Next Article in Journal
Design and Analysis of a Symmetric Joint Module for a Modular Wire-Actuated Robotic Arm with Symmetric Variable-Stiffness Units
Previous Article in Journal
On Asymptotic Equipartition Property for Stationary Process of Moving Averages
Previous Article in Special Issue
On the Sums over Inverse Powers of Zeros of the Hurwitz Zeta Function and Some Related Properties of These Zeros
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Composition Operators on Weighted Zygmund Spaces of the First Loo-keng Hua Domain

School of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong 643000, China
Symmetry 2024, 16(7), 828; https://doi.org/10.3390/sym16070828
Submission received: 13 April 2024 / Revised: 6 June 2024 / Accepted: 21 June 2024 / Published: 1 July 2024

Abstract

:
Let HE I denote the first Loo-keng Hua domain. In this paper, we obtain many elementary results on HE I by the continuous and careful discussions. In some applications, we obtain some necessary conditions or sufficient conditions for the boundedness and compactness of the composition operators on weighted Zygmund space defined on HE I .

1. Introduction

In this paper, the first Loo-Keng Hua domain we need is defined by
HE I ( N 1 , , N r ; m , n ; p 1 , , p r ) = { ξ j C N j , Z I ( m , n ) : j = 1 r | ξ j | 2 p j < det ( I Z Z ¯ T ) } ,
where ξ j = ( ξ j 1 , , ξ j N j ) , j = 1 , , r , Z ¯ denotes the conjugate of the matrix Z, Z T denotes the transpose of Z, N 1 , , N r , m, n are positive integers, p 1 , , p r are positive real numbers, and
I ( m , n ) = Z C m × n : I Z Z ¯ T > 0
denotes the first Cartan domain. Without loss of generality, we assume that N j = 1 , that is, ξ j C , j = 1 , 2 , , r , ξ = ( ξ 1 , , ξ r ) and ξ 2 = j = 1 r | ξ j | 2 p j . If no ambiguity can arise, we denote HE I ( N 1 , , N r ; m , n ; p 1 , , p r ) by HE I .
It is well known that the Bergman kernel function plays an important role in several complex variables. But, for which domains can the Bergman kernel function be computed by explicit formulas? In general, this is a difficult problem. However, Yin and Roos constructed four kinds of domains called the Cartan-Hartogs domains with explicit Bergman kernel functions in 1998. Yin continuously generalized them from that time and constructed four kinds of domains called the Loo-keng Hua domains in 2000. The Loo-keng Hua domains unify the studies of the symmetric classical domains and Egg domains in the theory of several complex variables (see [1]). Besides some special cases (for example, the unit ball), generally speaking, the Loo-keng Hua domains are not transitive (see [2]).
Let α > 0 , B n = { z C n : | z | < 1 } be the open unit ball of C n and H ( B n ) the space of all holomorphic functions on B n . The weighted Zygmund space on B n , usually denoted by Z α ( B n ) , consists of all f H ( B n ) such that
Z f : = sup z B n ( 1 | z | 2 ) α j = 1 n k = 1 n | 2 f z j z k ( z ) | < .
The quantity Z f is a seminorm of Z α ( B n ) . Under the norm
f Z α ( B n ) = | f ( 0 ) | + k = 1 n | f z k ( 0 ) | + Z f ,
Z α ( B n ) is a Banach space. Actually, there are several equivalent norms on Z α ( B n ) (see [3]). We also usually use this space defined on the unit disk. For such space and some concrete operators, see, for example, [4,5,6,7,8] and the references therein.
Now, we try to extend this definition to the domain HE I . We say that f H ( HE I ) is in the weighted Zygmund space on HE I , denoted by Z α ( HE I ) , if
Z f : = sup ( Z , ξ ) HE I det ( I Z Z ¯ T ) ξ 2 α H f ( Z , ξ ) < ,
where
H f ( Z , ξ ) = i , k = 1 m j , l = 1 n | 2 f z i j z k l ( Z , ξ ) | + i = 1 m j = 1 n k = 1 r | 2 f z i j ξ k ( Z , ξ ) | + i = 1 m j = 1 n k = 1 r | 2 f ξ k z i j ( Z , ξ ) | + k , j = 1 r | 2 f ξ j ξ k ( Z , ξ ) | .
Z α ( H E I ) is a Banach space under the norm
f Z α ( HE I ) = | f ( 0 , 0 ) | + i = 1 m j = 1 n | f z i j ( 0 , 0 ) | + k = 1 r | f ξ k ( 0 , 0 ) | + Z f .
Let Ω be a domain of C n and H ( Ω ) the space of all holomorphic functions on Ω . For φ a holomorphic self-map of Ω , the composition operator C φ on the subspaces of H ( Ω ) is defined by
C φ f ( z ) = f ( φ ( z ) ) , z Ω .
Here, I will make a brief statement on why people are willing to study composition operators on holomorphic function spaces. The study of composition operators lies at the interface of holomorphic function theory and operator theory. Research on composition operators is part of what can be called “concrete” operator theory. The goal of the study of composition operators will be to answer the questions operator theory demands we ask, questions of boundedness, compactness, spectrum, and so on. The question of the boundedness of composition operators is a basic but subtle one. It has been proved that in the most important classical spaces, such as Hardy spaces, all holomorphic maps of the disk into itself give bounded composition operators, but in function spaces of several variables, the classical spaces have unbounded composition operators, and even the general principles are unclear. Much of the study of the compactness of composition operators has been driven by a desire to relate the compactness of C φ to geometric properties of φ . For example, the first and simplest result in this spirit is an observation: On the Hardy space H p ( D ) if φ ( D ) ¯ D then C φ is compact. All mentioned and unmentioned significance of the study can be found in [9] or in other literature.
Since there is great significance to this research, there have been many studies of composition operators and some extensions of such operators on or between holomorphic function spaces of common domains such as the unit disk, the unit ball, the unit polydisk or the (half) complex plane (see, for example, [9,10,11,12,13,14,15,16] and the references therein). In recent years, there has been a bit of interest in some more complex domains (see, for example, [17,18] for the classical bounded symmetric domain). More recently, Su and his team studied the composition operators from u-Bloch spaces to v-Bloch spaces on the first Cartan–Hartogs domains in [19] and on the first Loo-keng Hua domains in [20], respectively. In these works, they used a lot of methods and techniques in matrix and constructed the complicated functions to characterize the boundedness and compactness of the operator C φ in terms of geometric properties of φ . These works also contribute to the understanding of HE I and its applications in operator theory.
Motivated by the works of [19,20], we consider the composition operators on the weighted Zygmund spaces on the first Loo-keng Hua domain, and some necessary conditions or sufficient conditions for the boundedness and compactness are obtained. One will see that it is more difficult than the cases of the weighted Bloch spaces. We hope that our studies can bring more attention to composition operators on holomorphic function spaces of such domains.
We denote ( Z , ξ ) = ( z 11 , z 12 , , z m n , ξ 1 , , ξ r ) . For φ = ( φ 11 , φ 12 , , φ m n , φ 1 , , φ r ) the holomorphic self-map of HE I , we denote
| φ ( Z , ξ ) | 2 = u , i = 1 m v , j = 1 n | φ u v z i j ( Z , ξ ) | 2 + k = 1 r u = 1 m v = 1 n | φ u v ξ k ( Z , ξ ) | 2 + k = 1 r i = 1 m j = 1 n | φ k z i j ( Z , ξ ) | 2 + j , k = 1 r | φ j ξ k ( Z , ξ ) | 2
and
| φ ( Z , ξ ) | 2 = k , u , i = 1 m l , v , j = 1 n | 2 φ k l z u v z i j ( Z , ξ ) | 2 + k = 1 r u , i = 1 m v , j = 1 n | 2 φ k z u v z i j ( Z , ξ ) | 2 + k = 1 r u , i = 1 m v , j = 1 n | 2 φ u v ξ k z i j ( Z , ξ ) | 2 + l , k = 1 r i = 1 m j = 1 n | 2 φ l ξ k z i j ( Z , ξ ) | 2 + u = 1 r k , i = 1 m l , j = 1 n | 2 φ k l z i j ξ u ( Z , ξ ) | 2 + k = 1 r j = 1 r u = 1 m v = 1 n | 2 φ j z u v ξ k ( Z , ξ ) | 2 + i , k = 1 r u = 1 m v = 1 n | 2 φ u v ξ i ξ k ( Z , ξ ) | 2 + i , j , k = 1 r | 2 φ j ξ i ξ k ( Z , ξ ) | 2 .
In this paper, constants are denoted by C; they are positive and may differ from one occurrence to the next.

