A Modified Spectral Conjugate Gradient Method for Absolute Value Equations Associated with Second-Order Cones
Abstract
:1. Introduction
- (i)
- A modified spectral conjugate gradient method is proposed for solving SOCAVEs (1).
- (ii)
- The properties of the objective function of SOCAVEs (1) under suitable conditions are established.
- (iii)
- In comparison to the spectral gradient algorithm, the proposed method is appropriate for resolving SOCAVEs (1) due to its low storage demands and exclusive reliance on the value of objective function.
- (iv)
- Numerical examples are given to demonstrate the effectiveness of the proposed method.
2. Preliminaries
3. The Algorithm
Algorithm 1 Modified Spectral Conjugate Gradient Method (MSCG). |
Step 0. Choose an initial guess , , , and set . Step 1. If , terminate. Else go to Step 2. Step 3. Set the test point where , for , satisfying
Step 4. Update next iterative point by the hyperplane projection method,
where Step 5. Set , go to Step 1. |
4. Convergence Analysis
- (i)
- For , is bounded;
- (ii)
- The sequence is summable, namely ;
- (iii)
- The sequence is monotonically decreasing and convergent.
- (a)
- The sequence is bounded;
- (b)
- The sequence is bounded;
- (c)
- The step size and the search direction satisfy
- (a)
- From the line search condition (25), we can easily deduce that the inequity (29) holds. Based on Lemmas 4 and 5, we obtain the following results:
- −
- The sequence is monotonically decreasing and convergent;
- −
- The sequence is summable, i.e.,
Based on the aforementioned results, we haveIn addition, based on the inequality (32), we have - (b)
- Therefore, the sequence is bounded.
- (c)
- Based on Proposition 2, we obtain thatBased on the Lipschitz continuity of F, it follows that
5. Numerical Experiments
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.S.; Tseng, P. An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math. Program. 2005, 104, 293–327. [Google Scholar] [CrossRef]
- Chen, J.S.; Pan, S.H. A survey on SOC complementarity functions and solution methods for SOCPs and SOCCPs. Pac. J. Optim. 2012, 8, 33–74. [Google Scholar]
- Fukushima, M.; Luo, Z.Q.; Tseng, P. Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 2002, 12, 436–460. [Google Scholar] [CrossRef]
- Hu, S.L.; Huang, Z.H.; Zhang, Q. A generalized newton method for absolute value equations associated with second order cones. J. Comput. Appl. Math. 2011, 235, 1490–1501. [Google Scholar] [CrossRef]
- Ke, Y.F.; Ma, C.F.; Zhang, H. The modulus-based matrix splitting iteration methods for second-order cone linear complementarity problems. Numer. Algorithm 2018, 79, 1283–1303. [Google Scholar] [CrossRef]
- Miao, X.H.; Yang, J.T.; Saheya, B.; Chen, J.S. A smoothing newton method for absolute value equation associated with second-order cone. Appl. Numer. Math. 2017, 120, 82–96. [Google Scholar] [CrossRef]
- Miao, X.H.; Yao, K.; Yang, C.Y.; Chen, J.S. Levenberg-Marquardt method for absolute value equation associated with second-order cone. Numer. Algebr. Control. Optim. 2022, 12, 47–61. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Saheya, B.; Chang, Y.L.; Chen, J.S. Unified smoothing functions for absolute value equation associated with second-order cone. Appl. Numer. Math. 2019, 135, 206–227. [Google Scholar] [CrossRef]
- Rohn, J. A theorem of the alternatives for the equation Ax+B|x| = b. Linear Multilinear Algebra 2004, 52, 421–426. [Google Scholar] [CrossRef]
