Intelligent Detection of Tunnel Leakage Based on Improved Mask R-CNN
Abstract
:1. Introduction
2. Network Structure
2.1. Mask R-CNN
2.2. Cascade Mask R-CNN
2.3. MDConv (Modulated Deformable Convolution)
2.4. Backbone Network RegNetX
2.5. Improved Backbone Network RegNetX-MDConv
3. Dataset Preprocessing
3.1. Raw Data
3.2. Dataset Processing
4. Experiment Configuration
4.1. Configuration
4.2. Evaluation Indicators
4.3. Model Training
5. Segmentation Experiment
5.1. Replacing Backbone Networks
5.2. Experiments Related to the Model Cascade-MRegNetX
5.2.1. Transfer Learning
5.2.2. Ablation Experiments with the Model Cascade-MRegNetX
5.3. Analysis of Experimental Results
5.3.1. Segmentation Error Analysis
5.3.2. Segmentation Accuracy Analysis
- (1)
- The detection accuracy of tunnel water leakage in simple backgrounds has increased from 64.0% to 98.4%;
- (2)
- The detection accuracy of tunnel water leakage around railway tracks has increased from 82.1% to 99.9%;
- (3)
- The detection accuracy of tunnel water leakage at the edge of handholes has increased from 44.3% to 96.8%, and optimization has been made to address the issue of one target having multiple detection boxes in the original baseline model;
- (4)
- The detection accuracy of tunnel water leakage around handholes and pipes/electrical wires has increased from 38.4% to 99.5%.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, Y.; Jiang, X.; Liu, X. Predictive maintenance of shield tunnels. Tunn. Undergr. Space Technol. 2013, 38, 69–86. [Google Scholar] [CrossRef]
- Hua, S.; Huang, H.-W.; Zhang, D.-M.; Wang, R.-L. Case study on repair work for excessively deformed shield tunnel under accidental surface surcharge in soft clay. Chin. J. Geotech. Eng. 2016, 38, 1036–1043. [Google Scholar]
- Hu, X.; Bai, N.; Li, H. Analysis on tunnel accident on line 1 of Saint Petersburg Metro. Tunn. Constr 2008, 28, 418–422. [Google Scholar]
- Yan, Z.; Wu, Z.; Chaoying, Z.; Bingquan, H. Moniting and inversion of Foshan metro collapse with multi-temporal Insar and field investigation. J. Eng. Geol. 2021, 29, 1167–1177. [Google Scholar]
- Chen, Q.; Kang, Z.; Cao, Z.; Xie, X.; Guan, B.; Pan, Y.; Chang, J. Combining Cylindrical Voxel and Mask R-CNN for Automatic Detection of Water Leakages in Shield Tunnel Point Clouds. Remote Sens. 2024, 16, 896. [Google Scholar] [CrossRef]
- Ai, Q.; Yuan, Y.; Bi, X. Acquiring sectional profile of metro tunnels using charge-coupled device cameras. Struct. Infrastruct. Eng. 2016, 12, 1065–1075. [Google Scholar] [CrossRef]
- Tan, K.; Cheng, X.; Ju, Q.; Wu, S. Correction of mobile TLS intensity data for water leakage spots detection in metro tunnels. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1711–1715. [Google Scholar] [CrossRef]
- Kang, J.; Chen, N.; Li, M.; Mao, S.; Zhang, H.; Fan, Y.; Liu, H. A Point Cloud Segmentation Method for Dim and Cluttered Underground Tunnel Scenes Based on the Segment Anything Model. Remote Sens. 2023, 16, 97. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, X.; He, X.; Wei, X.; Yang, H. A Method for Convergent Deformation Analysis of a Shield Tunnel Incorporating B-Spline Fitting and ICP Alignment. Remote Sens. 2023, 15, 5112. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Su, C.; Hu, Q.; Yang, Z.; Huo, R. A Review of Deep Learning Applications in Tunneling and Underground Engineering in China. Appl. Sci. 2024, 14, 1720. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, S.; Hu, M.; Song, Q. Object Detection in Remote Sensing Images Based on Adaptive Multi-Scale Feature Fusion Method. Remote Sens. 2024, 16, 907. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Huang, H.-w.; Li, Q.-t.; Zhang, D.-m. Deep learning based image recognition for crack and leakage defects of metro shield tunnel. Tunn. Undergr. Space Technol. 2018, 77, 166–176. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Biswas, S.; Nayak, P.K.; Panigrahi, B.K.; Pradhan, G. An intelligent fault detection and classification technique based on variational mode decomposition-CNN for transmission lines installed with UPFC and wind farm. Electr. Power Syst. Res. 2023, 223, 109526. [Google Scholar] [CrossRef]
- Biswas, S.; Panigrahi, B.K.; Nayak, P.K.; Pradhan, G.; Padmanaban, S. A Single-Pole Filter Assisted Improved Protection Scheme for the TCSC Compensated Transmission Line Connecting Large-Scale Wind Farms. IEEE J. Emerg. Sel. Top. Ind. Electron. 2023, 5, 346–358. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, D.M.; Huang, H.W. Deep learning–based image instance segmentation for moisture marks of shield tunnel lining. Tunn. Undergr. Space Technol. 2020, 95, 103156. [Google Scholar] [CrossRef]
