The Combined Additive Effect of Inter-Limb Muscle Mass Asymmetries and Body Composition Indices on Lower Limb Injuries in Physically Active Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Study Design
2.3. Sample Size
2.4. Participants
2.5. Anthropometric and Body Composition Measurements and Asymmetry Calculations
2.6. Recording of the Musculoskeletal Injuries of the Lower Limbs
2.7. Statistics
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Penedo, F.J.; Dahn, J.R. Exercise and well-being: A review of mental and physical Health benefits associated with physical activity. Curr. Opin. Psychiatry 2005, 18, 189–193. [Google Scholar] [CrossRef]
- Warburton, D.E.R.; Bredin, S.S.D. Health benefits of physical activity: A systematic review of current systematic reviews. Curr. Opin. Cardiol. 2017, 32, 541–556. [Google Scholar] [CrossRef]
- Van Mechelen, W.; Twisk, J.; Molendijk, A.; Blom, B.; Snel, J.; Kemper, H.C. Subject-related risk factors for sports injuries: A 1-yr prospective study in young adults. Med. Sci. Sports Exerc. 1996, 28, 1171–1179. [Google Scholar] [CrossRef]
- Knowles, S.B.; Marshall, S.W.; Bowling, J.M.; Loomis, D.; Millikan, R.; Yang, J.; Weaver, N.L.; Kalsbeek, W.; Mueller, F.O. A prospective study of injury incidence among North Carolina high school athletes. Am. J. Epidemiol. 2006, 164, 1209–1221. [Google Scholar] [CrossRef]
- Mattila, V.M.; Parkkari, J.; Koivusilta, L.; Kannus, P.; Rimpela, A. Participation in sports clubs is a strong predictor of injury hospitalization: A prospective cohort study. Scand J. Med. Sci. Sports 2009, 19, 267–273. [Google Scholar] [CrossRef]
- Westerterp, K.R. Exercise, energy balance and body composition. Eur. J. Clin. Nutr. 2018, 72, 1246–1250. [Google Scholar] [CrossRef]
- Fleck, S.J. Body composition of American athletes. Am. J. Sports Med. 1983, 11, 398–403. [Google Scholar] [CrossRef]
- Cooper, J.A.; Nguyen, D.D.; Ruby, B.C.; Schoeller, D.A. Maximal sustained levels of energy expenditure in humans during exercise. Med. Sci. Sports Exerc. 2011, 43, 2359–2367. [Google Scholar] [CrossRef]
- Nevill, A.M.; Winter, E.M.; Ingham, S.A.; Watts, A.S.; Metsios, G.; Stewart, A.D. Adjusting athletes’ body mass index to better reflect adiposity in epidemiological research. J. Sports Sci. 2010, 28, 1009–1016. [Google Scholar] [CrossRef]
- Nabeel, I.; Baker, B.A.; McGrail, M.P., Jr.; Flottemesch, T.J. Correlation between physical activity, fitness, and musculoskeletal injuries in police officers. Minn. Med. 2007, 90, 40–43. [Google Scholar]
- Domaradzki, J.; Koźlenia, D. The performance of body mass component indices in detecting risk of musculoskeletal injuries in physically active young men and women. PeerJ 2022, 10, e12745. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Havenetidis, K.; Paxinos, T.; Kardaris, D.; Bissas, A. Prognostic potential of body composition indices in detecting risk of musculoskeletal injury in army officer cadet profiles. Physician Sportsmed. 2017, 45, 114–119. [Google Scholar] [CrossRef]
- Meeuwisse, W.H.; Tyreman, H.; Hagel, B.; Emery, C. A dynamic model of etiology in sport injury: The recursive nature of risk and causation. Clin. J. Sport Med. 2007, 17, 215–219. [Google Scholar] [CrossRef]
- Złotkowska, R.; Skiba, M.; Mroczek, A.; Bilewicz-Wyrozumska, T.; Król, K.; Lar, K.; Zbrojkiewicz, E. Negatywne skutki aktywności fizycznej oraz uprawiania sportu. Hygeia Public Health 2015, 50, 41–46. [Google Scholar]
- Powell, J.W.; Barber-Foss, K.D. Sex-related injury patterns among selected high school sports. Am. J. Sports Med. 2000, 28, 385–391. [Google Scholar] [CrossRef]