- Mangasarian, O.L. A generalized newton method for absolute value equations. Optim. Lett. 2009, 3, 101–108. [Google Scholar] [CrossRef]
- Prokopyev, O.L. On equivalent reformulations for absolute value equations. Comput. Optim. Appl. 2009, 44, 363–372. [Google Scholar] [CrossRef]
- Hladík, M. Properties of the solution set of absolute value equations and the related matrix classes. SIAM J. Matrix Anal. Appl. 2023, 44, 175–195. [Google Scholar] [CrossRef]
- Mangasarian, O.L.; Meyer, R.R. Absolute value equations. Linear Algebra Its Appl. 2006, 419, 359–367. [Google Scholar] [CrossRef]
- Mezzadri, F. On the solution of general absolute value equations. Appl. Math. Lett. 2020, 107, 106462. [Google Scholar] [CrossRef]
- Wu, S.L.; Li, C.X. The unique solution of the absolute value equations. Appl. Math. Lett. 2018, 76, 195–200. [Google Scholar] [CrossRef]
- Zamani, M.; Hladík, M. Error bounds and a condition number for the absolute value equations. Math. Program. 2023, 198, 85–113. [Google Scholar] [CrossRef]
- Ke, Y.F.; Ma, C.F. SOR-like iteration method for solving absolute value equations. Appl. Math. Comput. 2017, 311, 195–202. [Google Scholar] [CrossRef]
- Guo, P.; Wu, S.L.; Li, C.X. On the SOR-like iteration method for solving absolute value equations. Appl. Math. Lett. 2019, 97, 107–113. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Yu, D.M.; Yuan, Y.F. On the alternative SOR-like iteration method for solving absolute value equations. Symmetry 2023, 15, 589. [Google Scholar] [CrossRef]
- Dong, X.; Shao, X.H.; Shen, H.L. A new SOR-like method for solving absolute value equations. Appl. Numer. Math. 2020, 156, 410–421. [Google Scholar] [CrossRef]
- Ke, Y.F. The new iteration algorithm for absolute value equation. Appl. Math. Lett. 2020, 99, 105990. [Google Scholar] [CrossRef]
- Yu, D.M.; Chen, C.R.; Han, D.R. A modified fixed point iteration method for solving the system of absolute value equations. Optimization 2022, 71, 449–461. [Google Scholar] [CrossRef]
- Yu, Z.S.; Li, L.; Yuan, Y. A modified multivariate spectral gradient algorithm for solving absolute value equations. Appl. Math. Lett. 2021, 121, 107461. [Google Scholar] [CrossRef]
- Rahpeymaii, F.; Amini, K.; RostamyMalkhalifeh, M. A new three-term spectral subgradient method for solving absolute value equation. Int. J. Comput. Math. 2023, 100, 440–452. [Google Scholar] [CrossRef]
- Miao, X.H.; Hsu, W.M.; Nguyen, C.T.; Chen, J.S. The solvabilities of three optimization problems associated with second-order cone. J. Nonlinear Convex Anal. 2021, 22, 937–967. [Google Scholar]
- Miao, X.H.; Chen, J.S. On matrix characterizations for P-property of the linear transformation in second-order cone linear complementarity problems. Linear Algebra Its Appl. 2021, 613, 271–294. [Google Scholar] [CrossRef]
- Yu, D.M.; Wang, Z.W.; Chen, C.R.; Han, D.R. A non-monotone smoothing Newton algorithm for absolute value equations with second-order cone. Math. Numer. Sin. 2023, 45, 251. [Google Scholar]
- Huang, B.H.; Li, W. A modified SOR-like method for absolute value equations associated with second order cones. J. Comput. Appl. Math. 2022, 400, 113745. [Google Scholar] [CrossRef]
- Alizadeh, F.; Goldfarb, D. Second-order cone programming. Math. Program. 2003, 95, 3–51. [Google Scholar] [CrossRef]
- Faraut, J.; Korányi, A. Analysis on Symmetric Cones; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Huang, B.H.; Ma, C.F. Convergent conditions of the generalized newton method for absolute value equation over second order cones. Appl. Math. Lett. 2019, 92, 151–157. [Google Scholar] [CrossRef]