2. Some Elementary Lemmas

From some direct calculations, we obtain Lemma 1, which gives the expressions of partial derivatives of composition functions.
Lemma 1.
Let φ be a holomorphic self-map of H E I . Then for f H ( H E I ) it follows that
2 ( f φ ) z i j z k l ( Z , ξ ) = u , p = 1 m v , q = 1 n 2 f V u v V p q ( φ ( Z , ξ ) ) φ u v z i j ( Z , ξ ) φ p q z k l ( Z , ξ ) + u = 1 m v = 1 n j = 1 r 2 f V u v V j ( φ ( Z , ξ ) ) φ u v z i j ( Z , ξ ) φ j z k l ( Z , ξ ) + u = 1 m v = 1 n f V u v ( φ ( Z , ξ ) ) 2 φ u v z i j z k l ( Z , ξ ) + j = 1 r u = 1 m v = 1 n 2 f V j V u v ( φ ( Z , ξ ) ) φ j z i j ( Z , ξ ) φ u v z k l ( Z , ξ ) + p = 1 r k = 1 r 2 f V p V k ( φ ( Z , ξ ) ) φ p z i j ( Z , ξ ) φ k z k l ( Z , ξ ) + p = 1 r f V p ( φ ( Z , ξ ) ) 2 φ p z i j z k l ( Z , ξ ) ,
2 ( f φ ) z i j ξ k ( Z , ξ ) = u , p = 1 m v , q = 1 n 2 f V u v V p q ( φ ( Z , ξ ) ) φ u v z i j ( Z , ξ ) φ p q ξ k ( Z , ξ ) + u = 1 m v = 1 n p = 1 r 2 f V u v V p ( φ ( Z , ξ ) ) φ u v z i j ( Z , ξ ) φ p ξ k ( Z , ξ ) + u = 1 m v = 1 n f V u v ( φ ( Z , ξ ) ) 2 φ u v z i j ξ k ( Z , ξ ) + p = 1 r u = 1 m v = 1 n 2 f V p V u v ( φ ( Z , ξ ) ) φ p z i j ( Z , ξ ) φ u v ξ k ( Z , ξ ) + p = 1 r u = 1 r 2 f V p V u ( φ ( Z , ξ ) ) φ p z i j ( Z , ξ ) φ u ξ k ( Z , ξ ) + p = 1 r f V p ( φ ( Z , ξ ) ) 2 φ p z i j ξ k ( Z , ξ ) ,
2 ( f φ ) ξ k z i j ( Z , ξ ) = u , p = 1 m v , q = 1 n 2 f V u v V p q ( φ ( Z , ξ ) ) φ u v ξ k ( Z , ξ ) φ p q z i j ( Z , ξ ) + u = 1 m v = 1 n p = 1 r 2 f V u v V p ( φ ( Z , ξ ) ) φ u v ξ k ( Z , ξ ) φ p z i j ( Z , ξ ) + u = 1 m v = 1 n f V u v ( φ ( Z , ξ ) ) 2 φ u v ξ k z i j ( Z , ξ ) + p = 1 r u = 1 m v = 1 n 2 f V p V u v ( φ ( Z , ξ ) ) φ p ξ k ( Z , ξ ) φ u v z i j ( Z , ξ ) + p = 1 r u = 1 r 2 f V p V u ( φ ( Z , ξ ) ) φ p ξ k ( Z , ξ ) φ u z i j ( Z , ξ ) + p = 1 r f V p ( φ ( Z , ξ ) ) 2 φ p ξ k z i j ( Z , ξ )
and
2 ( f φ ) ξ j ξ k ( Z , ξ ) = u , p = 1 m v , q = 1 n 2 f V u v V p q ( φ ( Z , ξ ) ) φ u v ξ j ( Z , ξ ) φ p q ξ k ( Z , ξ ) + u = 1 m v = 1 n p = 1 r 2 f V u v V p ( φ ( Z , ξ ) ) φ u v ξ j ( Z , ξ ) φ p ξ k ( Z , ξ ) + u = 1 m v = 1 n f V u v ( φ ( Z , ξ ) ) 2 φ u v ξ j ξ k ( Z , ξ ) + p = 1 r u = 1 m v = 1 n 2 f V p V u v ( φ ( Z , ξ ) ) φ p ξ j ( Z , ξ ) φ u v ξ k ( Z , ξ ) + p = 1 r i = 1 r 2 f V p V i ( φ ( Z , ξ ) ) φ p ξ j ( Z , ξ ) φ i ξ k ( Z , ξ ) + p = 1 r f V p ( φ ( Z , ξ ) ) 2 φ p ξ j ξ k ( Z , ξ ) .
From Lemma 1, we obtain the evaluation of H f φ ( Z , ξ ) as follows.
Lemma 2.
For each f H ( H E I ) and ( Z , ξ ) H E I , it follows that
H f φ ( Z , ξ ) 8 6 C H f ( φ ( Z , ξ ) ) | φ ( Z , ξ ) | 2 + | f ( φ ( Z , ξ ) ) | | φ ( Z , ξ ) | ,
where C = max { m 2 n 2 , m n r , r 2 } and
f ( Z , ξ ) = f ( Z , ξ ) z 11 , , f ( Z , ξ ) z m n , f ( Z , ξ ) ξ 1 , , f ( Z , ξ ) ξ r .
Proof. 
By Lemma 1 and the elementary inequality
| j = 1 n a j | 2 n j = 1 n | a j | 2 ,
we have
H f φ 2 ( Z , ξ ) = ( i , k = 1 m j , l = 1 n | 2 ( f φ ) z i j z k l ( Z , ξ ) | + i = 1 m j = 1 n k = 1 r | 2 ( f φ ) z i j ξ k ( Z , ξ ) | + i = 1 m j = 1 n k = 1 r | 2 ( f φ ) ξ k z i j ( Z , ξ ) | + k = 1 r j = 1 r | 2 ( f φ ) ξ j ξ k ( Z , ξ ) | ) 2 4 [ i , k = 1 m j , l = 1 n | 2 ( f φ ) z i j z k l ( Z , ξ ) | 2 + i = 1 m j = 1 n k = 1 r | 2 ( f φ ) z i j ξ k ( Z , ξ ) | 2 + i = 1 m j = 1 n k = 1 r | 2 ( f φ ) ξ k z i j ( Z , ξ ) | 2 + k = 1 r j = 1 r | 2 ( f φ ) ξ j ξ k ( Z , ξ ) | 2 ] 4 m 2 n 2 i , k = 1 m j , l = 1 n | 2 ( f φ ) z i j z k l ( Z , ξ ) | 2 + 4 m n r i = 1 m j = 1 n k = 1 r | 2 ( f φ ) z i j ξ k ( Z , ξ ) | 2 + 4 m n r i = 1 m j = 1 n k = 1 r | 2 ( f φ ) ξ k z i j ( Z , ξ ) | 2 + 4 r 2 k = 1 r j = 1 r | 2 ( f φ ) ξ j ξ k ( Z , ξ ) | 2 24 m 2 n 2 i , k , u , p = 1 m j , l , v , q = 1 n | 2 f V u v V p q ( φ ( Z , ξ ) ) φ p q z k l ( Z , ξ ) φ u v z i j ( Z , ξ ) | 2 + 24 m 2 n 2 i , k , u = 1 m j , l , v = 1 n p = 1 r | 2 f V u v V p ( φ ( Z , ξ ) ) φ j z k l ( Z , ξ ) φ u v z i j ( Z , ξ ) | 2 + 24 m 2 n 2 i , k , u = 1 m j , l , v = 1 n | f V u v ( φ ( Z , ξ ) ) 2 φ u v z i j z k l ( Z , ξ ) | 2 + 24 m 2 n 2 i , k , u = 1 m j , l , v = 1 n p = 1 r | 2 f V p V u v ( φ ( Z , ξ ) ) φ u v z k l ( Z , ξ ) φ j z i j ( Z , ξ ) | 2 + 24 m 2 n 2 i , k = 1 m j , l = 1 n u , v = 1 r | 2 f V u V v ( φ ( Z , ξ ) ) φ k z k l ( Z , ξ ) φ j z i j ( Z , ξ ) | 2 + 24 m 2 n 2 i , k = 1 m j , l = 1 n p = 1 r | f V p ( φ ( Z , ξ ) ) 2 φ p z i j z k l ( Z , ξ ) | 2 + 24 m n r k = 1 r i , u , p = 1 m j , v , q = 1 n | 2 f V u v V p q ( φ ( Z , ξ ) ) φ p q ξ k ( Z , ξ ) φ u v z i j ( Z , ξ ) | 2 + 24 m n r i , u = 1 m j , v = 1 n k , p = 1 r | 2 f V u v V p ( φ ( Z , ξ ) ) φ p ξ k ( Z , ξ ) φ u v z i j ( Z , ξ ) | 2 + 24 m n r i , u = 1 m j , v = 1 n k = 1 r | f V u v ( φ ( Z , ξ ) ) 2 φ u v z i j ξ k ( Z , ξ ) | 2 + 24 m n r i , u = 1 m j , v = 1 n k , p = 1 r | 2 f V p V u v ( φ ( Z , ξ ) ) φ u v ξ k ( Z , ξ ) φ p z i j ( Z , ξ ) | 2 + 24 m n r i = 1 m j = 1 n k , u , v = 1 r | 2 f V u V v ( φ ( Z , ξ ) ) φ v ξ k ( Z , ξ ) φ u z i j ( Z , ξ ) | 2 + 24 m n r i = 1 m j = 1 n k , p = 1 r | f V p ( φ ( Z , ξ ) ) 2 φ p z i j ξ k ( Z , ξ ) | 2 + 24 m n r i , u , p = 1 m j , v , q = 1 n k = 1 r | 2 f V u v V p q ( φ ( Z , ξ ) ) φ p q z i j ( Z , ξ ) φ u v ξ k ( Z , ξ ) | 2 + 24 m n