- Zaar, A.; Neves, E.B.; Rouboa, A.I.; Reis, V.M. Determinative factors in the injury incidence on runners: Synthesis of evidence “injuries on runners”. Open Sports Sci. J. 2017, 10, 294–304. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, H.; Quan, W.; Gusztav, F.; Wang, M.; Baker, J.S.; Gu, Y. Accurately and effectively predict the ACL force: Utilizing biomechanical landing pattern before and after-fatigue. Comput. Methods Programs Biomed 2023, 241, 107761. [Google Scholar] [CrossRef] [PubMed]
- Butler, L.S.; Janosky, J.J.; Sugimoto, D. Pediatric and Adolescent Knee Injuries: Risk Factors and Preventive Strategies. Clin. Sports Med. 2022, 41, 799–820. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, C.E.; Beattie, P.F.; Sacko, R.S.; Hand, A. Risk factors associated with non-contact anterior cruciate ligament injury: A systematic review. Int. J. Sports Phys. Ther. 2018, 13, 575–587. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Promsri, A.; Longo, A.; Haid, T.; Doix, A.M.; Federolf, P. Leg Dominance as a Risk Factor for Lower-Limb Injuries in Downhill Skiers-A Pilot Study into Possible Mechanisms. Int. J. Environ. Res. Public Health 2019, 16, 3399. [Google Scholar] [CrossRef]
- Guan, Y.; Bredin, S.; Taunton, J.; Jiang, Q.; Wu, N.; Li, Y.; Warburton, D. Risk Factors for Non-Contact Lower-Limb Injury: A Retrospective Survey in Pediatric-Age. Athletes. J. Clin. Med. 2021, 10, 3171. [Google Scholar] [CrossRef] [PubMed]
- Hollander, N.A.; Finestone, A.S.; Yofe, V.; Bader, T.; Magnezi, R. The association between increased body mass index and overuse injuries in Israel defense forces conscripts. Obes. Facts 2020, 13, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Corballis, M.C. The evolution and genetics of cerebral asymmetry. Philos. Trans. R. Soc. B Biol. Sci. 2008, 364, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Van Dongen, S. Fluctuating asymmetry and developmental instability in evolutionary biology: Past, present and future. J. Evol. Biol. 2006, 19, 1727–1743. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Cabello, A.; Ara, I.; González-Agüero, A.; Casajús, J.A.; Vicente-Rodríguez, G. Effects of training on bone mass in older adults: A systematic review. Sports Med. 2012, 42, 301–325. [Google Scholar] [CrossRef] [PubMed]
- Puthucheary, Z.; Kordi, M.; Rawal, J.; Eleftheriou, K.I.; Payne, J.; Montgomery, H.E. The relationship between lower limb bone and muscle in military recruits, response to physical training and influence of smoking status. Sci. Rep. 2015, 5, 9323. [Google Scholar] [CrossRef]
- Bettariga, F.; Maestroni, L.; Martorelli, L.; Turner, A.; Bishop, C. The Effects of a 6-Week Unilateral Strength and Ballistic Jump Training Program on the Force-Velocity Profiles of Sprinting. J. Strength Cond. Res. 2023, 37, 1390–1396. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Paul, R.; Shyam, C.; Turner, A. Asymmetries of the lower limb: The calculation conundrum in strength training and conditioning. Strength Cond. J. 2016, 38, 27–32. [Google Scholar] [CrossRef]
- Virgile, A.; Bishop, C. A narrative review of limb dominance: Task- specificity and the importance of fitness testing. J. Strength Cond. Res. 2020; ahead of print. [Google Scholar]
- Stern, D.; Gonzalo-Skok, O.; Loturco, I.; Turner, A.; Bishop, C. A comparison of bilateral vs. Unilateral-biased strength and power training interventions on measures of physical performance in elite youth soccer players. J. Strength Cond. Res. 2020, 34, 2105–2111. [Google Scholar]
- Hart, N.H.; Nimphius, S.; Spiteri, T.; Newton, R.U. Leg strength and lean mass symmetry influences kicking performance in australian football. JSSM 2013, 12, 157–165. [Google Scholar]
- Helme, M.; Tee, J.; Emmonds, S.; Low, C. Does lower-limb asymmetry increase injury risk in sport? A systematic review. Phys. Ther. Sport 2021, 49, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Herrington, L.; Ghulam, H.; Comfort, P. Quadriceps strength and functional performance after anterior cruciate ligament reconstruction in professional soccer players at time of return to sport. J. Strength Cond. Res. 2018, 35, 769–772. [Google Scholar] [CrossRef]