- Liu, J.K.; Feng, Y.M.; Zou, L.M. A spectral conjugate gradient method for solving large-scale unconstrained optimization. Comput. Math. Appl. 2019, 77, 731–739. [Google Scholar] [CrossRef]
- Solodov, M.V.; Svaiter, B.F. A globally convergent inexact newton method for systems of monotone equations. In Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods; Springer: Boston, MA, USA, 1999; pp. 355–369. [Google Scholar]
- Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces; Springer: New York, NY, USA, 2011. [Google Scholar]
- Bot, R.I.; Csetnek, E.R.; Nguyen, D.K. A proximal minimization algorithm for structured nonconvex and nonsmooth problems. SIAM J. Optim. 2019, 29, 1300–1328. [Google Scholar] [CrossRef]
- Dolan, E.D.; Moré, J.J. Benchmarking optimization software with performance profiles. Math. Program. 2002, 91, 201–213. [Google Scholar] [CrossRef]
- Chen, C.R.; Yang, Y.N.; Yu, D.M.; Han, D.R. An inverse-free dynamical system for solving the absolute value equations. Appl. Numer. Math. 2021, 168, 170–181. [Google Scholar] [CrossRef]
- Ju, X.X.; Yang, X.S.; Feng, G.; Che, H.J. Neurodynamic optimization approaches with finite/fixed-time convergence for absolute value equations. Neural Netw. 2023, 165, 971–981. [Google Scholar] [CrossRef]
- Yu, D.M.; Zhang, G.H.; Chen, C.R.; Han, D.R. The neural network models with delays for solving absolute value equations. Neurocomputing 2024, 589, 127707. [Google Scholar] [CrossRef]
Indicators | Meaning of Representation |
---|---|
Iter | the total number of iterations |
Time | the elapsed CPU time in seconds |
Res | the norm of absolute residual vectors |
Err | the norm of absolute error vectors |
n | 1000 | 2000 | 3000 | 4000 | 5000 | 6000 | |
---|---|---|---|---|---|---|---|
MSCG | Iter | 22 | 23 | 23 | 23 | 23 | 23 |
Time | 0.0054 | 0.0040 | 0.0023 | 0.0043 | 0.0052 | 0.0048 | |
Res | 7.3344 × | 4.2396 × | 5.1559 × | 5.9285 × | 6.6094 × | 7.2249 × | |
Err | 7.3134 × | 4.2539 × | 5.1713 × | 5.9446 × | 6.6258 × | 7.2416 × | |
MMSGA | Iter | 52 | 56 | 56 | 69 | 56 | 59 |
Time | 0.1355 | 0.5000 | 1.1071 | 2.3687 | 2.9812 | 4.4165 | |
Res | 9.6533 × | 5.7346 × | 5.9639 × | 9.4671 × | 8.0882 × | 6.9092 × | |
Err | 1.0413 × | 6.2386 × | 6.4498 × | 9.8842 × | 8.5702 × | 7.2622 × | |
MSOR | Iter | 8 | 8 | 8 | 9 | 9 | 9 |
Time | 0.6787 | 2.9710 | 8.1707 | 19.8087 | 39.6925 | 68.8103 | |
Res | 5.3711 × | 7.6161 × | 9.3390 × | 9.2454 × | 1.0296 × | 1.1246 × | |
Err | 6.8543 × | 9.7461 × | 1.1965 × | 1.0051 × | 1.1193 × | 1.2226 × | |
GN | Iter | 4 | 4 | 4 | 4 | 4 | 4 |
Time | 0.0876 | 0.3075 | 0.8729 | 1.7540 | 2.8281 | 4.9972 | |
Res | 9.5889 × | 2.5840 × | 4.8558 × | 7.4836 × | 1.0435 × | 1.3690 × | |
Err | 1.2270 × | 3.2606 × | 6.1695 × | 9.5089 × | 1.3127 × | 1.7491 × |
m | 20 | 30 | 40 | 50 | 60 | 70 | |
---|---|---|---|---|---|---|---|
MSCG | Iter | 26 | 27 | 27 | 27 | 27 | 28 |
Time | 0.0092 | 0.0071 | 0.0017 | 0.0027 | 0.0052 | 0.0057 | |
Res | 4.3855 × | 4.0944 × | 4.7299 × | 6.6179 × | 9.7673 × | 4.8759 × | |
Err | 3.7474 × | 3.4829 × | 4.0059 × | 5.6225 × | 8.3402 × | 4.1533 × | |
MMSGA | Iter | 97 | 125 | 129 | 133 | 148 | 177 |
Time | 0.0734 | 0.2875 | 0.8148 | 1.9196 | 4.2102 | 9.6016 | |
Res | 9.8940 × | 9.6225 × | 8.9834 × | 9.5188 × | 9.8214 × | 7.2742 × | |
Err | 1.8880 × | 1.8361 × | 1.5265 × | 1.7421 × | 1.8667 × | 1.3863 × | |
MSOR | Iter | 10 | 10 | 10 | 10 | 10 | 10 |
Time | 0.0815 | 0.0634 | 0.2328 | 1.9189 | 10.3479 | 33.3332 | |
