Extension of Buchdahl’s Theorem on Reciprocal Solutions
Abstract
:1. Introduction
2. Symmetries of Nested Conformal Transformations
2.1. Conformal Transformation
2.2. Synchronous Metric
2.3. Buchdahl’s Reciprocity
3. Solutions from Buchdahl’s Method with
3.1. Buchdahl’s Method
3.2. Buchdahl’s Method with
4. Applications
4.1. Scalar-Tensor Gravity Theory
4.2. Scalar-Tensor Gravity Plus a Massless Scalar Field
4.3. Brans–Dicke Theory with a Quadratic Potential
4.3.1. The Schwarzschild–de Sitter Metric
4.3.2. The Nariai Solution
4.3.3. Hyperbolically Foliated Solution
5. Summary and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brans, C.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Dicke, R.H. Mach’s principle and invariance under transformation of units. Phys. Rev. 1962, 125, 2163–2167. [Google Scholar] [CrossRef]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Rel. 2014, 17, 4. [Google Scholar] [CrossRef] [PubMed]
- Fujii, Y.; Maeda, K. The Scalar-Tensor Theory of Gravitation; Cambridge University Press: Cambridge, MA, USA, 2007; ISBN 978-0-521-03752-5/978-0-521-81159-0/978-0-511-02988-2. [Google Scholar]
- Faraoni, V. Cosmology in scalar tensor gravity. In Fundamental Theories of Physics; Springer Science+Business Media: Dordrecht, The Netherlands, 2004; Volume 139. [Google Scholar]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rept. 2012, 513, 1–189. [Google Scholar]
- Buchdahl, H.A. Reciprocal Static Solutions of the Equations Gμν=0. Quart. J. Math. 1954, 5, 116. [Google Scholar] [CrossRef]
- Buchdahl, H.A. Reciprocal static solutions of the equations of the gravitational field. Austral. J. Phys. 1956, 9, 13–18. [Google Scholar] [CrossRef]
- Buchdahl, H.A. Reciprocal Static Metrics and Scalar Fields in the General Theory of Relativity. Phys. Rev. 1959, 115, 1325–1328. [Google Scholar] [CrossRef]
- Xanthopoulos, B.C.; Zannias, T. Einstein Gravity Coupled to a Massless Scalar Field in Arbitrary Space-time Dimensions. Phys. Rev. D 1989, 40, 2564–2567. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, O.; Leipnik, R. Space-Time Structure of a Static Spherically Symmetric Scalar Field. Phys. Rev. 1957, 107, 1157–1161. [Google Scholar] [CrossRef]
- Rao, J.R.; Roy, A.R.; Tiwari, R.N. A class of exact solutions for coupled electromagnetic and scalar fields for einstein-rosen metric. 1. Ann. Phys. 1972, 69, 473–486. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Exact solutions of Einstein conformal scalar equations. Ann. Phys. 1974, 82, 535–547. [Google Scholar] [CrossRef]
- Cadoni, M. Exact solutions of Einstein gravity coupled to a scalar field with arbitrary potential. Phys. Rev. D 1991, 44, 1115–1119. [Google Scholar] [CrossRef] [PubMed]
- Wiltshire, D.L. Comment on ‘Exact solutions of Einstein gravity coupled to a scalar field with arbitrary potential’. Phys. Rev. D 1992, 46, 5682–5684. [Google Scholar] [CrossRef] [PubMed]
- Mignemi, S.; Wiltshire, D.L. Spherically Symmetric Solutions in Dimensionally Reduced Space-times. Class. Quant. Grav. 1989, 6, 987. [Google Scholar] [CrossRef]
- Schmoltzi, K.; Schucker, T. The Energy spectrum of the static, spherically symmetric solutions to the Einstein-Klein-Gordon equations. Phys. Lett. A 1991, 161, 212–216. [Google Scholar] [CrossRef]
- Jetzer, P.; Scialom, D. Dynamical instability of the static real scalar field solitons to the Einstein-Klein-Gordon equations. Phys. Lett. A 1992, 169, 12–20. [Google Scholar] [CrossRef]
- Poletti, S.J.; Wiltshire, D.L. The Global properties of static spherically symmetric charged dilaton space-times with a Liouville potential. Phys. Rev. D 1994, 50, 7260–7270, Erratum in Phys. Rev. D 1995, 52, 3753–3754. [Google Scholar] [CrossRef] [PubMed]
- Fonarev, O.A. Exact Einstein scalar field solutions for formation of black holes in a cosmological setting. Class. Quant. Grav. 1995, 12, 1739–1752. [Google Scholar] [CrossRef]
- Park, D.; Kiem, Y. General static solutions of two-dimensional Einstein Dilaton Maxwell Scalar theories. Phys. Rev. D 1996, 53, 5513–5520. [Google Scholar] [CrossRef]
- Bhadra, A.; Nandi, K.K. On the equivalence of the Buchdahl and the Janis-Newman-Winnicour solutions. Int. J. Mod. Phys. A 2001, 16, 4543–4545. [Google Scholar] [CrossRef]
- Schunck, F.E.; Mielke, E.W. General relativistic boson stars. Class. Quant. Grav. 2003, 20, R301–R356. [Google Scholar] [CrossRef]
- Bhadra, A.; Sarkar, K. On static spherically symmetric solutions of the vacuum Brans-Dicke theory. Gen. Rel. Grav. 2005, 37, 2189–2199. [Google Scholar] [CrossRef]
- Capozziello, S.; Bianchi, S.D.; Battista, E. Avoiding singularities in Lorentzian-Euclidean black holes: The role of atemporality. Phys. Rev. D 2024, 109, 104060. [Google Scholar] [CrossRef]