- Markovic, G.; Sarabon, N.; Pausic, J.; Hadzic, V. Adductor muscles strength and strength asymmetry as risk factors for groin injuries among professional soccer players: A prospective study. Int. J. Environ. Res. Public Health 2020, 17, 4946. [Google Scholar] [CrossRef]
- Maestroni, L.; Read, P.; Turner, A.; Korakakis, V.; Papadopoulos, K. Strength, rate of force development, power and reactive strength in adult male athletic populations post anterior cruciate ligament reconstruction—A systematic review and meta-analysis. Phys. Ther. Sport 2020, 47, 91–104. [Google Scholar] [CrossRef]
- Janney, C.A.; Jakicic, J.M. The influence of exercise and BMI on injuries and illnesses in overweight and obese individuals: A randomized control trial. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.H.; Hauret, K.G.; Dye, S.K.; Hauschild, V.D.; Rossi, S.P.; Richardson, M.D.; Friedl, K.E. Impact of physical fitness and body composition on injury risk among active young adults: A study of Army trainees. J. Sci. Med. Sport 2017, 20 (Suppl. 4), S17–S22. [Google Scholar] [CrossRef] [PubMed]
- Hootman, J.M.; Macera, C.A.; Ainsworth, B.E.; Martin, M.; Addy, C.L.; Blair, S.N. Association among physical activity level, cardiorespiratory fitness, and risk of musculoskeletal injury. Am. J. Epidemiol. 2001, 154, 251–258. [Google Scholar] [CrossRef]
- Hootman, J.M.; Macera, C.A.; Ainsworth, B.E.; Addy, C.L.; Martin, M.; Blair, S.N. Epidemiology of musculoskeletal injuries among sedentary and physically active adults. Med. Sci. Sports Exerc. 2002, 34, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, E.A.; Chen, H.; Prabhu, M.; Trogdon, J.G.; Corso, P.S. The relationship between obesity and injuries among U.S. adults. Am. J. Health Promot. 2007, 21, 460–468. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Fritz, M.S.; Mackinnon, D.P. Required sample size to detect the mediated effect. Psychol. Sci. 2007, 18, 233–239. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using GPower 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Auerbach, B.M.; Ruff, C.B. Limb bone bilateral asymmetry: Variability and commonality among modern humans. J. Hum. Evol. 2006, 50, 203–218. [Google Scholar] [CrossRef]
- Aron, A.; Aron, E.N.; Coups, E.J. Statistics for Psychology, 6th ed.; Pearson International Edition: Upper Saddle River, NJ, USA, 2012. [Google Scholar]
- Kozlenia, D.; Domaradzki, J. Prediction and injury risk based on movement patterns and flexibility in a 6-month prospective study among physically active adults. PeerJ 2021, 9, e11399. [Google Scholar] [CrossRef]
- Czado, C.; Erhardt, V.; Min, A.; Wagner, S. Zero-inflated generalized Poisson models with regression effects on the mean, dispersion and zero-inflation level applied to patent outsourcing rates. Stat. Model. 2007, 7, 125–153. [Google Scholar] [CrossRef]
- van Vegchel, N.; de Jonge, J.; Landsbergis, P.A. Occupational stress in (inter)action: The interplay between job demands and job resources. J. Organ. Behav. 2005, 26, 535–560. [Google Scholar] [CrossRef]
- Guo, Z.; Small, D.S.; Gansky, S.A.; Cheng, J. Mediation Analysis for Count and Zero-Inflated Count Data Without Sequential Ignorability and its Application in Dental Studies. J. R. Stat. Soc. Ser. C Appl. Stat. 2018, 67, 371–394. [Google Scholar] [CrossRef]
- MacKinnon, D.P.; Cox, M.C. Commentary on “Mediation analysis and categorical variables: The final frontier” by Dawn Iacobucci. J. Consum. Psychol. Off. J. Soc. Consum. Psychol. 2012, 22, 600. [Google Scholar] [CrossRef] [PubMed]
- Newsom, J.S. Available online: https://web.pdx.edu/~newsomj/cdaclass/ho_mediation.pdf (accessed on 5 June 2024).