r i , u = 1 m j , v = 1 n k , p = 1 r | 2 f V u v V p ( φ ( Z , ξ ) ) φ p z i j ( Z , ξ ) φ u v ξ k ( Z , ξ ) | 2 + 24 m n r i , u = 1 m j , v = 1 n k = 1 r | f V u v ( φ ( Z , ξ ) ) 2 φ u v ξ k z i j ( Z , ξ ) | 2 + 24 m n r i , u = 1 m j , v = 1 n k , p = 1 r | 2 f V p V u v ( φ ( Z , ξ ) ) φ u v z i j ( Z , ξ ) φ p ξ k ( Z , ξ ) | 2 + 24 m n r i = 1 m j = 1 n k , p , u = 1 r | 2 f V p V u ( φ ( Z , ξ ) ) φ u z i j ( Z , ξ ) φ p ξ k ( Z , ξ ) | 2 + 24 m n r i = 1 m j = 1 n k , p = 1 r | f V p ( φ ( Z , ξ ) ) 2 φ p ξ k z i j ( Z , ξ ) | 2 + 24 r 2 j , k = 1 r u , p = 1 m v , q = 1 m | 2 f V u v V p q ( φ ( Z , ξ ) ) φ p q ξ k ( Z , ξ ) φ u v ξ j ( Z , ξ ) | 2 + 24 r 2 j , k , p = 1 r u = 1 m v = 1 n | 2 f V u v V p ( φ ( Z , ξ ) ) φ p ξ k ( Z , ξ ) φ u v ξ j ( Z , ξ ) | 2 + 24 r 2 j , k = 1 r u = 1 m v = 1 n | f V u v ( φ ( Z , ξ ) ) 2 φ u v ξ j ξ k ( Z , ξ ) | 2 + 24 r 2 j , k , p = 1 r u = 1 m v = 1 n | 2 f V p V u v ( φ ( Z , ξ ) ) φ u v ξ k ( Z , ξ ) φ p ξ j ( Z , ξ ) | 2 + 24 r 2 i , j , k , p = 1 r | 2 f V p V i ( φ ( Z , ξ ) ) φ i ξ k ( Z , ξ ) φ p ξ j ( Z , ξ ) | 2
+ 24 r 2 j , k , p = 1 r | f V p ( φ ( Z , ξ ) ) 2 φ p ξ j ξ k ( Z , ξ ) | 2
16 C H f 2 ( φ ( Z , ξ ) ) | φ ( Z , ξ ) | 4 + | f ( φ ( Z , ξ ) ) | 2 | φ ( Z , ξ ) | 2
16 C H f ( φ ( Z , ξ ) ) | φ ( Z , ξ ) | 2 + | f ( φ ( Z , ξ ) ) | | φ ( Z , ξ ) | 2 ,
where C = max { 24 m 2 n 2 , 24 m n r , 24 r 2 } . Now, we explain how we obtain the inequality (2). We see that in (1), there are sixteen terms with the second partial derivatives of f and each term is less than C H f 2 ( φ ( Z , ξ ) ) | φ ( Z , ξ ) | 4 , and there are eight terms with the first partial derivatives of f and each term is less than C | f ( φ ( Z , ξ ) ) | 2 | φ ( Z , ξ ) | 2 . From this, it follows that (2) holds. The proof is completed. □
Next, we obtain the point evaluation estimate for the functions in Z α ( HE I ) .
Lemma 3.
There exists a positive constant C independent of f Z α ( H E I ) and ( Z , ξ ) H E I such that
| f ( Z , ξ ) | C f Z α ( H E I ) d e t ( I Z Z ¯ T ) ξ 2 α .
Proof. 
For each t [ 0 , 1 ] , we have
t ξ 2 = j = 1 r | t ξ j | 2 p j j = 1 r | ξ j | 2 p j = ξ 2 < det ( I Z Z ¯ T ) det ( I t 2 Z Z ¯ T ) .
By (3), we obtain
0 < det ( I Z Z ¯ T ) ξ 2 det ( I t 2 Z Z ¯ T ) t ξ 2 .
Since Z I ( m , n ) , it follows that 0 < det ( I Z Z ¯ T ) < 1 . From this, it is obvious that
0 < det ( I Z Z ¯ T ) ξ 2 < 1 .
Then for each f Z α ( HE I ) and ( Z , ξ ) HE I , it follows from (4) and (5) that
| f z i j ( Z , ξ ) | = | 0 1 d d t f z i j ( t Z , t ξ ) d t + f z i j ( 0 , 0 ) | = | 0 1 u = 1 m v = 1 n z u v 2 f z i j z u v ( t Z , t ξ ) + k = 1 r ξ k 2 f z i j ξ k ( t Z , t ξ ) d t + f z i j ( 0 , 0 ) | 0 1 u = 1 m v = 1 n | 2 f z i j z u v ( t Z , t ξ ) | + k = 1 r | 2 f z i j ξ k ( t Z , t ξ ) | d t + | f z i j ( 0 , 0 ) | f Z α ( H E I ) 0 1 d t d e t ( I t 2 Z Z ¯ T ) t ξ 2 α + f Z α ( H E I ) ( 1 d e t ( I Z Z ¯ T ) ξ 2 α + 1 ) f Z α ( H E I ) 2 f Z α ( H E I ) d e t ( I Z Z ¯ T ) ξ 2 α ,
where we have used the facts of | z u v | < 1 and | ξ k | < 1 for u = 1 , , m , v = 1 , , n and k = 1 , , r , which can be found in later discussions. We also can similarly obtain
| f ξ k ( Z , ξ ) | 2 f Z α ( HE I ) det ( I Z Z ¯ T ) ξ 2 α .
By (6) and (7), for ( Z , ξ ) HE I we have
| f ( Z , ξ ) | i = 1 m j = 1 n | f z i j ( Z , ξ ) | + k = 1 | f ξ k ( Z , ξ ) | C f Z α ( HE I ) det ( I Z Z ¯ T ) ξ 2 α ,
where C = 2 ( m n + r ) . The proof is completed. □
By using Lemma 3, we obtain the following result.
Lemma 4.
There exists a positive constant C independent of f Z α ( H E I ) and ( Z , ξ ) HE I such that
| f ( Z , ξ ) | C f Z α ( H E I ) d e t ( I Z Z ¯ T ) ξ 2 α .
Proof. 
From the proof of Lemma 3, it is easy to see that | ( Z , ξ ) | m n + r . Then, for each f Z α ( HE I ) and ( Z , ξ ) H E I , we have
| f ( Z , ξ ) | = | f ( 0 , 0 ) + 0 1 f ( t Z , t ξ ) , ( Z , ξ ) ¯ d t | | f ( 0 , 0 ) | + 0 1 | f ( t Z , t ξ ) | | ( Z , ξ ) ¯ | d t f Z α ( HE I ) + C 0 1 | ( Z , ξ ) | d e t ( I t 2 Z Z ¯ T ) t ξ 2 α d t f Z α ( HE I ) ( 1 + C m n + r det ( I Z Z ¯ T ) ξ 2 α ) f Z α ( HE I ) 1 + C m n + r det ( I Z Z ¯ T ) ξ 2 α f Z α ( HE I ) .
The proof is completed. □
In order to characterize the compactness, we need the following result, which is similar to Proposition 3.11 in [9]. Therefore, the proof is omitted.
Lemma 5.
Let φ be the holomorphic self-map of H E I . Then the bounded operator C φ on Z α ( H E I ) is compact if and only if for every bounded sequence { f k } in Z α ( H E I ) such that f k 0 uniformly on every compact subset of H E I as k , it follows that
lim k C φ f k Z α ( HE I ) = 0 .
Since the proofs are essential, the same as that of Lemmas 2.4 and 2.5 in [19], we omit the proofs of the next two results.
Lemma 6.
Let ( V , ζ ) = φ ( Z , ξ ) for ( Z , ξ ) H E I . If
d e t ( I Z Z ¯ T ) ξ 2 α d e t ( I V V ¯ T ) ζ 2 α | φ ( Z , ξ ) | 2 = O ( 1 )
as ( V , ζ ) H E I , then
sup ( Z , ξ ) H E I d e t ( I Z Z ¯ T ) ξ 2 α d e t ( I V V ¯ T ) ζ 2 α | φ ( Z , ξ ) | 2 < .
Lemma 7.
Let ( V , ζ ) = φ ( Z , ξ ) for ( Z , ξ ) H E I . If
d e t ( I Z Z ¯ T ) ξ 2 α d e t ( I V V ¯ T ) ζ 2 α | φ ( Z , ξ ) | = O ( 1 )
as ( V , ζ ) H E I , then