Res | 1.0685 × | 2.7920 × | 4.4075 × | 5.9449 × | 7.4367 × | 8.9001 × | |
Err | 1.5480 × | 3.9014 × | 6.1004 × | 8.1958 × | 1.0231 × | 1.2228 × | |
GN | Iter | 4 | 4 | 4 | 4 | 4 | 4 |
Time | 0.0508 | 0.0631 | 0.1839 | 0.5338 | 1.5809 | 3.1439 | |
Res | 2.4441 × | 1.7123 × | 5.8799 × | 1.4538 × | 2.5154 × | 4.2559 × | |
Err | 3.0969 × | 2.1237 × | 7.4333 × | 1.8532 × | 3.2322 × | 5.4819 × |
m | 20 | 30 | 40 | 50 | 60 | 70 | |
---|---|---|---|---|---|---|---|
MSCG | Iter | 100 | 102 | 104 | 106 | 106 | 108 |
Time | 0.0547 | 0.0067 | 0.0058 | 0.0090 | 0.0145 | 0.0204 | |
Res | 7.7706 × | 8.7960 × | 8.3790 × | 7.3681 × | 8.7462 × | 7.1258 × | |
Err | 1.4827 × | 1.6905 × | 1.6158 × | 1.4236 × | 1.6921 × | 1.3799 × | |
MMSGA | Iter | 282 | 279 | 300 | 413 | 532 | 517 |
Time | 0.1903 | 0.6642 | 1.8153 | 5.9778 | 16.6377 | 30.1169 | |
Res | 7.5264 × | 7.6801 × | 9.3640 × | 9.6159 × | 9.5593 × | 9.7385 × | |
Err | 1.5684 × | 1.6204 × | 2.0482 × | 2.0997 × | 2.1293 × | 2.2972 × | |
MSOR | Iter | 9 | 10 | 10 | 10 | 10 | 10 |
Time | 0.3237 | 0.1138 | 0.3903 | 2.7686 | 12.8657 | 37.7472 | |
Res | 5.2065 × | 1.6860 × | 2.1851 × | 2.6716 × | 3.1549 × | 3.6379 × | |
Err | 9.9605 × | 2.9425 × | 4.0864 × | 5.2339 × | 6.3860 × | 7.5418 × | |
GN | Iter | 3 | 4 | 4 | 4 | 4 | 4 |
Time | 0.0739 | 0.0673 | 0.1877 | 0.6389 | 1.6707 | 3.1735 | |
Res | 8.5492 × | 1.5275 × | 4.9211 × | 1.1935 × | 2.3194 × | 3.7757 × | |
Err | 1.3707 × | 2.0417 × | 6.5438 × | 1.5791 × | 3.0854 × | 5.0251 × |
r | 2 | 5 | 10 | 20 | 50 | 100 | |
---|---|---|---|---|---|---|---|
MSCG | Iter | 23 | 23 | 23 | 23 | 23 | 23 |
Time | 0.0069 | 0.0045 | 0.0028 | 0.0044 | 0.0100 | 0.0159 | |
Res | 6.6105 × | 6.6187 × | 6.4937 × | 6.4864 × | 6.6740 × | 6.5931 × | |
Err | 6.2687 × | 6.2658 × | 6.1515 × | 6.1365 × | 6.2760 × | 6.1137 × | |
MMSGA | Iter | 67 | 63 | 77 | 78 | 67 | 66 |
Time | 0.1772 | 0.1563 | 0.1930 | 0.2027 | 0.1836 | 0.1914 | |
Res | 7.9526 × | 9.9459 × | 7.3965 × | 9.6005 × | 9.9015 × | 6.0634 × | |
Err | 8.3993 × | 1.0422 × | 8.0545 × | 1.0009 × | 1.0606 × | 7.0451 × | |
MSOR | Iter | 8 | 8 | 8 | 8 | 8 | 8 |
Time | 0.7350 | 0.5994 | 0.5857 | 0.4541 | 0.6731 | 0.6574 | |
Res | 5.4330 × | 5.4816 × | 5.5486 × | 5.6886 × | 6.1015 × | 6.6834 × | |
Err | 7.0453 × | 7.0641 × | 6.9921 × | 6.8771 × | 6.7298 × | 6.7406 × | |
GN | Iter | 4 | 4 | 4 | 4 | 4 | 4 |
Time | 0.0957 | 0.0646 | 0.0705 | 0.0914 | 0.1561 | 0.2753 | |
Res | 4.6026 × | 1.6831 × | 8.0434 × | 3.4623 × | 7.9322 × | 5.7396 × | |
Err | 5.8097 × | 2.1482 × | 1.0123 × | 4.3809 × | 9.9165 × | 7.3165 × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, L.; Liu, Z.; Zou, J.; Wang, Z. A Modified Spectral Conjugate Gradient Method for Absolute Value Equations Associated with Second-Order Cones. Symmetry 2024, 16, 654. https://doi.org/10.3390/sym16060654
Gao L, Liu Z, Zou J, Wang Z. A Modified Spectral Conjugate Gradient Method for Absolute Value Equations Associated with Second-Order Cones. Symmetry. 2024; 16(6):654. https://doi.org/10.3390/sym16060654
Chicago/Turabian StyleGao, Leifu, Zheng Liu, Jingfei Zou, and Zengwei Wang. 2024. "A Modified Spectral Conjugate Gradient Method for Absolute Value Equations Associated with Second-Order Cones" Symmetry 16, no. 6: 654. https://doi.org/10.3390/sym16060654
APA StyleGao, L., Liu, Z., Zou, J., & Wang, Z. (2024). A Modified Spectral Conjugate Gradient Method for Absolute Value Equations Associated with Second-Order Cones. Symmetry, 16(6), 654. https://doi.org/10.3390/sym16060654