- Andrew, F. Hayes. In Introduction to Mediation, Moderation, and Conditional Process Analysis, 3rd ed.; Guilford Press: New York, NY, USA, 2022. [Google Scholar]
- Coutts, J.J.; Hayes, A.F. Questions of value, questions of magnitude: An exploration and application of methods for comparing indirect effects in multiple mediator models. Behav. Res. 2023, 55, 3772–3785. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Jackman, S. pscl: Classes and Methods for R Developed in the Political Science Computational Laboratory. Sydney, Australia. R Package Version 1.5.9. 2024. Available online: https://github.com/atahk/pscl/ (accessed on 20 June 2024).
- Canty, A.; Ripley, B. Boot: Bootstrap R (S-Plus) Functions. R Package Version 1.3-28. 2021. Available online: https://cran.r-project.org/package=boot (accessed on 15 June 2024).
- Cheng, N.; Guo, Z.; Cheng, J. Maczic: Mediation Analysis for Count and Zero-Inflated Count Data. R package Version 1.0.0. 2023. Available online: https://CRAN.R-project.org/package=maczic (accessed on 15 June 2024).
- Mazzara, S.; Rossi, R.L.; Grifantini, R.; Donizetti, S.; Abrignani, L.; Bombaci, M. CombiROC: An interactive web tool for selecting accurate marker combinations of omics data. Sci. Rep. 2017, 7, 45477. [Google Scholar] [CrossRef]
- Chassé, M.; Fergusson, D.A.; Chen, Y. Body mass index and the risk of injury in adults: A cross-sectional study. International J. Obes. 2014, 38, 1403–1409. [Google Scholar] [CrossRef]
- Adirim, T.A.; Cheng, T.L. Overview of injuries in the young athlete. Sports Med. 2003, 33, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Letts, M.; Green, N.E.; Fox, J.A. Elbow and forearm in sports incare of the young athlete. In Care of the Young Athlete; Sullivan, J.A., Anderson, S.J., Eds.; AmericanAcademy of Orthopaedic Surgeons: Rosemont, IL, USA, 2000; pp. 309–322. [Google Scholar]
- Hawkins, D.; Metheny, J. Overuse injuries in youth sports: Biomechanical considerations. Med. Sci. Sports Exerc. 2001, 33, 1701–1707. [Google Scholar] [CrossRef] [PubMed]
- Zech, A.; Hollander, K.; Junge, A.; Steib, S.; Groll, A.; Heiner, J.; Nowak, F.; Pfeiffer, D.; Rahlf, A.L. Sex differences in injury rates in team-sport athletes: A systematic review and meta-regression analysis. J. Sport Health Sci. 2022, 11, 104–114. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, Y.; Li, X.; Yan, W.; Feng, B.; Yu, J.; Wang, Y. Cross-sectional study of gender differences in physical activity-related injuries amongst Chinese college students majoring in rehabilitation. Front. Public Health 2022, 10, 912965. [Google Scholar] [CrossRef] [PubMed]
- Bloemers, F.; Collard, D.; Paw, M.C.; Van Mechelen, W.; Twisk, J.; Verhagen, E. Physical inactivity is a risk factor for physical activity-related injuries in children. Br. J. Sports Med. 2012, 46, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Bretzin, A.C.; Covassin, T.; Fox, M.E.; Petit, K.M.; Savage, J.L.; Walker, L.F.; Gould, D. Sex differences in the clinical incidence of concussions, missed school days, and time loss in high school student-athletes: Part 1. Am. J. Sports Med. 2018, 46, 2263–2269. [Google Scholar] [CrossRef]