- Xue, Y.; Jia, F.; Cai, X.; Shadabfar, M.; Huang, H. An optimization strategy to improve the deep learning-based recognition model of leakage in shield tunnels. Comput.-Aided Civ. Infrastruct. Eng. 2022, 37, 386–402. [Google Scholar] [CrossRef]
- Cai, Z.; Vasconcelos, N. Cascade R-CNN: High quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 1483–1498. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 764–773. [Google Scholar]
- Zhu, X.; Hu, H.; Lin, S.; Dai, J. Deformable convnets v2: More deformable, better results. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 9308–9316. [Google Scholar]
- Koonce, B.; Koonce, B. ResNet 50. In Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization; Apress: New York, NY, USA, 2021; pp. 63–72. [Google Scholar]
- Radosavovic, I.; Kosaraju, R.P.; Girshick, R.; He, K.; Dollár, P. Designing network design spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10428–10436. [Google Scholar]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2921–2929. [Google Scholar]
- Xue, Y.; Cai, X.; Shadabfar, M.; Shao, H.; Zhang, S. Deep learning-based automatic recognition of water leakage area in shield tunnel lining. Tunn. Undergr. Space Technol. 2020, 104, 103524. [Google Scholar] [CrossRef]
- Zhou, D.; Fang, J.; Song, X.; Guan, C.; Yin, J.; Dai, Y.; Yang, R. Iou loss for 2d/3d object detection. In Proceedings of the 2019 International Conference on 3D Vision (3DV), Québec City, QC, Canada, 16–19 September 2019; pp. 85–94. [Google Scholar]
- Cao, Y.; Xu, J.; Lin, S.; Wei, F.; Hu, H. Gcnet: Non-local networks meet squeeze-excitation networks and beyond. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27–28 October 2019. [Google Scholar]
- Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep high-resolution representation learning for human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 5693–5703. [Google Scholar]
- Zhang, H.; Wu, C.; Zhang, Z.; Zhu, Y.; Lin, H.; Zhang, Z.; Sun, Y.; He, T.; Mueller, J.; Manmatha, R. Resnest: Split-attention networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 2736–2746. [Google Scholar]
Model | AP | AP0.5 | AP0.75 |
---|---|---|---|
Mask R-CNN | 0.300 | 0.564 | 0.287 |
Mask R-CNN+DA | 0.409 (+10.9%) | 0.689 (+12.5%) | 0.437 (+15%) |
Cascade Mask R-CNN | 0.395 | 0.635 | 0.394 |
Cascade Mask R-CNN+DA | 0.463 (+6.8%) | 0.753 (+11.8%) | 0.514 (+12%) |
Model | Backbone | AP | AP0.5 | AP0.75 |
---|---|---|---|---|
Mask R-CNN+DA | ResNet | 0.409 | 0.699 | 0.451 |
GCNet | 0.422 | 0.698 | 0.445 | |
HRNet | 0.436 | 0.712 | 0.466 | |
RegNetX | 0.437 | 0.722 | 0.479 | |
Cascade Mask R-CNN+DA | ResNet | 0.463 | 0.753 | 0.514 |
GCNet | 0.466 | 0.732 | 0.510 | |
HRNet | 0.469 | 0.734 | 0.515 | |
RegNetX | 0.473 | 0.749 | 0.530 |
Model | Frozen Stage | AP | AP0.5 | AP0.75 |
---|---|---|---|---|
Cascade-MRegNetX | 0 | 0.5000 | 0.7440 | 0.552 |
1 | 0.5400 | 0.7810 | 0.6180 | |
2 | 0.5030 | 0.7790 | 0.5820 | |
3 | 0.4060 | 0.6780 | 0.4250 | |
4 | 0.3730 | 0.6080 | 0.4190 |
Model | Backbone | AP | AP0.5 | AP0.75 |
---|---|---|---|---|
Cascade Mask R-CNN+DA | ResNet | 0.463 | 0.753 | 0.514 |
Cascade Mask R-CNN+DA+TL | GCNet | 0.521 | 0.762 | 0.510 |
HRNet | 0.516 | 0.775 | 0.583 | |
RegNetX | 0.522 | 0.765 | 0.591 | |
ResNeSt | 0.502 | 0.728 | 0.560 | |
MRegNetX | 0.540 | 0.781 | 0.618 |
Model | AP | AP0.5 | AP0.75 |
---|---|---|---|
Mask-MRegNetX | 0.496 | 0.762 | 0.549 |
Cascade-RegNetX | 0.522 | 0.765 | 0.591 |
Cascade-MRegNetX | 0.540 | 0.781 | 0.618 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Xu, X.; Yang, H. Intelligent Detection of Tunnel Leakage Based on Improved Mask R-CNN. Symmetry 2024, 16, 709. https://doi.org/10.3390/sym16060709
Wang W, Xu X, Yang H. Intelligent Detection of Tunnel Leakage Based on Improved Mask R-CNN. Symmetry. 2024; 16(6):709. https://doi.org/10.3390/sym16060709
Chicago/Turabian StyleWang, Wenkai, Xiangyang Xu, and Hao Yang. 2024. "Intelligent Detection of Tunnel Leakage Based on Improved Mask R-CNN" Symmetry 16, no. 6: 709. https://doi.org/10.3390/sym16060709
APA StyleWang, W., Xu, X., & Yang, H. (2024). Intelligent Detection of Tunnel Leakage Based on Improved Mask R-CNN. Symmetry, 16(6), 709. https://doi.org/10.3390/sym16060709