sup ( Z , ξ ) H E I d e t ( I Z Z ¯ T ) ξ 2 α d e t ( I V V ¯ T ) ζ 2 α | φ ( Z , ξ ) | 2 < .
Let S be an fixed element in I ( m , n ) . Write
S ¯ T = s 11 s 12 s 1 m s 21 s 22 s 2 m s n 1 s n 2 s n m .
On I ( m , n ) we define the function
A S ( Z ) = det ( I Z S ¯ T ) .
The following two results were obtained in [21].
Lemma 8.
If
Z = z 11 z 12 z 1 n z 21 z 22 z 2 n z m 1 z m 2 z m n I ( m , n ) ,
then
A S ( Z ) = 1 k = 1 n s k 1 z 1 k k = 1 n s k 2 z 1 k k = 1 n s k j z 1 k k = 1 n s k m z 1 k k = 1 n s k 1 z i k 1 k = 1 n s k 2 z i k k = 1 n s k j z i k k = 1 n s k m z i k k = 1 n s k 1 z m k k = 1 n s k 2 z m k k = 1 n s k j z m k 1 k = 1 n s k m z m k .
For the sake of convenience, we define
A S , i j ( Z ) = A S ( Z ) z i j and A S , i j , p q ( Z ) = 2 A S ( Z ) z i j z p q .
Lemma 9.
For each Z I ( m , n ) , it holds
A S , i j ( Z ) = 1 k = 1 n s k 1 z 1 k k = 1 n s k 2 z 1 k k = 1 n s k j z 1 k k = 1 n s k m z 1 k s j 1 s j 2 s j j s j m k = 1 n s k 1 z m k k = 1 n s k 2 z m k k = 1 n s k j z m k 1 k = 1 n s k m z m k
and
A S , i j , p q ( Z ) = 1 k = 1 n s k 1 z 1 k k = 1 n s k 2 z 1 k k = 1 n s k j z 1 k k = 1 n s k m z 1 k s q 1 s q 2 s q q s q m s j 1 s j 2 s j j s j m k = 1 n s k 1 z m k k = 1 n s k 2 z m k k = 1 n s k j z m k 1 k = 1 n s k m z m k .
The following result was obtained in [19].
Lemma 10.
There exists a positive constant C independent of Z, S I ( m , n ) such that
i = 1 m j = 1 n | A S , i j ( Z ) | 2 C .
We also need the following two results (see [21]).
Lemma 11.
There exists a positive constant C independent of Z, S I ( m , n ) such that
i , p = 1 m j , q = 1 n | A S , i j , p q ( Z ) | 2 C .
Lemma 12.
There exists a positive constant C independent of Z, S I ( m , n ) such that
| A S ( Z ) | C .
The following result was obtained in [20,22].
Lemma 13.
If ( Z , ξ ) , ( S , t ) H E I , then
A Z ( Z ) ξ 2 A S ( S ) t 2 | A S ( Z ) | ξ t 2 .
Let α 1 and ( S , t ) HE I . On HE I define the function
f ( S , t ) ( Z , ξ ) = 1 2 2 α A S ( S ) t 2 α [ A S ( Z ) j = 1 r ξ j p j t j ¯ p j ] 2 α 2 .
By using above lemmas, we will see that f ( S , t ) Z α ( HE I ) .
Lemma 14.
Let α 1 and p j 2 for j = 1 , 2 , , r . Then f ( S , t ) Z α ( H E I ) , and there exists a positive constant C such that
sup ( S , t ) H E I f ( S , t ) Z α ( H E I ) C .
Proof. 
We write c α = 1 2 α . By a direct calculation, we have
f ( S , t ) z i j ( Z , ξ ) = A S ( S ) t 2 α [ A S ( Z ) j = 1 r ξ j p j t j ¯ p j ] 2 α 1 A S , i j ( Z )
and
f ( S , t ) ξ k ( Z , ξ ) = A S ( S ) t 2 α p k t k ¯ p k ξ k p k 1 [ A S ( Z ) j = 1 r ξ j p j t j ¯ p j ] 2 α 1 .
By (9) and (10), we see that
2 f ( S , t ) z i j z k l ( Z , ξ ) = c α A S ( S ) t 2 α [ A S ( Z ) j = 1 r ξ j p j t j ¯ p j ] 2 α A S , i j ( Z ) A S , k l ( Z ) + A S ( S ) t 2 α [ A S ( Z ) j = 1 r ξ j p j t j ¯ p j ] 2 α 1 A S , i j , k l ( Z ) ,
2 f ( S , t ) ξ k z i j ( Z , ξ ) = c α A S ( S ) t 2 α [ A S ( Z ) j = 1 r ξ j p j t j ¯ p j ] 2 α p k t k ¯ p k ξ k p k 1 A S , i j ( Z )
and j k
2 f ( S , t ) ξ j ξ k ( Z , ξ ) = c α A S ( S ) t 2 α [ A S ( Z ) j = 1 r ξ j p j t j ¯ p j ] 2 α p k p j t k ¯ p k ξ k p k 1 t j ¯ p j ξ j p j 1 .
By (10) and a direct calculation, we also have
2 f ( S , t ) ξ k 2 ( Z , ξ ) = c α A S ( S ) t 2 α [ A S ( Z ) j = 1 r ξ j p j t j ¯ p j ] 2 α p k 2 t k ¯ 2 p k ξ k 2 p k 2 + A S ( S ) t 2 α [ A S ( Z ) j = 1 r ξ j p j t j ¯ p j ] 2 α 1 p k ( p k 1 ) t k ¯ p k ξ k p k 2 .
Then by (11)–(14) we have
H f ( S , t ) ( Z , ξ ) = i , k = 1 m j , l = 1 n | 2 f ( S , t ) z i j z k l ( Z , ξ ) | + i = 1 m j = 1 n k = 1 r | 2 f ( S , t ) z i j ξ k ( Z , ξ ) | + i = 1 m j = 1 n k = 1 r | 2 f ( S , t ) ξ k z i j ( Z , ξ ) | + j k , j = 1 r | 2 f ( S , t ) ξ j ξ k ( Z , ξ ) | + k = 1 r | 2 f ( S , t ) ξ k 2 ( Z , ξ ) | A S ( S ) t 2 α | A S ( Z ) j = 1 r ξ j p j t j ¯ p j | 2 α ( c α i , k = 1 m j , l = 1 n | A S , i j ( Z ) | | A S , k l ( Z ) | + | A S ( Z ) j = 1 r ξ j p j t j ¯ p j | i , k = 1 m j , l = 1 n | A S , i j , k l ( Z ) | + 2 c α i = 1 m j = 1 n k = 1 r | p k t k ¯ p k ξ k p k 1 | | A S , i j ( Z ) | + c α j k , j = 1 r | p k p j t k ¯ p k ξ k p k 1 t j ¯ p j ξ j p j 1 | + | A S ( Z ) j = 1 r ξ j p j t j ¯ p j | k = 1 r | p k ( p k 1 ) t k ¯ p k ξ k p k 2 | ) A S ( S ) t 2 α | A S ( Z ) j = 1 r ξ j p j t j ¯ p j | 2 α F ( Z , S , ξ , t ) .
From Lemmas 10–12, it follows that there exists a positive constant C independent of ( Z , ξ ) , ( S , t ) HE I such that F ( Z , S , ξ , t ) C . Then from Lemma 13 and (15), we have
sup ( Z , ξ ) HE I A Z ( Z ) ξ 2 α H f ( S , t ) ( Z , ξ ) C .
On the other hand, it is clear that
| f ( S , t ) ( 0 , 0 ) | C
and
f ( S , t ) z i j ( 0 , 0 ) = f ( S , t ) ξ k ( 0 , 0 ) = 0 .
From (16)–(18), the desired result follows. The proof is completed. □
If α = 1 , then on HE I we consider the function
g ( S , t ) ( Z , ξ ) = A S ( S ) t 2 ln 1 A S ( Z ) j = 1 r ξ j p j t j ¯ p j .
For the function g ( S , t ) ( Z , ξ ) , we also have the following result, whose proof is similar to that of Lemma 14. So, the proof is omitted.
Lemma 15.
Let α = 1 and p j 2 for j = 1 , 2 , , r . Then g ( S , t ) Z α ( H E I ) and there exists a positive constant C such that
sup ( S , t ) H E I g ( S , t ) Z α ( H E I ) C .