- Hallal, P.C.; Andersen, L.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Domaradzki, J. Congruence between Physical Activity Patterns and Dietary Patterns Inferred from Analysis of Sex Differences in Lifestyle Behaviors of Late Adolescents from Poland: Cophylogenetic Approach. Nutrients 2023, 15, 608. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, C.Y.; Casey, E.; Herman, D.C.; Katz, N.; Tenforde, A.S. Sex Differences in Common Sports Injuries. PMR 2018, 10, 1073–1082. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nattiv, A.; Kennedy, G.; Barrack, M.T.; Abdelkerim, A.; Goolsby, M.A.; Arends, J.C.; Seeger, L.L. Correlation of MRI grading of bone stress injuries with clinical risk factors and return to play: A 5-year prospective study in collegiate track and field athletes. Am. J. Sports Med. 2013, 41, 1930–1941. [Google Scholar] [CrossRef]
- Tenforde, A.S.; Parziale, A.; Popp, K.; Ackerman, K.E. Low bone mineral density in male athletes is associated with bone stress injuries at anatomical sites with greater trabecular composition. Am. J. Sports Med. 2018, 46, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Ristolainen, L.; Heinonen, A.; Waller, B.; Kujala, U.M.; Kettunen, J.A. Gender differences in sport injury risk and types of inju-ries: A retrospective twelve-month study on cross-country skiers, swimmers, long-distance runners and soccer players. J. Sports Sci. Med. 2009, 8, 443–451. [Google Scholar] [PubMed] [PubMed Central]
- Walden, M.; Hagglund, M.; Ekstrand, J. Injuries in Swedish elite football--a prospective study on injury definitions, risk for injury and injury pattern during 2001. Scand. J. Med. Sci. Sports 2005, 15, 118–125. [Google Scholar] [CrossRef]
- Arnason, A.; Sigurdsson, S.B.; Gudmundsson, A.; Holme, I.; Engebretsen, L.; Bahr, R. Risk factors for injuries in football. Am. J. Sports Med. 2004, 32, 5S–16S. [Google Scholar] [CrossRef] [PubMed]
- Quatman, C.E.; Ford, K.R.; Myer, G.D.; Paterno, M.V.; Hewett, T.E. The effects of gender and pubertal status on generalized joint laxity in young athletes. J. Sci. Med. Sport 2008, 11, 257–263. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J. Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, J.; Hagglund, M.; Walden, M. Epidemiology of muscle injuries in professional football (soccer). Am. J. Sports Med. 2011, 39, 1226–1232. [Google Scholar] [CrossRef]
- Jordan, M.J.; Aagaard, P.; Herzog, W. Lower limb asymmetry in mechanical muscle function: A comparison between ski racers with and without ACL reconstruction. Scand. J. Med. Sci. Sports 2014, 25, e301–e309. [Google Scholar] [CrossRef]
- Fort-Vanmeerhaeghe, A.; Bishop, C.; Buscà, B.; Aguilera-Castells, J.; Vicens-Bordas, J.; Gonzalo-Skok, O. Inter-limb asymmetries are associated with decrements in physical performance in youth elite team sports athletes. PLoS ONE 2020, 15, e0229440. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Myer, G.D.; Schmitt, L.C.; Brent, J.L.; Ford, K.R.; Barber Foss, K.D.; Scherer, B.J.; Heidt, R.S., Jr.; Divine, J.G.; Hewett, T.E. Utilization of Modified NFL Combine Testing to Identify Functional Deficits in Athletes Following ACL Reconstruction. J. Orthop. Sport Phys. Ther. 2011, 41, 377–387. [Google Scholar] [CrossRef]
- Richmond, S.A.; Kang, J.; Emery, C.A. Is body mass index a risk factor for sport injury in adolescents? J. Sci. Med. Sport 2013, 16, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Friedl, K.E. Body composition and military performance—Many things to many people. J. Strength Cond. Res. 2012, 26 (Suppl. 2), S87–S100. [Google Scholar] [CrossRef] [PubMed]
- Rohman, E.; Steubs, J.T.; Tompkins, M. Changes in involved and uninvolved limb function during rehabilitation after anterior cruciate ligament reconstruction: Implications for limb symmetry index measures. Am. J. Sports Med. 2015, 43, 1391–1398. [Google Scholar] [CrossRef] [PubMed]
