Geometric Properties Connected with a Certain Multiplier Integral −Analogue Operator
Abstract
:1. Introduction and Preliminaries
- (i)
- Put , the class reduce to the class ;
- (ii)
- Put , the class reduce to the class ;
- (iii)
- Put , the class reduce to the class [33];
- (iv)
- Put and , the class reduce to the class .
2. Main Results
3. Integral Means
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Srivastava, H.M. A Survey of Some Recent Developments on Higher Transcendental Functions of Analytic Number Theory and Applied Mathematics. Symmetry 2021, 13, 2294. [Google Scholar] [CrossRef]
- Frenkel, E.; Mukhin, E. Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phys. 2001, 216, 23–57. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Some systems of multivariable orthogonal q-Racah polynomials. Ramanujan J. 2007, 13, 389–405. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Simeonov, P. q-difference operators for orthogonal polynomials. J. Comput. Appl. Math. 2009, 233, 749–761. [Google Scholar] [CrossRef]
- Zagorodnyuk, S.M. On a Family of Hypergeometric Sobolev Orthogonal Polynomials on the Unit Circle. Constr. Math. Anal. 2020, 3, 75–84. [Google Scholar] [CrossRef]
- Exton, H. q-Hypergeometric Functions and Applications; Hastead Press: New York, NY, USA, 1983. [Google Scholar]
- Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer Science + Business Media: New York, NY, USA, 2013. [Google Scholar]
- Ernst, T. A History of q-Calculus and a New Method; UUDM Report; Uppsala University: Uppsala, Sweden, 2000. [Google Scholar]
- Annyby, H.M.; Mansour, S.K. q-Fractional Calculus and Equations; Springer: Berlin/Helidelberg, Germany, 2012. [Google Scholar]
- Srivastava, H.M. Univalent functions, fractional calculus and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA, 1989; pp. 329–354. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. Some subordination results on -analogue of Ruscheweyh differential operator. Abstr. Appl. Anal. 2014, 2014, 958563. [Google Scholar] [CrossRef]
- Mahmood, S.; Sokol, J. New subclass of analytic functions in conical domain associated with Ruscheweyh -differential operator. Results Math. 2017, 71, 1345–1357. [Google Scholar] [CrossRef]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving -calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Ali, E.E.; Oros, G.I.; Shah, S.A.; Albalahi, A.M. Applications of -calculus multiplier operators and subordination for the study of particular analytic function subclasses. Mathematics 2023, 11, 2705. [Google Scholar] [CrossRef]
- Alb Lupaş, A.; Oros, G.I. Sandwich-type results regarding Riemann-Liouville fractional integral of -hypergeometric function. Demonstr. Math. 2023, 56, 20220186. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, S.; Ahmad, Q.Z.; Khan, N.; Hussain, S. The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain -integral operator. Stud. Univ. Babeș-BolyaiMath. 2018, 63, 419–436. [Google Scholar] [CrossRef]
- Wang, Z.G.; Hussain, S.; Naeem, M.; Mahmood, T.; Khan, S. A subclass of univalent functions associated with -analogue of Choi-Saigo-Srivastava operator. Hacet. J. Math. Stat. 2019, 49, 1471–1479. [Google Scholar] [CrossRef]
- Ahuja, O.P.; Çetinkaya, A. Use of Quantum Calculus approach in Mathematical Sciences and its role in geometric function theory. AIP Conf. Proc. 2019, 2095, 020001. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-)calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Ali, E.E.; Vivas-Cortez, M.; El-Ashwah, R.M. New results about fuzzy γ-convex functions connected with the q-analogue multiplier-Noor integral operator. AIMS Math. 2024, 9, 5451–5465. [Google Scholar] [CrossRef]
- Silverman, H. Univalent functions with negative coefficients. Proc. Amer. Math. Soc. 1975, 51, 109–116. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications, Series on Monographs and Texbooks in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
- Bulboacă, T. Differential Subordinations and Superordinations. Recent Results; House of Scientific Book Publ.: Cluj-Napoca, Romania, 2005. [Google Scholar]
- Janowski, W. Some extremal problems for certain families of analytic functions. Ann. Polon. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef]
- Jackson, F.H. On -functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On -definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Aouf, M.K.; Madian, S.M. Subordination factor sequence results for starlike and convex classes defined by -Cătaș operator. Afr. Mat. 2021, 32, 1239–1251. [Google Scholar] [CrossRef]
- El-Ashwah, R.M. Subordination results for some subclasses of analytic functions using generalized -Dziok-Srivastava-Cătaş operator. Filomat 2023, 37, 1855–1867. [Google Scholar] [CrossRef]
- Arif, M.; Haq, M.U.; Liu, J.L. A Subfamily of Univalent Functions Associated with -Analogue of Noor Integral Operator. J. Funct. Spaces 2018, 2018, 3818915. [Google Scholar] [CrossRef]
- Seoudy, T.M.; Aouf, M.K. Convolution properties for certain classes of analytic functions defined by q-derivative Operator. Abst. Appl. Anal. 2014, 2014, 846719. [Google Scholar] [CrossRef]
- Silverman, H. A survey with open problems on univalent functions whose coefficients are negative. Rocky Mt. J. Math. 1991, 21, 1099–1125. [Google Scholar] [CrossRef]
- Silverman, H. Integral means for univalent functions with negative coefficients. Houst. J. Math. 1997, 23, 169–174. [Google Scholar]
- Littlewood, J.E. On inequalities in the theory of functions. Proc. Lond. Math. Soc. 1925, 23, 481–519. [Google Scholar] [CrossRef]
- Ahuja, O.P.; Murugusundamoorthy, G.; Magesh, N. Integral Means for uniformly convex and starlike functions associated with generalized hypergeometric functions. Inequl. Pure Appl. Math. 2007, 8, 118. [Google Scholar]
- Alb Lupaş, A.; Oros, G.I. Strong Differential Subordinations and Superordinations for Riemann–Liouville Fractional Integral of Extended q-Hypergeometric Function. Mathematics 2023, 11, 4474. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, E.E.; Oros, G.I.; El-Ashwah, R.M.; Kota, W.Y.; Albalahi, A.M.
Geometric Properties Connected with a Certain Multiplier Integral
Ali EE, Oros GI, El-Ashwah RM, Kota WY, Albalahi AM.
Geometric Properties Connected with a Certain Multiplier Integral
Ali, Ekram E., Georgia Irina Oros, Rabha M. El-Ashwah, Wafaa Y. Kota, and Abeer M. Albalahi.
2024. "Geometric Properties Connected with a Certain Multiplier Integral
Ali, E. E., Oros, G. I., El-Ashwah, R. M., Kota, W. Y., & Albalahi, A. M.
(2024). Geometric Properties Connected with a Certain Multiplier Integral