3. Composition Operators on Z α ( HE I )

Now, we begin to study the boundedness and compactness of the composition operators on Z α ( HE I ) . We first have the following result for the boundedness.
Theorem 1.
Let φ be a holomorphic self-map of H E I , ( W , ζ ) = φ ( Z , ξ ) and p j 2 for j = 1 , 2 , , r . If
A Z ( Z ) ξ 2 α A W ( W ) ζ 2 α | φ ( Z , ξ ) | 2 = O ( 1 )
and
A Z ( Z ) ξ 2 α A W ( W ) ζ 2 α | φ ( Z , ξ ) | = O ( 1 )
as ( W , ζ ) HE I , then the operator C φ is bounded on Z α ( H E I ) .
Conversely, if the operator C φ is bounded on Z α ( H E I ) , then
M 1 : = sup ( Z , ξ ) H E I A Z ( Z ) ξ 2 α H f ( A , λ ) φ ( Z , ξ ) < ,
M 2 : = sup ( Z , ξ ) H E I A Z ( Z ) ξ 2 α A W ( W ) ζ 2 α H ( Z , ξ ) < ,
and
H ( Z , ξ ) = i , k = 1 m j , l = 1 n | u , p = 1 m v , q = 1 n [ A W , u v ( W ) A W , p q ( W ) + [ A W ( W ) j = 1 r ζ j p j λ j ¯ p j ] A W , u v , p q ( W ) ] φ p q z k l ( Z , ξ ) φ u v z i j ( Z , ξ ) + u = 1 m v = 1 n j = 1 r p j ζ j p j 1 λ j ¯ p j A W , u v ( W ) φ j z k l ( Z , ξ ) φ u v z i j ( Z , ξ ) + [ A W ( W ) j = 1 r ζ j p j λ j ¯ p j ] u = 1 m v = 1 n A W , u v ( W ) 2 φ u v z i j z k l ( Z , ξ ) + j = 1 r u = 1 m v = 1 n p j ζ j p j 1 λ j ¯ p j A W , u v ( W ) φ u v z k l ( Z , ξ ) φ j z i j ( Z , ξ ) + j = 1 r k = 1 r p j p k ζ j p j 1 ζ k p k 1 λ j ¯ p j λ k ¯ p k φ k z k l ( Z , ξ ) φ j z i j ( Z , ξ ) | + [ A W ( W ) j = 1 r ζ j p j λ j ¯ p j ] j = 1 r p j ζ j p j 1 λ j ¯ p j 2 φ j z i j z k l ( Z , ξ ) + 2 i = 1 m j = 1 n k = 1 r | u , p = 1 m v , q = 1 n [ A W , u v ( W ) A W , p q ( W ) + [ A W ( W ) j = 1 r ζ j p j λ j ¯ p j ] A W , u v , p q ( W ) ] φ p q ξ k ( Z , ξ ) φ u v z i j ( Z , ξ ) + u = 1 m v = 1 n j = 1 r p j ζ j p j 1 λ j ¯ p j A W , u v ( W ) φ j ξ k ( Z , ξ ) φ u v z i j ( Z , ξ ) + [ A W ( W ) j = 1 r ζ j p j λ j ¯ p j ] u = 1 m v = 1 n A W , u v ( W ) 2 φ u v z i j z k l ( Z , ξ ) + j = 1 r u = 1 m v = 1 n p j ζ j p j 1 λ j ¯ p j A W , u v ( W ) φ u v ξ k ( Z , ξ ) φ j z i j ( Z , ξ ) + j = 1 r i = 1 r p j p i ζ j p j 1 ζ i p i 1 λ j ¯ p j λ i ¯ p i φ i ξ k ( Z , ξ ) φ j z i j ( Z , ξ ) + [ A W ( W ) j = 1 r ζ j p j λ j ¯ p j ] j = 1 r p j ζ j p j 1 λ j ¯ p j 2 φ j z i j ξ k ( Z , ξ ) | + i = 1 m j = 1 n k = 1 r | u , p = 1 m v , q = 1 n [ A W , u v ( W ) A W , p q ( W ) + [ A W ( W ) j = 1 r ζ j p j λ j ¯ p j ] A W , u v , p q ( W ) ] φ p q ξ k ( Z , ξ ) φ u v ξ j ( Z , ξ ) + u = 1 m v = 1 n j = 1 r p j ζ j p j 1 λ j ¯ p j A W , u v ( W ) φ j ξ k ( Z , ξ ) φ u v ξ j ( Z , ξ ) + [ A W ( W ) j = 1 r ζ j p j λ j ¯ p j ] u = 1 m v = 1 n A W , u v ( W ) 2 φ u v ξ j ξ k ( Z , ξ ) + p = 1 r u = 1 m v = 1 n p j ζ j p j 1 λ j ¯ p j A W , u v ( W ) φ u v ξ j ( Z , ξ ) φ p ξ k ( Z , ξ ) + p = 1 r i = 1 r p j p i ζ j p j 1 ζ i p i 1 λ j ¯ p j λ i ¯ p i φ i ξ j ( Z , ξ ) φ p ξ k ( Z , ξ ) + [ A W ( W ) j = 1 r ζ j p j λ j ¯ p j ] j = 1 r p j ζ j p j 1 λ j ¯ p j 2 φ j ξ j ξ k ( Z , ξ ) | .
Proof. 
By Lemmas 2 and 3, for all f Z α ( HE I ) and ( Z , ξ ) HE I , we have
Z f φ = A Z ( Z ) ξ 2 α H f φ ( Z , ξ ) C A Z ( Z ) ξ 2 α H f ( φ ( Z , ξ ) ) | φ ( Z , ξ ) | 2 + | f ( φ ( Z , ξ ) ) | | φ ( Z , ξ ) | = C A Z ( Z ) ξ 2 α A W ( W ) ζ 2 α | φ ( Z , ξ ) | 2 A W ( W ) ζ 2 α H f ( φ ( Z , ξ ) ) + C A Z ( Z ) ξ 2 α | φ ( Z , ξ ) | | f ( φ ( Z , ξ ) ) | C A Z ( Z ) ξ 2 α A W ( W ) ζ 2 α | φ ( Z , ξ ) | 2 f Z α ( HE I ) + C A Z ( Z ) ξ 2 α A W ( W ) ζ 2 α | φ ( Z , ξ ) | f Z α ( HE I ) C f Z α ( HE I ) .
By Lemma 4, we have
| f ( φ ( 0 , 0 ) ) | C f Z α ( HE I ) .
From Lemma 3, it follows that
| ( f φ ) z i j ( 0 , 0 ) | = | p = 1 m q = 1 n f V p q ( φ ( 0 , 0 ) ) φ p q z i j ( 0 , 0 ) + k = 1 r f V k ( φ ( 0 , 0 ) ) φ k z i j ( 0 , 0 ) | p = 1 m q = 1 n | f V p q ( φ ( 0 , 0 ) ) | | φ p q z i j ( 0 , 0 ) | + k = 1 r | f V k ( φ ( 0 , 0 ) ) | | φ k z i j ( 0 , 0 ) | C f Z α ( HE I ) .
Similar to (21), we also can obtain
| ( f φ ) ξ k ( 0 , 0 ) | C f Z α ( HE I ) .
Then, by (19)–(22) we have
C φ f Z α ( HE I ) C f Z α ( HE I ) .
(23) shows that C φ is bounded on Z α ( HE I ) .
Conversely, assume that the operator C φ is bounded on Z α ( HE I ) with
C φ f Z α ( HE I ) C f Z α ( HE I )
for all f Z α ( HE I ) .
First, we consider the case of α 1 . Let ( P , λ ) = φ ( S , t ) , where ( S , t ) is a fixed point in HE I . We will use the function f ( P , λ ) defined by
f ( P , λ ) ( Z , ξ ) = 1 2 2 α A P ( P ) λ 2 α [ A P ( Z ) j = 1 r ξ j p j λ j ¯ p j ] 2 α 2 .
By Lemma 14, we know that f ( P , λ ) Z α ( HE I ) . By a calculation, we have
2 f ( P , λ ) V u v V p q ( φ ( Z , ξ ) ) = c α A P ( P ) λ 2 α [ A P ( W ) j = 1 r ζ j p j λ j ¯ p j ] 2 α A P , u v ( W ) A P , p q ( W ) + A P ( P ) λ 2 α [ A P ( W ) j = 1 r ζ j p j λ j ¯ p j ] 2 α 1 A P , u v , p q ( W ) ,
2 f ( P , λ ) V u v V j ( φ ( Z , ξ ) ) = c α A P ( P ) λ 2 α p j ζ j p j 1 λ j ¯ p j [ A P ( W ) j = 1 r ζ j p j λ j ¯ p j ] 2 α A P , u v ( W ) ,
f ( P , λ ) V u v ( φ ( Z , ξ ) ) = c α A P ( P ) λ 2 α [ A P ( W ) j = 1 r ζ j p j λ j ¯ p j ] 2 α 1 A P , u v ( W ) ,
2 f ( P , λ ) V j V k ( φ ( Z , ξ ) ) = c α A P ( P ) λ 2 α p j p k ζ j p j 1 ζ k p k 1 λ j ¯ p j λ k ¯ p k [ A P ( W ) j = 1 r ζ j p j λ j ¯ p j ] 2 α ( j k ) ,