- Newton, R.U.; Gerber, A.; Nimphius, S.; Shim, J.K.; Doan, B.K.; Robertson, M.; Pearson, D.R.; Craig, B.W.; Häkkinen, K.; Kraemer, W.J. Determination of Functional Strength Imbalance of the Lower Extremities. J. Strength Cond. Res. 2006, 20, 971–977. [Google Scholar] [PubMed]
- Morrow, E.L.; Duff, M.C.; Mayberry, L.S. Mediators, Moderators, and Covariates: Matching Analysis Approach for Improved Precision in Cognitive-Communication Rehabilitation Research. J. Speech Lang. Hear Res. 2022, 65, 4159–4171. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taanila, H.; Suni, J.H.; Kannus, P.; Pihlajamäki, H.; Ruohola, J.P.; Viskari, J.; Parkkari, J. Risk factors of acute and overuse musculoskeletal injuries among young conscripts: A population-based cohort study. BMC Musculoskelet Disord. 2015, 16, 104. [Google Scholar] [CrossRef]
- Machado, F.A.; Csuka, R.D.S.; da Rosa, S.E.; Marson, R.A.; Martinez, E.C.; Reis, V.M.; MD, R. Functional impairment of knee muscles after walking with backpack load: A systematic review. Hum. Mov. 2024, 25, 36–52. [Google Scholar] [CrossRef]
Males | Females | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
M | SD | −95%CI | +95%CI | M | SD | −95%CI | +95%CI | t | p | |
Height [cm] | 183.3 | 7.0 | 181.9 | 184.6 | 168.7 | 5.2 | 167.8 | 169.5 | −18.42 | <0.001 |
Weight [kg] | 79.0 | 9.6 | 77.2 | 80.9 | 61.3 | 8.7 | 59.8 | 62.8 | −14.84 | <0.001 |
BMI [kg/m2] | 23.5 | 2.4 | 23.1 | 24.0 | 21.6 | 2.8 | 21.1 | 22.0 | −5.71 | <0.001 |
FMI [kg/m2] | 3.7 | 1.4 | 3.5 | 4.0 | 5.3 | 1.8 | 5.0 | 5.6 | 7.52 | <0.001 |
AA [%] | 3.5 | 1.4 | 3.2 | 3.7 | 2.4 | 1.3 | 2.1 | 2.6 | −6.29 | <0.001 |
Males | Females | |||||||
---|---|---|---|---|---|---|---|---|
Estimate | Std Error | z-Value | Pr(>|z|) | Estimate | Std Error | z-Value | Pr(>|z|) | |
BMI | 0.05 | 0.04 | 1.31 | 0.190 | 0.13 | 0.03 | 4.42 | <0.001 |
FMI | 0.35 | 0.05 | 7.11 | <0.001 | 0.21 | 0.05 | 4.33 | <0.001 |
AA | 0.28 | 0.06 | 4.43 | <0.001 | 0.12 | 0.08 | 1.40 | 0.161 |
Effect | Estimate | 95%CI Lower | 95%CI Upper | p |
---|---|---|---|---|
Total effect | 0.03 | −0.19 | 0.32 | 0.142 |
ADE | 0.04 | −0.15 | 0.32 | 0.134 |
ACME | −0.01 | −0.07 | 0.01 | 0.303 |
Effect | Estimate | 95%CI Lower | 95%CI Upper | p |
---|---|---|---|---|
ADE | 0.62 | 0.23 | 1.01 | 0.018 |
ACME | −0.06 | −0.21 | 0.05 | >0.05 |
Variable | AUC | Youden | SE | SP | Cut-off | AIC |
---|---|---|---|---|---|---|
Combination FMI AA | 0.686 | 0.115 | 0.787 | 0.523 | 0.525 | 134.9 |
FMI | 0.458 | 0.082 | 0.230 | 0.818 | 0.536 | 145.2 |
AA | 0.650 | 0.083 | 0492 | 0.818 | 0.650 | 137.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domaradzki, J. The Combined Additive Effect of Inter-Limb Muscle Mass Asymmetries and Body Composition Indices on Lower Limb Injuries in Physically Active Young Adults. Symmetry 2024, 16, 876. https://doi.org/10.3390/sym16070876
Domaradzki J. The Combined Additive Effect of Inter-Limb Muscle Mass Asymmetries and Body Composition Indices on Lower Limb Injuries in Physically Active Young Adults. Symmetry. 2024; 16(7):876. https://doi.org/10.3390/sym16070876
Chicago/Turabian StyleDomaradzki, Jarosław. 2024. "The Combined Additive Effect of Inter-Limb Muscle Mass Asymmetries and Body Composition Indices on Lower Limb Injuries in Physically Active Young Adults" Symmetry 16, no. 7: 876. https://doi.org/10.3390/sym16070876
APA StyleDomaradzki, J. (2024). The Combined Additive Effect of Inter-Limb Muscle Mass Asymmetries and Body Composition Indices on Lower Limb Injuries in Physically Active Young Adults. Symmetry, 16(7), 876. https://doi.org/10.3390/sym16070876