- Capuano, L.; Santoni, L.; Barausse, E. Black hole hairs in scalar-tensor gravity and the lack thereof. Phys. Rev. D 2023, 108, 064058. [Google Scholar] [CrossRef]
- Kobayashi, T.; Tanahashi, N. Exact black hole solutions in shift symmetric scalar–tensor theories. Prog. Theor. Exp. Phys. 2014, 2014, 073E02. [Google Scholar] [CrossRef]
- Charmousis, C.; Iosifidis, D. Self tuning scalar tensor black holes. J. Phys. Conf. Ser. 2015, 600, 012003. [Google Scholar] [CrossRef]
- Nguyen, H.K. Buchdahl-inspired spacetimes and wormholes: Unearthing Hans Buchdahl’s other “hidden” treasure trove. Int. J. Mod. Phys. D 2023, 32, 2342007. [Google Scholar] [CrossRef]
- Nguyen, H.K.; Lobo, F.S.N. Closed Timelike Curves Induced by a Buchdahl-Inspired Vacuum Spacetime in Gravity. Universe 2023, 9, 467. [Google Scholar] [CrossRef]
- Nguyen, H.K.; Lobo, F.S.N. Time-reversed information flow through a wormhole in scalar-tensor gravity. arXiv 2024, arXiv:2405.12397. [Google Scholar]
- Faraoni, V.; Giusti, A.; Fahim, B.H. Spherical inhomogeneous solutions of Einstein and scalar–tensor gravity: A map of the land. Phys. Rept. 2021, 925, 1–58. [Google Scholar] [CrossRef]
- Wald, R.M. General Relativity; Chicago University Press: Chicago, IL, USA, 1984. [Google Scholar]
- O’Hanlon, J.; Tupper, B.O.J. Vacuum-field solutions in the Brans-Dicke theory. Il Nuovo Cimento 1972, 7, 305. [Google Scholar] [CrossRef]
- Mimoso, J.P. Cosmological Models of the Early Universe; University of Sussex: Brighton, UK, 1994. [Google Scholar]
- Mimoso, J.P.; Wands, D. Massless fields in scalar—Tensor cosmologies. Phys. Rev. D 1995, 51, 477–489. [Google Scholar] [CrossRef]
- Wands, D.G. Cosmology of Scalar-Tensor Gravity; University of Sussex: Brighton, UK, 1993. [Google Scholar]
- Yazadjiev, S.S. Solution generating in scalar tensor theories with a massless scalar field and stiff perfect fluid as a source. Phys. Rev. D 2002, 65, 084023. [Google Scholar] [CrossRef]
- Rindler, W. Relativity: Special, General, and Cosmological; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Nariai, H. On some static solutions of Einstein’s gravitational field equations in a spherically symmetric case. Sci. Rep. Tohoku Univ. Eighth Ser. 1950, 34, 160. [Google Scholar] [CrossRef]
- Lobo, F.S.N.; Mimoso, J.P. Possibility of hyperbolic tunneling. Phys. Rev. D 2010, 82, 044034. [Google Scholar] [CrossRef]
- Mimoso, J.P.; Lobo, F.S.N. An anti-Schwarzshild solution: Wormholes and scalar-tensor solutions. J. Phys. Conf. Ser. 2010, 229, 012078. [Google Scholar] [CrossRef]
- Mimoso, J.P.; Lobo, F.S.N. The Variation of G in a negatively curved space-time. In From Varying Couplings to Fundamental Physics: Proceedings of Symposium 1 of JENAM 2010; Springer: Berlin/Heidelberg, Germany, 2011; pp. 25–34. [Google Scholar] [CrossRef]
- Stephani, H.; Kramer, D.; MacCallum, M.A.H.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2003; 701p. [Google Scholar]
- Ehlers, J.; Kundt, W. Exact Solutions of the gravitational Field Equation. In Gravitation: An Introduction to Current Research; Witten, L., Ed.; Wiley: New York, NY, USA; London, UK, 1962; p. 49. [Google Scholar]
- Agnese, A.G.; Camera, M.L. Gravitation without black holes. Phys. Rev. D 1985, 31, 1280–1286. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Shikin, G.N. Spherically symmetric scalar vacuum: No go theorems, black holes and solitons. Grav. Cosmol. 2002, 8, 107–116. [Google Scholar]
- MacCallum, M.A.H. Cosmological models from a geometric point of view. Cargese Lect. Phys. 1973, 6, 61–174. [Google Scholar]
- Ellis, G.F.R.; MacCallum, M.A.H. A Class of homogeneous cosmological models. Commun. Math. Phys. 1969, 12, 108–141. [Google Scholar] [CrossRef]
- MacCallum, M.A.H. Inhomogeneous and anisotropic cosmologies. NATO Sci. Ser. C 1993, 393, 131–159. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, D.S.; Mimoso, J.P.; Lobo, F.S.N. Extension of Buchdahl’s Theorem on Reciprocal Solutions. Symmetry 2024, 16, 881. https://doi.org/10.3390/sym16070881
Pereira DS, Mimoso JP, Lobo FSN. Extension of Buchdahl’s Theorem on Reciprocal Solutions. Symmetry. 2024; 16(7):881. https://doi.org/10.3390/sym16070881
Chicago/Turabian StylePereira, David S., José Pedro Mimoso, and Francisco S. N. Lobo. 2024. "Extension of Buchdahl’s Theorem on Reciprocal Solutions" Symmetry 16, no. 7: 881. https://doi.org/10.3390/sym16070881
APA StylePereira, D. S., Mimoso, J. P., & Lobo, F. S. N. (2024). Extension of Buchdahl’s Theorem on Reciprocal Solutions. Symmetry, 16(7), 881. https://doi.org/10.3390/sym16070881