and
f ( P , λ ) V j ( φ ( Z , ξ ) ) = A P ( P ) λ 2 α p j ζ j p j 1 λ j ¯ p j [ A P ( W ) j = 1 r ζ j p j λ j ¯ p j ] 2 α 1 .
From (29), it follows that
2 f ( P , λ ) V k 2 ( φ ( Z , ξ ) ) = c α A P ( P ) λ 2 α [ A P ( W ) j = 1 r ζ j p j λ j ¯ p j ] 2 α p k 2 ζ k 2 p k 2 λ ¯ k 2 p k + A P ( P ) λ 2 α [ A P ( W ) j = 1 r ζ j p j λ j ¯ p j ] 2 α 1 p k ( p k 1 ) ζ k p k 2 λ ¯ k p k .
By using (25)–(30) and Lemma 1, we have
2 ( f ( P , λ ) φ ) z i j z k l ( Z , ξ ) = u , p = 1 m v , q = 1 n 2 f ( P , λ ) V u v V p q ( φ ( Z , ξ ) ) φ p q z k l ( Z , ξ ) φ u v z i j ( Z , ξ ) + u = 1 m v = 1 n j = 1 r 2 f ( P , λ ) V u v V j ( φ ( Z , ξ ) ) φ j z k l ( Z , ξ ) φ u v z i j ( Z , ξ ) + u = 1 m v = 1 n f ( P , λ ) V u v ( φ ( Z , ξ ) ) 2 φ u v z i j z k l ( Z , ξ ) + j = 1 r u = 1 m v = 1 n 2 f ( P , λ ) V j V u v ( φ ( Z , ξ ) ) φ u v z k l ( Z , ξ ) φ j z i j ( Z , ξ ) + j = 1 r k = 1 r 2 f ( P , λ ) V j V k ( φ ( Z , ξ ) ) φ k z k l ( Z , ξ ) φ j z i j ( Z , ξ ) + j = 1 r f ( P , λ ) V j ( φ ( Z , ξ ) ) 2 φ j z i j z k l ( Z , ξ ) = A P ( P ) λ 2 α [ A P ( W ) j = 1 r ζ j p j λ j ¯ p j ] 2 α { c α u , p = 1 m v , q = 1 n [ A P , u v ( W ) A P , p q ( W ) + ( A P ( W ) j = 1 r ζ j p j λ j ¯ p j ) A P , u v , p q ( W ) ] φ p q z k l ( Z , ξ ) φ u v z i j ( Z , ξ ) + c α u = 1 m v = 1 n j = 1 r p j ζ j p j 1 λ j ¯ p j A P , u v ( W ) φ j z k l ( Z , ξ ) φ u v z i j ( Z , ξ ) + ( A P ( W ) j = 1 r ζ j p j λ j ¯ p j ) u = 1 m v = 1 n A u v ( W , A ) 2 φ u v z i j z k l ( Z , ξ ) + c α j = 1 r u = 1 m v = 1 n p j ζ j p j 1 λ j ¯ p j A P , u v ( W ) φ u v z k l ( Z , ξ ) φ j z i j ( Z , ξ ) + c α j k , j , k = 1 r p j p k ζ j p j 1 ζ k p k 1 λ j ¯ p j λ k ¯ p k φ k z k l ( Z , ξ ) φ j z i j ( Z , ξ ) + c α k = 1 r p k 2 ζ k 2 p k 2 λ ¯ k 2 p k φ k z k l ( Z , ξ ) φ k z i j ( Z , ξ ) + ( A P ( W ) j = 1 r ζ j p j λ j ¯ p j ) k = 1 r p k ( p k 1 ) ζ k p k 2 λ ¯ k p k φ k z k l ( Z , ξ ) φ k z i j ( Z , ξ ) + ( A P ( W ) j = 1 r ζ j p j λ j ¯ p j ) j = 1 r p j ζ j p j 1 λ j ¯ p j 2 φ j z i j z k l ( Z , ξ ) } .
Similarly, we obtain
2 ( f ( P , λ ) φ ) z i j ξ k ( Z , ξ ) = A P ( P ) λ 2 α [ A P ( W ) j = 1 r ζ j p j λ j ¯ p j ] 2 α { c α u , p = 1 m v , q = 1 n [ A P , u v ( W ) A P , p q ( W ) + ( A P ( W ) j = 1 r ζ j p j λ j ¯ p j ) A P , u v , p q ( W ) ] φ p q ξ k ( Z , ξ ) φ u v z i j ( Z , ξ ) + c α u = 1 m v = 1 n j = 1 r p j ζ j p j 1 λ j ¯ p j A P , u v ( W ) φ j ξ k ( Z , ξ ) φ u v z i j ( Z , ξ ) + ( A P ( W ) j = 1 r ζ j p j λ j ¯ p j ) u = 1 m v = 1 n A P , u v ( W ) 2 φ u v z i j z k l ( Z , ξ ) + c α j = 1 r u = 1 m v = 1 n p j ζ j p j 1 λ j ¯ p j A P , u v ( W ) φ u v ξ k ( Z , ξ ) φ j z i j ( Z , ξ ) + c α u v , u , v = 1 r p u p v ζ v p u 1 ζ u p v 1 λ u ¯ p u λ v ¯ p v φ u ξ k ( Z , ξ ) φ v z i j ( Z , ξ ) + c α u = 1 r p u 2 ζ u 2 p u 2 λ ¯ u 2 p u φ u ξ k ( Z , ξ ) φ u z i j ( Z , ξ ) + ( A P ( W ) j = 1 r ζ j p j λ j ¯ p j ) u = 1 r p u ( p u 1 ) ζ u p u 2 λ ¯ u p u φ u ξ k ( Z , ξ ) φ u z i j ( Z , ξ ) + ( A P ( W ) j = 1 r ζ j p j λ j ¯ p j ) j = 1 r p j ζ j p j 1 λ j ¯ p j 2 φ j z i j ξ k ( Z , ξ ) }
and
2 ( f ( P , λ ) φ ) ξ j ξ k ( Z , ξ ) = A P ( P ) λ 2 α [ A P ( W ) j = 1 r ζ j p j λ j ¯ p j ] 2 α { c α u , p = 1 m v , q = 1 n [ A P , u v ( W ) A P , p q ( W ) + ( A P ( W ) j = 1 r ζ j p j λ j ¯ p j ) A P , u v , p q ( W ) ] φ p q ξ k ( Z , ξ ) φ u v ξ j ( Z , ξ ) + c α u = 1 m v = 1 n j = 1 r p j ζ j p j 1 λ j ¯ p j A P , u v ( W ) φ j ξ k ( Z , ξ ) φ u v ξ j ( Z , ξ ) + ( A P ( W ) j = 1 r ζ j p j λ j ¯ p j ) u = 1 m v = 1 n A P , u v ( W ) 2 φ u v ξ j ξ k ( Z , ξ ) + c α p = 1 r u = 1 m v = 1 n p j ζ j p j 1 λ j ¯ p j A P , u v ( W ) φ u v ξ j ( Z , ξ ) φ p ξ k ( Z , ξ ) + c α u v , u , v = 1 r p u p v ζ v p u 1 ζ u p v 1 λ u ¯ p u λ v ¯ p v φ u ξ k ( Z , ξ ) φ v ξ j ( Z , ξ ) + c α u = 1 r p u 2 ζ u 2 p u 2 λ ¯ u 2 p u φ u ξ k ( Z , ξ ) φ u ξ j ( Z , ξ ) + ( A P ( W ) j = 1 r ζ j p j λ j ¯ p j ) u = 1 r p u ( p u 1 ) ζ u p u 2 λ ¯ u p u φ u ξ k ( Z , ξ ) φ u ξ j ( Z , ξ ) + ( A P ( W ) j = 1 r ζ j p j λ j ¯ p j ) j = 1 r p j ζ j p j 1 λ j ¯ p j 2 φ j ξ j ξ k ( Z , ξ ) } .
Then by (31)–(33), we have
A Z ( Z ) ξ 2 α H f ( P , λ ) φ ( Z , ξ ) = A Z ( Z ) ξ 2 α A P ( P ) λ 2 α [ A P ( W ) j = 1 r ζ j p j λ j ¯ p j ] 2 α × { i , k = 1 m j , l = 1 n | c α u , p = 1 m v , q = 1 n [ A P , u v ( W ) A P , p q ( W ) + ( A P ( W ) j = 1 r ζ j p j λ j ¯ p j ) A P , u v , p q ( W ) ] φ p q z k l ( Z , ξ ) φ u v z i j ( Z , ξ ) + u = 1 m v = 1 n j = 1 r p j ζ j p j 1 λ j ¯ p j A P , u v ( W ) φ j z k l ( Z , ξ ) φ u v z i j ( Z , ξ ) + [ A P ( W ) j = 1 r ζ j p j λ j ¯ p j ] u = 1 m v = 1 n A P , u v ( W ) 2 φ u v z i j z k l ( Z , ξ ) + j = 1 r 1 u m 1 v n p j ζ j p j 1 λ j ¯ p j A u v ( W , A ) φ u v z k l ( Z , ξ ) φ j z i j ( Z , ξ ) + j k , j , k = 1 r p j p k ζ j p j 1 ζ k p k 1 λ j ¯ p j λ k ¯ p k φ k z k l ( Z , ξ ) φ j z i j ( Z , ξ ) + [ A P ( W ) j = 1 r ζ j p j λ j ¯ p j ] j = 1 r p j ζ j p j 1 λ j ¯ p j 2 φ j z i j z k l ( Z , ξ ) | + 2 i = 1 m j = 1 n k = 1 r | u , p = 1 m v , q = 1 n [ A