bounds on Hermitian Toeplitz determinants for Sakaguchi Classes. Bull. Malays. Math. Sci. Soc. 2023, 46, 59. [Google Scholar] [CrossRef]
- Mandal, S.; Roy, P.P.; Ahamed, M.B. Hankel and Toeplitz determinants of logarithmic coefficients of Inverse functions for certain classes of univalent functions. arXiv 2023, arXiv:2308.01548. [Google Scholar]
- Wanas, A.K.; Sakar, F.M.; Oros, G.I.; Cotîrlă, L.I. Toeplitz determinants for a certain family of analytic functions endowed with Borel distribution. Symmetry 2023, 15, 262. [Google Scholar] [CrossRef]
- Mandal, S.; Ahamed, M.B. Second Hankel determinant of logarithmic coefficients of inverse functions in certain classes of univalent functions. Lith. Math. J. 2024, 64, 67–79. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, V.; Das, L. Hermitian-Toeplitz determinants and some coefficient functionals for the starlike functions. Appl. Math. 2023, 68, 289–304. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Shaba, T.G.; Ibrahim, M.; Tchier, F.; Khan, B. Coefficient bounds and second Hankel determinant for a subclass of symmetric bi-starlike functions involving Euler polynomials. Bull. Sci. Math. 2024, 192, 103405. [Google Scholar] [CrossRef]
- Buyankara, M.; Çağlar, M. Hankel and Toeplitz determinants for a subclass of analytic functions. Mat. Stud. 2023, 60, 132–137. [Google Scholar] [CrossRef]
- Ali, R.M.; Kumar, S.; Ravichandran, V. The third Hermitian-Toeplitz and Hankel determinants for parabolic starlike functions. Bull. Korean Math. Soc. 2023, 60, 281–291. [Google Scholar]
- Sabir, P.O.; Agarwal, R.P.; Mohammedfaeq, S.J.; Mohammed, P.O.; Chorfi, N.; Abdeljawad, T. Hankel determinant for a general subclass of m-fold symmetric biunivalent functions defined by Ruscheweyh operators. J. Inequalities Appl. 2024, 2024, 14. [Google Scholar] [CrossRef]
- Dobosz, A. The third-order Hermitian Toeplitz determinant for alpha-convex functions. Symmetry 2021, 13, 1274. [Google Scholar] [CrossRef]
- Tang, H.; Gul, I.; Hussain, S.; Noor, S. Bounds for Toeplitz determinants and related inequalities for a new subclass of analytic functions. Mathematics 2023, 11, 3966. [Google Scholar] [CrossRef]
- Shakir, Q.A.; Atshan, W.G. On third Hankel determinant for certain subclass of bi-univalent functions. Symmetry 2024, 16, 239. [Google Scholar] [CrossRef]
- Efraimidis, I. A generalization of Livingston’s coefficient inequalities for functions with positive real part. J. Math. Anal. Appl. 2016, 435, 369–379. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabir, P.O. Sharp Bounds on Toeplitz Determinants for Starlike and Convex Functions Associated with Bilinear Transformations. Symmetry 2024, 16, 595. https://doi.org/10.3390/sym16050595
Sabir PO. Sharp Bounds on Toeplitz Determinants for Starlike and Convex Functions Associated with Bilinear Transformations. Symmetry. 2024; 16(5):595. https://doi.org/10.3390/sym16050595
Chicago/Turabian StyleSabir, Pishtiwan Othman. 2024. "Sharp Bounds on Toeplitz Determinants for Starlike and Convex Functions Associated with Bilinear Transformations" Symmetry 16, no. 5: 595. https://doi.org/10.3390/sym16050595
APA StyleSabir, P. O. (2024). Sharp Bounds on Toeplitz Determinants for Starlike and Convex Functions Associated with Bilinear Transformations. Symmetry, 16(5), 595. https://doi.org/10.3390/sym16050595