P , u v ( W ) A P , p q ( W ) + [ A P ( W ) j = 1 r ζ j p j λ j ¯ p j ] A P , u v , p q ( W ) ] φ p q ξ k ( Z , ξ ) φ u v z i j ( Z , ξ ) + u = 1 m v = 1 n j = 1 r p j ζ j p j 1 λ j ¯ p j A P , u v ( W ) φ j ξ k ( Z , ξ ) φ u v z i j ( Z , ξ ) + [ A P ( W ) j = 1 r ζ j p j λ j ¯ p j ] u = 1 m v = 1 n A P , u v ( W ) 2 φ u v z i j z k l ( Z , ξ ) + j = 1 r u = 1 m v = 1 n p j ζ j p j 1 λ j ¯ p j A P , u v ( W ) φ u v ξ k ( Z , ξ ) φ j z i j ( Z , ξ ) + j = 1 r i = 1 r p j p i ζ j p j 1 ζ i p i 1 λ j ¯ p j λ i ¯ p i φ i ξ k ( Z , ξ ) φ j z i j ( Z , ξ ) + [ A P ( W ) j = 1 r ζ j p j λ j ¯ p j ] j = 1 r p j ζ j p j 1 λ j ¯ p j 2 φ j z i j ξ k ( Z , ξ ) | + i = 1 m j = 1 n k = 1 r | u , p = 1 m v , q = 1 n [ A P , u v ( W ) A P , p q ( W ) + [ A P ( W ) j = 1 r ζ j p j λ j ¯ p j ] A P , u v , p q ( W ) ] φ p q ξ k ( Z , ξ ) φ u v ξ j ( Z , ξ ) + u = 1 m v = 1 n j = 1 r p j ζ j p j 1 λ j ¯ p j A P , u v ( W ) φ j ξ k ( Z , ξ ) φ u v ξ j ( Z , ξ ) + [ A P ( W ) j = 1 r ζ j p j λ j ¯ p j ] u = 1 m v = 1 n A P , u v ( W ) 2 φ u v ξ j ξ k ( Z , ξ ) + p = 1 r u = 1 m v = 1 n p j ζ j p j 1 λ j ¯ p j A P , u v ( W ) φ u v ξ j ( Z , ξ ) φ p ξ k ( Z , ξ ) + p = 1 r i = 1 r p j p i ζ j p j 1 ζ i p i 1 λ j ¯ p j λ i ¯ p i φ i ξ j ( Z , ξ ) φ p ξ k ( Z , ξ ) + [ A P ( W ) j = 1 r ζ j p j λ j ¯ p j ] j = 1 r p j ζ j p j 1 λ j ¯ p j 2 φ j ξ j ξ k ( Z , ξ ) | } = A Z ( Z ) ξ 2 α A P ( P ) λ 2 α ( A P ( W ) j = 1 r ζ j p j λ j ¯ p j ) 2 α H ( Z , ξ ) C φ f ( P , λ ) Z α ( HE I ) .
By replacing ( Z , ξ ) by ( S , t ) in (34), we obtain
sup ( S , t ) HE I A S ( S ) t 2 α A P ( P ) λ 2 α H ( S , t ) < .
If α = 1 , let ( P , λ ) = φ ( S , t ) , where ( S , t ) is a fixed point in HE I . We will use the function g ( P , λ ) defined by
g ( P , λ ) ( Z , ξ ) = A P ( P ) λ 2 ln 1 A P ( Z ) j = 1 r ξ j p j λ j ¯ p j .
For the same reason, it can be proved for this case, and the details are omitted. The proof is completed. □
Next, we study the compactness of the operator C φ on Z α ( HE I ) .
Theorem 2.
Let φ be a holomorphic self-map of H E I , ( W , ζ ) = φ ( Z , ξ ) and p j 2 for j = 1 , 2 , , r . If
lim ( W , ζ ) H E I A Z ( Z ) ξ 2 α A W ( W ) ζ 2 α | φ ( Z , ξ ) | 2 = 0
and
lim ( W , ζ ) H E I A Z ( Z ) ξ 2 α A W ( W ) ζ 2 α | φ ( Z , ξ ) | = 0 ,
then the operator C φ is compact on Z α ( H E I ) .
Conversely, if the operator C φ is compact on Z α ( H E I ) , then
lim ( W , ζ ) H E I A Z ( Z ) ξ 2 α A W ( W ) ζ 2 α H ( Z , ξ ) = 0 .
Proof. 
In order to prove that the operator C φ is compact on Z α ( HE I ) , by Lemma 5 we only need to prove that, if { f i } is a sequence in Z α ( HE I ) such that sup i N f i Z α ( HE I ) M and f i 0 uniformly on any compact subset of HE I as i , then
lim i C φ f i Z α ( H E I ) = 0 .
We first observe that the conditions (35) and (36) imply that for every ε > 0 , there exists an σ > 0 , such that for any ( Z , ξ ) K = { ( Z , ξ ) HE I : dist ( φ ( Z , ξ ) , HE I ) < σ }
A Z ( Z ) ξ 2 α A W ( W ) ζ 2 α | φ ( Z , ξ ) | 2 < ε
and
A Z ( Z ) ξ 2 α A W ( W ) ζ 2 ) α | φ ( Z , ξ ) | < ε .
For such ε and σ , by using (38) and (39), Lemmas 2 and 3, we have
Z f i φ = sup ( Z , ξ ) H E I A Z ( Z ) ξ 2 α H f i φ ( Z , ξ ) ( sup ( Z , ξ ) K + sup ( Z , ξ ) HE I K ) A Z ( Z ) ξ 2 α H f i φ ( Z , ξ ) C M sup ( Z , ξ ) K A Z ( Z ) ξ 2 α A W ( W ) ζ 2 α | φ ( Z , ξ ) | + C M sup ( Z , ξ ) K A Z ( Z ) ξ 2 α A W ( W ) ζ 2 α | φ ( Z , ξ ) | 2 + C R 1 sup ( Z , ξ ) HE I K | f i ( φ ( Z , ξ ) ) | + C R 2 sup ( Z , ξ ) HE I K H f i ( φ ( Z , ξ ) ) ,
where
R 1 = sup ( Z , ξ ) HE I K A Z ( Z ) ξ 2 α | φ ( Z , ξ ) |
and
R 2 = sup ( Z , ξ ) HE I K A Z ( Z ) ξ 2 α | φ ( Z , ξ ) | 2 .
It is clear that R 1 , R 2 < . Since { f i } converges to zero uniformly on any compact subset of HE I as i implies that { H f i } and { f i } also do as i . From this, (40) and (21), we obtain
lim i Z f i φ = lim i f i ( φ ( 0 , 0 ) ) = lim j ( f i φ ) z i j ( 0 , 0 ) = lim j ( f i φ ) ξ k ( 0 , 0 ) = 0 .
From (41), it follows that
lim i C φ f i Z α ( HE I ) = 0 ,
which shows that the operator C φ is compact on Z α ( HE I ) .
Conversely, assume that the operator C φ is compact on Z α ( HE I ) . Then the operator C φ is bounded on Z α ( HE I ) . Consider a sequence { ( P i , λ i ) } = { φ ( S i , t i ) } in HE I such that φ ( S i , t i ) HE I as i . If such a sequence does not exist, then condition (37) obviously holds. Using this sequence, we define the function sequence f i ( Z , ξ ) = f ( P i , λ i ) ( Z , ξ ) for α 1 (if α = 1 , consider g i ( Z , ξ ) = g ( P i , λ i ) ( Z , ξ ) ), where f ( P i , λ i ) is the function f ( P , λ ) replaced ( P , λ ) by ( P i , λ i ) in the proof of Theorem 1. By Lemma 13, we see that the sequence { f i } is uniformly bounded in Z α ( HE I ) . It is easy to see that { f i } converges to zero uniformly on any compact subset of HE I as i . So, by Lemma 5, lim i C φ f i Z α ( HE I ) = 0 . From this and similar to the proof of Theorem 1 (here the details are omitted), we have
lim i A S i ( S i ) t i 2 α A P i ( P i ) λ i 2 α H ( S i , t i ) = 0 .
The proof is completed. □

Funding

This work was supported by the Sichuan Science and Technology Program (2022ZYD0010).

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments

The author would like to thank the anonymous reviewers for providing valuable comments that improved the presentation of the paper.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Yin, W.P.; Wang, A.; Zhao, Z.G.; Guan, B.X. The Bergman kernels on Hua domains. Adv. Math. 2001, 30, 185–188. [Google Scholar]
  2. Yin, W.P. The Bergman kernels on super-Cartan domain of the first type. Sci. China Ser. A 2000, 43, 13–21. [Google Scholar] [CrossRef]
  3. Zhang, X.J.; Li, M.; Guan, Y. The equivalent norms and the Gleason’s problem on μ-Zygmund spaces in Cn. J. Math. Anal. Appl. 2014, 419, 185–199. [Google Scholar] [CrossRef]
  4. Guo, Y.T.; Shang, Q.L.; Zhang, X.J. The pointwise multiplier on the normal weight Zygmund space in the unit ball. Acta Math Sci. 2018, 38A, 1041–1048. [Google Scholar]
  5. Jiang, Z.J. On a product-type operator from weighted Bergman-Orlicz space to some weighted type spaces. Appl. Math. Comput. 2015, 256, 37–51. [Google Scholar] [CrossRef] [PubMed]
  6. Jiang, Z.J. Product-type operators from Zygmund spaces to Bloch-Orlicz spaces. Complex Varia. Ellip. Equations 2017, 62, 1645–1664. [Google Scholar] [CrossRef]
  7. Li, S.; Stević, S. Generalized composition operators on Zygmund sapces and Bloch spaces. J. Math. Anal. Appl. 2008, 338, 1282–1295. [Google Scholar] [CrossRef]
  8. Zhu, K. Spaces of Holomorphic Functions in the Unit Ball; Springer: New York, NY, USA, 2005. [Google Scholar]
  9. Cowen, C.C.; MacCluer, B.D. Composition Operators on Spaces of Analytic Functions; CRC Press: Boca Roton, FL, USA, 1995. [Google Scholar]
  10. Ahamed, M.B.; Allu, V.; Rahman, T. Generalized weighted composition operators on the Hardy space H2(Dn). arXiv 2023, arXiv:2312.01615. [Google Scholar] [CrossRef]
  11. Ahamed, M.B.; Rahman, T. Complex symmetric weighted composition operators on the space H22(D). arXiv 2023, arXiv:2311.15192. [Google Scholar] [CrossRef]
  12. Bourdon, P.S. Spectra of some composition operators and associated weighted composition operators. J. Oper. Theory 2012, 67, 537–560. [Google Scholar]
  13. Choe, B.R.; Koo, H.; Park, I. Compact differences of composition operators over polydisks. Integral Equ. Oper. Theory 2012, 3, 57–91. [Google Scholar] [CrossRef]
  14. Doan, M.L.; Khoi, L.H. Hilbert spaces of entire functions and composition operators. Complex Anal. Oper. Theory 2016, 10, 213–230. [Google Scholar] [CrossRef]
  15. Saukko, E. An application of atomic decomposition in Bergman spaces to the study of differences of composition operators. J. Funct. Anal. 2012, 262, 3872–3890. [Google Scholar] [CrossRef]
  16. Shi, Y.; Li, S. Differences of composition operators on Bloch type spaces. Complex Anal. Oper. Theory 2017, 11, 227–242. [Google Scholar] [CrossRef]
  17. Su, J.B.; Li, H.J.; Miao, X.X. Compactness of composition operators from the p-Bloch space to the q-Bloch space on the classical bounded symmetric domains. Adv. Pure Math. 2014, 4, 649–664. [Google Scholar] [CrossRef]
  18. Zhou, Z.H.; Shi, J.H. Compactness of composition operators on the Bloch space in the classical bounded symmetric domains. Mich. Math. J. 2002, 50, 381–405. [Google Scholar]
  19. Su, J.B.; Miao, X.X.; Li, H.J. Generalization of Hua’s inequalities and an application. J. Math. Inequal. 2015, 9, 27–45. [Google Scholar] [CrossRef]
  20. Su, J.B.; Li, H.J.; Wang, H. Boundedness and compactness of the composition operators from u-Bloch space to v-Bloch space on the first Hua domains. Sci Sin Math. 2015, 45, 1909–1918. (In Chinese) [Google Scholar] [CrossRef]
  21. Jiang, Z.J. Multiplication operators on weighted Zygmund spaces of the first Cartan domain. Axioms 2023, 12, 1131. [Google Scholar] [CrossRef]
  22. Jiang, Z.J.; Li, Z. Weighted composition operators on Bers-type spaces of Loo-keng Hua domains. Bull. Korean Math. Soc. 2020, 57, 37–51. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Bai, H.-B. Composition Operators on Weighted Zygmund Spaces of the First Loo-keng Hua Domain. Symmetry 2024, 16, 828. https://doi.org/10.3390/sym16070828

AMA Style

Bai H-B. Composition Operators on Weighted Zygmund Spaces of the First Loo-keng Hua Domain. Symmetry. 2024; 16(7):828. https://doi.org/10.3390/sym16070828

Chicago/Turabian Style

Bai, Hong-Bin. 2024. "Composition Operators on Weighted Zygmund Spaces of the First Loo-keng Hua Domain" Symmetry 16, no. 7: 828. https://doi.org/10.3390/sym16070828

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop