Symmetry Classification of Antiferromagnets with Four Types of Multipoles
Abstract
:1. Introduction
2. Four Types of Multipoles
3. Multipoles in Antiferromagnets
4. Cross-Correlations in Antiferromagnets with Multipoles
4.1. Electric Dipole
4.2. Electric Quadrupole
4.3. Electric Octupole
4.4. Magnetic Monopole
4.5. Magnetic Dipole
4.6. Magnetic Quadrupole
4.7. Magnetic Octupole
4.8. Magnetic Toroidal Monopole
4.9. Magnetic Toroidal Dipole
4.10. Magnetic Toroidal Quadrupole
4.11. Magnetic Toroidal Octupole
4.12. Electric Toroidal Monopole
4.13. Electric Toroidal Dipole
4.14. Electric Toroidal Quadrupole
4.15. Electric Toroidal Octupole
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karplus, R.; Luttinger, J.M. Hall Effect in Ferromagnetics. Phys. Rev. 1954, 95, 1154–1160. [Google Scholar] [CrossRef]
- Smit, J. The spontaneous Hall effect in ferromagnetics II. Physica 1958, 24, 39–51. [Google Scholar] [CrossRef]
- Maranzana, F.E. Contributions to the Theory of the Anomalous Hall Effect in Ferro- and Antiferromagnetic Materials. Phys. Rev. 1967, 160, 421–429. [Google Scholar] [CrossRef]
- Berger, L. Side-Jump Mechanism for the Hall Effect of Ferromagnets. Phys. Rev. B 1970, 2, 4559–4566. [Google Scholar] [CrossRef]
- Nozieres, P.; Lewiner, C. A simple theory of the anomalous Hall effect in semiconductors. J. Phys. 1973, 34, 901–915. [Google Scholar] [CrossRef]
- Jungwirth, T.; Niu, Q.; MacDonald, A.H. Anomalous Hall Effect in Ferromagnetic Semiconductors. Phys. Rev. Lett. 2002, 88, 207208. [Google Scholar] [CrossRef]
- Gosálbez-Martínez, D.; Souza, I.; Vanderbilt, D. Chiral degeneracies and Fermi-surface Chern numbers in bcc Fe. Phys. Rev. B 2015, 92, 085138. [Google Scholar] [CrossRef]
- Kimura, T.; Goto, T.; Shintani, H.; Ishizaka, K.; Arima, T.; Tokura, Y. Magnetic control of ferroelectric polarization. Nature 2003, 426, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 2005, 38, R123. [Google Scholar] [CrossRef]
- Spaldin, N.A.; Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 2005, 309, 391–392. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, R.; Spaldin, N.A. Multiferroics: Progress and prospects in thin films. Nat. Mater. 2007, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Khomskii, D. Classifying multiferroics: Mechanisms and effects. Physics 2009, 2, 20. [Google Scholar] [CrossRef]
- Tokura, Y.; Seki, S.; Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 2014, 77, 076501. [Google Scholar] [CrossRef] [PubMed]
- Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 2016, 1, 16046. [Google Scholar] [CrossRef]
- Solovyev, I.V. Magneto-optical effect in the weak ferromagnets LaMO3 (M = Cr, Mn, and Fe). Phys. Rev. B 1997, 55, 8060–8063. [Google Scholar] [CrossRef]
- Sivadas, N.; Okamoto, S.; Xiao, D. Gate-Controllable Magneto-optic Kerr Effect in Layered Collinear Antiferromagnets. Phys. Rev. Lett. 2016, 117, 267203. [Google Scholar] [CrossRef]
- Li, X.; MacDonald, A.H.; Chen, H. Quantum Anomalous Hall Effect through Canted Antiferromagnetism. arXiv 2019, arXiv:1902.10650. [Google Scholar]
- Naka, M.; Hayami, S.; Kusunose, H.; Yanagi, Y.; Motome, Y.; Seo, H. Anomalous Hall effect in κ-type organic antiferromagnets. Phys. Rev. B 2020, 102, 075112. [Google Scholar] [CrossRef]
- Šmejkal, L.; González-Hernández, R.; Jungwirth, T.; Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 2020, 6, eaaz8809. [Google Scholar] [CrossRef] [PubMed]
- Samanta, K.; Ležaić, M.; Merte, M.; Freimuth, F.; Blügel, S.; Mokrousov, Y. Crystal Hall and crystal magneto-optical effect in thin films of SrRuO3. J. Appl. Phys. 2020, 127, 213904. [Google Scholar] [CrossRef]
- Hayami, S.; Kusunose, H. Essential role of the anisotropic magnetic dipole in the anomalous Hall effect. Phys. Rev. B 2021, 103, L180407. [Google Scholar] [CrossRef]
- Feng, Z.; Zhou, X.; Šmejkal, L.; Wu, L.; Zhu, Z.; Guo, H.; González-Hernández, R.; Wang, X.; Yan, H.; Qin, P.; et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 2022, 5, 735–743. [Google Scholar] [CrossRef]
- Tomizawa, T.; Kontani, H. Anomalous Hall effect in the t2g orbital kagome lattice due to noncollinearity: Significance of the orbital Aharonov-Bohm effect. Phys. Rev. B 2009, 80, 100401. [Google Scholar] [CrossRef]
- Chen, H.; Niu, Q.; MacDonald, A.H. Anomalous Hall Effect Arising from Noncollinear Antiferromagnetism. Phys. Rev. Lett. 2014, 112, 017205. [Google Scholar] [CrossRef]
- Nakatsuji, S.; Kiyohara, N.; Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 2015, 527, 212. [Google Scholar] [CrossRef]
- Suzuki, M.T.; Koretsune, T.; Ochi, M.; Arita, R. Cluster multipole theory for anomalous Hall effect in antiferromagnets. Phys. Rev. B 2017, 95, 094406. [Google Scholar] [CrossRef]
- Chen, H.; Wang, T.C.; Xiao, D.; Guo, G.Y.; Niu, Q.; MacDonald, A.H. Manipulating anomalous Hall antiferromagnets with magnetic fields. Phys. Rev. B 2020, 101, 104418. [Google Scholar] [CrossRef]
- Ohgushi, K.; Murakami, S.; Nagaosa, N. Spin anisotropy and quantum Hall effect in the kagomé lattice: Chiral spin state based on a ferromagnet. Phys. Rev. B 2000, 62, R6065–R6068. [Google Scholar] [CrossRef]
- Shindou, R.; Nagaosa, N. Orbital Ferromagnetism and Anomalous Hall Effect in Antiferromagnets on the Distorted fcc Lattice. Phys. Rev. Lett. 2001, 87, 116801. [Google Scholar] [CrossRef]
- Taguchi, Y.; Oohara, Y.; Yoshizawa, H.; Nagaosa, N.; Tokura, Y. Spin chirality, Berry phase, and anomalous Hall effect in a frustrated ferromagnet. Science 2001, 291, 2573–2576. [Google Scholar] [CrossRef]
- Neubauer, A.; Pfleiderer, C.; Binz, B.; Rosch, A.; Ritz, R.; Niklowitz, P.G.; Böni, P. Topological Hall Effect in the A Phase of MnSi. Phys. Rev. Lett. 2009, 102, 186602. [Google Scholar] [CrossRef]
- Hayami, S.; Kusunose, H. Unified description of electronic orderings and cross correlations by complete multipole representation. J. Phys. Soc. Jpn. 2024, 93, 072001. [Google Scholar] [CrossRef]
- Kusunose, H.; Hayami, S. Generalization of microscopic multipoles and cross-correlated phenomena by their orderings. J. Phys. Condense. Matter 2022, 34, 464002. [Google Scholar] [CrossRef]
- Suzuki, M.T.; Nomoto, T.; Arita, R.; Yanagi, Y.; Hayami, S.; Kusunose, H. Multipole expansion for magnetic structures: A generation scheme for a symmetry-adapted orthonormal basis set in the crystallographic point group. Phys. Rev. B 2019, 99, 174407. [Google Scholar] [CrossRef]
- Kusunose, H.; Oiwa, R.; Hayami, S. Symmetry-adapted modeling for molecules and crystals. Phys. Rev. B 2023, 107, 195118. [Google Scholar] [CrossRef]
- Yatsushiro, M.; Kusunose, H.; Hayami, S. Multipole classification in 122 magnetic point groups for unified understanding of multiferroic responses and transport phenomena. Phys. Rev. B 2021, 104, 054412. [Google Scholar] [CrossRef]
- Hayami, S.; Kusunose, H. Microscopic Description of Electric and Magnetic Toroidal Multipoles in Hybrid Orbitals. J. Phys. Soc. Jpn. 2018, 87, 033709. [Google Scholar] [CrossRef]
- Kusunose, H.; Oiwa, R.; Hayami, S. Complete Multipole Basis Set for Single-Centered Electron Systems. J. Phys. Soc. Jpn. 2020, 89, 104704. [Google Scholar] [CrossRef]
- Hayami, S.; Yatsushiro, M.; Yanagi, Y.; Kusunose, H. Classification of atomic-scale multipoles under crystallographic point groups and application to linear response tensors. Phys. Rev. B 2018, 98, 165110. [Google Scholar] [CrossRef]
- Winkler, R.; Zülicke, U. Theory of electric, magnetic, and toroidal polarizations in crystalline solids with applications to hexagonal lonsdaleite and cubic diamond. Phys. Rev. B 2023, 107, 155201. [Google Scholar] [CrossRef]
- Gallego, S.V.; Perez-Mato, J.M.; Elcoro, L.; Tasci, E.S.; Hanson, R.M.; Momma, K.; Aroyo, M.I.; Madariaga, G. MAGNDATA: Towards a database of magnetic structures. I. The commensurate case. J. Appl. Crystallogr. 2016, 49, 1750–1776. [Google Scholar] [CrossRef]
- Solana-Madruga, E.; Dos santos García, A.; Arévalo-López, A.; Ávila-Brande, D.; Ritter, C.; Attfield, J.; Sáez-Puche, R. High pressure synthesis of polar and non-polar cation-ordered polymorphs of Mn2ScSbO6. Dalton Trans. 2015, 44, 20441–20448. [Google Scholar] [CrossRef] [PubMed]
- Rousse, G.; Rodríguez-Carvajal, J.; Wurm, C.; Masquelier, C. Spiral magnetic structure in the iron diarsenate LiFeAs2O7: A neutron diffraction study. Phys. Rev. B 2013, 88, 214433. [Google Scholar] [CrossRef]
- Moron, M.C.; Palacio, F.; Rodríguez-Carvajal, J. Crystal and magnetic structures of RbMnF4 and KMnF4 investigated by neutron powder diffraction: The relationship between structure and magnetic properties in the Mn3+ layered perovskites AMnF4 (A = Na, K, Rb, Cs). J. Phys. Condens. Matter 1993, 5, 4909. [Google Scholar] [CrossRef]
- Damay, F.; Poienar, M.; Martin, C.; Maignan, A.; Rodriguez-Carvajal, J.; André, G.; Doumerc, J.P. Spin-lattice coupling induced phase transition in the S = 2 frustrated antiferromagnet CuMnO2. Phys. Rev. B 2009, 80, 094410. [Google Scholar] [CrossRef]
- Calder, S.; Haglund, A.V.; Kolesnikov, A.I.; Mandrus, D. Magnetic exchange interactions in the van der Waals layered antiferromagnet MnPSe3. Phys. Rev. B 2021, 103, 024414. [Google Scholar] [CrossRef]
- Rousse, G.; Rodríguez-Carvajal, J.; Wurm, C.; Masquelier, C. A neutron diffraction study of the antiferromagnetic diphosphate LiFeP2O7. Solid State Sci. 2002, 4, 973–978. [Google Scholar] [CrossRef]
- Blasco, J.; García-Muñoz, J.L.; García, J.; Subías, G.; Stankiewicz, J.; Rodríguez-Velamazán, J.A.; Ritter, C. Magnetic order and magnetoelectric properties of R2CoMnO6 perovskites (R = Ho, Tm, Yb, and Lu). Phys. Rev. B 2017, 96, 024409. [Google Scholar] [CrossRef]
- Khalyavin, D.D.; Manuel, P.; Hatnean, M.C.; Petrenko, O.A. Fragile ground state and rigid field-induced structures in the zigzag ladder compound BaDy2O4. Phys. Rev. B 2021, 103, 134434. [Google Scholar] [CrossRef]
- Solana-Madruga, E.; Ritter, C.; Aguilar-Maldonado, C.; Mentré, O.; Attfield, J.P.; Arévalo-López, Á.M. Mn3MnNb2O9: High-pressure triple perovskite with 1: 2 B-site order and modulated spins. Chem. Commun. 2021, 57, 8441–8444. [Google Scholar] [CrossRef]
- Ghara, S.; Suard, E.; Fauth, F.m.c.; Tran, T.T.; Halasyamani, P.S.; Iyo, A.; Rodríguez-Carvajal, J.; Sundaresan, A. Ordered aeschynite-type polar magnets RFeWO6 (R = Dy, Eu, Tb, and Y): A new family of type-II multiferroics. Phys. Rev. B 2017, 95, 224416. [Google Scholar] [CrossRef]
- Li, M.R.; Adem, U.; McMitchell, S.R.; Xu, Z.; Thomas, C.I.; Warren, J.E.; Giap, D.V.; Niu, H.; Wan, X.; Palgrave, R.G.; et al. A polar corundum oxide displaying weak ferromagnetism at room temperature. J. Am. Chem. Soc. 2012, 134, 3737–3747. [Google Scholar] [CrossRef] [PubMed]
- Favre, V.Y.; Tucker, G.S.; Ritter, C.; Sibille, R.; Manuel, P.; Frontzek, M.D.; Kriener, M.; Yang, L.; Berger, H.; Magrez, A.; et al. Ferrimagnetic 120∘ magnetic structure in Cu2OSO4. Phys. Rev. B 2020, 102, 094422. [Google Scholar] [CrossRef]
- Herak, M.; Zorko, A.; Pregelj, M.; Zaharko, O.; Posnjak, G.; Jagličić, Z.; Potočnik, A.; Luetkens, H.; van Tol, J.; Ozarowski, A.; et al. Magnetic order and low-energy excitations in the quasi-one-dimensional antiferromagnet CuSe2O5 with staggered fields. Phys. Rev. B 2013, 87, 104413. [Google Scholar] [CrossRef]
- Sala, G.; Stone, M.B.; Rai, B.K.; May, A.F.; Laurell, P.; Garlea, V.O.; Butch, N.P.; Lumsden, M.D.; Ehlers, G.; Pokharel, G.; et al. Van Hove singularity in the magnon spectrum of the antiferromagnetic quantum honeycomb lattice. Nat. Commun. 2021, 12, 171. [Google Scholar] [CrossRef]
- Ji, W.H.; Yin, L.; Zhu, W.M.; Kumar, C.M.N.; Li, C.; Li, H.F.; Jin, W.T.; Nandi, S.; Sun, X.; Su, Y.; et al. Noncollinear magnetic structure and anisotropic magnetoelastic coupling in cobalt pyrovanadate Co2V2O7. Phys. Rev. B 2019, 100, 134420. [Google Scholar] [CrossRef]
- May, A.F.; Liu, Y.; Calder, S.; Parker, D.S.; Pandey, T.; Cakmak, E.; Cao, H.; Yan, J.; McGuire, M.A. Magnetic order and interactions in ferrimagnetic Mn3Si2Te6. Phys. Rev. B 2017, 95, 174440. [Google Scholar] [CrossRef]
- Rousse, G.; Rodriguez-Carvajal, J.; Patoux, S.; Masquelier, C. Magnetic structures of the triphylite LiFePO4 and of its delithiated form FePO4. Chem. Mater. 2003, 15, 4082–4090. [Google Scholar] [CrossRef]
- Wawrzyńska, E.; Coldea, R.; Wheeler, E.M.; Sörgel, T.; Jansen, M.; Ibberson, R.M.; Radaelli, P.G.; Koza, M.M. Charge disproportionation and collinear magnetic order in the frustrated triangular antiferromagnet AgNiO2. Phys. Rev. B 2008, 77, 094439. [Google Scholar] [CrossRef]
- Lu, K.; Sapkota, D.; DeBeer-Schmitt, L.; Wu, Y.; Cao, H.B.; Mannella, N.; Mandrus, D.; Aczel, A.A.; MacDougall, G.J. Canted antiferromagnetic order in the monoaxial chiral magnets V1/3TaS2 and V1/3NbS2. Phys. Rev. Mater. 2020, 4, 054416. [Google Scholar] [CrossRef]
- Gonzalo, J.A.; Cox, D.E.; Shirane, G. The Magnetic Structure of FeSb2O4. Phys. Rev. 1966, 147, 415–418. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J.; Rosenkranz, S.; Medarde, M.; Lacorre, P.; Fernandez-Díaz, M.T.; Fauth, F.; Trounov, V. Neutron-diffraction study of the magnetic and orbital ordering in 154SmNiO3 and 153EuNiO3. Phys. Rev. B 1998, 57, 456–464. [Google Scholar] [CrossRef]
- Caignaert, V.; Pralong, V.; Hardy, V.; Ritter, C.; Raveau, B. Magnetic structure of CaBaCo4O7: Lifting of geometrical frustration towards ferrimagnetism. Phys. Rev. B 2010, 81, 094417. [Google Scholar] [CrossRef]
- Gitgeatpong, G.; Zhao, Y.; Avdeev, M.; Piltz, R.O.; Sato, T.J.; Matan, K. Magnetic structure and Dzyaloshinskii-Moriya interaction in the S = 12 helical-honeycomb antiferromagnet α-Cu2V2O7. Phys. Rev. B 2015, 92, 024423. [Google Scholar] [CrossRef]
- Cockayne, E.; Levin, I.; Wu, H.; Llobet, A. Magnetic structure of bixbyite α-Mn2O3: A combined DFT+U and neutron diffraction study. Phys. Rev. B 2013, 87, 184413. [Google Scholar] [CrossRef]
- Huang, Q.; Qiu, Y.; Bao, W.; Green, M.A.; Lynn, J.W.; Gasparovic, Y.C.; Wu, T.; Wu, G.; Chen, X.H. Neutron-Diffraction Measurements of Magnetic Order and a Structural Transition in the Parent BaFe2As2 Compound of FeAs-Based High-Temperature Superconductors. Phys. Rev. Lett. 2008, 101, 257003. [Google Scholar] [CrossRef]
- Troć, R.; Pasturel, M.; Tougait, O.; Sazonov, A.P.; Gukasov, A.; Sułkowski, C.; Noël, H. Single-crystal study of the kagome antiferromagnet U3Ru4Al12. Phys. Rev. B 2012, 85, 064412. [Google Scholar] [CrossRef]
- Brown, P.; Forsyth, J. A neutron diffraction study of weak ferromagnetism in nickel fluoride. J. Phys. C Solid State Phys. 1981, 14, 5171. [Google Scholar] [CrossRef]
- Will, G.; Schäfer, W.; Pfeiffer, F.; Elf, F.; Etourneau, J. Neutron diffraction studies of TbB4 and ErB4. J. Less-Common Met. 1981, 82, 349–355. [Google Scholar] [CrossRef]
- Podchezertsev, S.; Barrier, N.; Pautrat, A.; Suard, E.; Retuerto, M.; Alonso, J.A.; Fernandez-Diaz, M.T.; Rodríguez-Carvajal, J. Influence of Polymorphism on the Magnetic Properties of Co5TeO8 Spinel. Inorg. Chem. 2021, 60, 13990–14001. [Google Scholar] [CrossRef]
- Adroja, D.T.; de la Fuente, C.; Fraile, A.; Hillier, A.D.; Daoud-Aladine, A.; Kockelmann, W.; Taylor, J.W.; Koza, M.M.; Burzurí, E.; Luis, F.; et al. Muon spin rotation and neutron scattering study of the noncentrosymmetric tetragonal compound CeAuAl3. Phys. Rev. B 2015, 91, 134425. [Google Scholar] [CrossRef]
- Lacorre, P.; Pannetier, J.; Fleischer, T.; Hoppe, R.; Ferey, G. Ordered magnetic frustration: XVI. Magnetic structure of CsCoF4 at 1.5 K. J. Solid State Chem. 1991, 93, 37–45. [Google Scholar] [CrossRef]
- Fruchart, D.; Bertaut, E.F. Magnetic studies of the metallic perovskite-type compounds of manganese. J. Phys. Soc. Jpn. 1978, 44, 781–791. [Google Scholar] [CrossRef]
- Paul, A.K.; Reehuis, M.; Ksenofontov, V.; Yan, B.; Hoser, A.; Többens, D.M.; Abdala, P.M.; Adler, P.; Jansen, M.; Felser, C. Lattice Instability and Competing Spin Structures in the Double Perovskite Insulator Sr2FeOsO6. Phys. Rev. Lett. 2013, 111, 167205. [Google Scholar] [CrossRef]
- May, A.F.; McGuire, M.A.; Cao, H.; Sergueev, I.; Cantoni, C.; Chakoumakos, B.C.; Parker, D.S.; Sales, B.C. Spin Reorientation in TlFe1.6Se2 with Complete Vacancy Ordering. Phys. Rev. Lett. 2012, 109, 077003. [Google Scholar] [CrossRef]
- Injac, S.; Yuen, A.K.; Avdeev, M.; Orlandi, F.; Kennedy, B.J. Structural and magnetic studies of KOsO4, a 5d 1 quantum magnet oxide. Phys. Chem. Chem. Phys. 2019, 21, 7261–7264. [Google Scholar] [CrossRef]
- Morosan, E.; Fleitman, J.A.; Huang, Q.; Lynn, J.W.; Chen, Y.; Ke, X.; Dahlberg, M.L.; Schiffer, P.; Craley, C.R.; Cava, R.J. Structure and magnetic properties of the Ho2Ge2O7 pyrogermanate. Phys. Rev. B 2008, 77, 224423. [Google Scholar] [CrossRef]
- Babkevich, P.; Testa, L.; Kimura, K.; Kimura, T.; Tucker, G.S.; Roessli, B.; Rønnow, H.M. Magnetic structure of Ba(TiO)Cu4(PO4)4 probed using spherical neutron polarimetry. Phys. Rev. B 2017, 96, 214436. [Google Scholar] [CrossRef]
- Taddei, K.M.; Sanjeewa, L.; Kolis, J.W.; Sefat, A.S.; de la Cruz, C.; Pajerowski, D.M. Local-Ising-type magnetic order and metamagnetism in the rare-earth pyrogermanate Er2Ge2O7. Phys. Rev. Mater. 2019, 3, 014405. [Google Scholar] [CrossRef]
- Cadogan, J.; Ryan, D.; Altounian, Z.; Wang, H.; Swainson, I. The magnetic structures of Nd5Si4 and Nd5Ge4. J. Phys. Condens. Matter 2002, 14, 7191. [Google Scholar] [CrossRef]
- Hillier, A.D.; Adroja, D.T.; Manuel, P.; Anand, V.K.; Taylor, J.W.; McEwen, K.A.; Rainford, B.D.; Koza, M.M. Muon spin relaxation and neutron scattering investigations of the noncentrosymmetric heavy-fermion antiferromagnet CeRhGe3. Phys. Rev. B 2012, 85, 134405. [Google Scholar] [CrossRef]
- Anand, V.K.; Hillier, A.D.; Adroja, D.T.; Khalyavin, D.D.; Manuel, P.; Andre, G.; Rols, S.; Koza, M.M. Understanding the magnetism in noncentrosymmetric CeIrGe3: Muon spin relaxation and neutron scattering studies. Phys. Rev. B 2018, 97, 184422. [Google Scholar] [CrossRef]
- Sale, M.; Xia, Q.; Avdeev, M.; Ling, C.D. Crystal and Magnetic Structures of Melilite-Type Ba2MnSi2O7. Inorg. Chem. 2019, 58, 4164–4172. [Google Scholar] [CrossRef]
- Zou, T.; Cai, Y.Q.; Dela Cruz, C.R.; Garlea, V.O.; Mahanti, S.D.; Cheng, J.G.; Ke, X. Up-up-down-down magnetic chain structure of the spin-12 tetragonally distorted spinel GeCu2O4. Phys. Rev. B 2016, 94, 214406. [Google Scholar] [CrossRef]
- Nirmala, R.; Morozkin, A.; Isnard, O.; Nigam, A. Understanding the magnetic ground state of rare-earth intermetallic compound Ce4Sb3: Magnetization and neutron diffraction studies. J. Magn. Magn. Mater. 2009, 321, 188–191. [Google Scholar] [CrossRef]
- Nandi, S.; Xiao, Y.; Qureshi, N.; Paramanik, U.B.; Jin, W.T.; Su, Y.; Ouladdiaf, B.; Hossain, Z.; Brückel, T. Magnetic structures of the Eu and Cr moments in EuCr2As2: Neutron diffraction study. Phys. Rev. B 2016, 94, 094411. [Google Scholar] [CrossRef]
- Dalmas de Réotier, P.; Marin, C.; Yaouanc, A.; Ritter, C.; Maisuradze, A.; Roessli, B.; Bertin, A.; Baker, P.J.; Amato, A. Long-range dynamical magnetic order and spin tunneling in the cooperative paramagnetic states of the pyrochlore analogous spinel antiferromagnets CdYb 2X4 (X = S or Se). Phys. Rev. B 2017, 96, 134403. [Google Scholar] [CrossRef]
- Hofmann, M.; Campbell, S.J.; Edge, A.V.J. EuMn2Ge2 and EuMn2Si2: Magnetic structures and valence transitions. Phys. Rev. B 2004, 69, 174432. [Google Scholar] [CrossRef]
- Cui, Q.; Huang, Q.; Alonso, J.A.; Sheptyakov, D.; De la Cruz, C.R.; Fernández-Díaz, M.T.; Wang, N.N.; Cai, Y.Q.; Li, D.; Dong, X.L.; et al. Complex antiferromagnetic order in the garnet Co3Al2Si3O12. Phys. Rev. B 2020, 101, 144424. [Google Scholar] [CrossRef]
- Jauch, W.; Reehuis, M.; Schultz, A. γ-ray and neutron diffraction studies of CoF2: Magnetostriction, electron density and magnetic moments. Acta Crystallogr. A 2004, 60, 51–57. [Google Scholar] [CrossRef]
- Calder, S.; Saparov, B.; Cao, H.B.; Niedziela, J.L.; Lumsden, M.D.; Sefat, A.S.; Christianson, A.D. Magnetic structure and spin excitations in BaMn2Bi2. Phys. Rev. B 2014, 89, 064417. [Google Scholar] [CrossRef]
- Wiebe, C.R.; Gardner, J.S.; Kim, S.J.; Luke, G.M.; Wills, A.S.; Gaulin, B.D.; Greedan, J.E.; Swainson, I.; Qiu, Y.; Jones, C.Y. Magnetic Ordering in the Spin-Ice Candidate Ho2Ru2O7. Phys. Rev. Lett. 2004, 93, 076403. [Google Scholar] [CrossRef]
- Blanco, J.A.; Brown, P.J.; Stunault, A.; Katsumata, K.; Iga, F.; Michimura, S. Magnetic structure of GdB4 from spherical neutron polarimetry. Phys. Rev. B 2006, 73, 212411. [Google Scholar] [CrossRef]
- Bos, J.W.G.; Colin, C.V.; Palstra, T.T.M. Magnetoelectric coupling in the cubic ferrimagnet Cu2OSeO3. Phys. Rev. B 2008, 78, 094416. [Google Scholar] [CrossRef]
- Kenzelmann, M.; Lawes, G.; Harris, A.B.; Gasparovic, G.; Broholm, C.; Ramirez, A.P.; Jorge, G.A.; Jaime, M.; Park, S.; Huang, Q.; et al. Direct Transition from a Disordered to a Multiferroic Phase on a Triangular Lattice. Phys. Rev. Lett. 2007, 98, 267205. [Google Scholar] [CrossRef]
- Volkova, O.S.; Mazurenko, V.V.; Solovyev, I.V.; Deeva, E.B.; Morozov, I.V.; Lin, J.Y.; Wen, C.K.; Chen, J.M.; Abdel-Hafiez, M.; Vasiliev, A.N. Noncollinear ferrimagnetic ground state in Ni(NO3)2. Phys. Rev. B 2014, 90, 134407. [Google Scholar] [CrossRef]
- Saito, T.; Toyoda, M.; Ritter, C.; Zhang, S.; Oguchi, T.; Attfield, J.P.; Shimakawa, Y. Symmetry-breaking 60°-spin order in the A-site-ordered perovskite LaMn3V4O12. Phys. Rev. B 2014, 90, 214405. [Google Scholar] [CrossRef]
- Haraguchi, Y.; Nawa, K.; Michioka, C.; Ueda, H.; Matsuo, A.; Kindo, K.; Avdeev, M.; Sato, T.J.; Yoshimura, K. Frustrated magnetism in the J1-J2 honeycomb lattice compounds MgMnO3 and ZnMnO3 synthesized via a metathesis reaction. Phys. Rev. Mater. 2019, 3, 124406. [Google Scholar] [CrossRef]
- Li, F.; Pomjakushin, V.; Mazet, T.; Sibille, R.; Malaman, B.; Yadav, R.; Keller, L.; Medarde, M.; Conder, K.; Pomjakushina, E. Revisiting the magnetic structure and charge ordering in La1/3Sr2/3FeO3 by neutron powder diffraction and Mössbauer spectroscopy. Phys. Rev. B 2018, 97, 174417. [Google Scholar] [CrossRef]
- Ritter, C.; Pankrats, A.; Gudim, I.; Vorotynov, A. Magnetic structure of iron borate DyFe3 (BO3) 4: A neutron diffraction study. J. Phys. Conf. Ser. 2012, 340, 012065. [Google Scholar] [CrossRef]
- Boldrin, D.; Fåk, B.; Canévet, E.; Ollivier, J.; Walker, H.C.; Manuel, P.; Khalyavin, D.D.; Wills, A.S. Vesignieite: An S = 12 Kagome Antiferromagnet with Dominant Third-Neighbor Exchange. Phys. Rev. Lett. 2018, 121, 107203. [Google Scholar] [CrossRef]
- Hao, X.F.; Stroppa, A.; Picozzi, S.; Filippetti, A.; Franchini, C. Exceptionally large room-temperature ferroelectric polarization in the PbNiO3 multiferroic nickelate: First-principles study. Phys. Rev. B 2012, 86, 014116. [Google Scholar] [CrossRef]
- Hwang, J.; Choi, E.S.; Ye, F.; Dela Cruz, C.R.; Xin, Y.; Zhou, H.D.; Schlottmann, P. Successive Magnetic Phase Transitions and Multiferroicity in the Spin-One Triangular-Lattice Antiferromagnet Ba3NiNb2O9. Phys. Rev. Lett. 2012, 109, 257205. [Google Scholar] [CrossRef]
- Corliss, L.M.; Elliott, N.; Hastings, J.M.; Sass, R.L. Magnetic Structure of Chromium Selenide. Phys. Rev. 1961, 122, 1402–1406. [Google Scholar] [CrossRef]
- Zvereva, E.A.; Raganyan, G.V.; Vasilchikova, T.M.; Nalbandyan, V.B.; Gafurov, D.A.; Vavilova, E.L.; Zakharov, K.V.; Koo, H.J.; Pomjakushin, V.Y.; Susloparova, A.E.; et al. Hidden magnetic order in the triangular-lattice magnet Li2MnTeO6. Phys. Rev. B 2020, 102, 094433. [Google Scholar] [CrossRef]
- Tian, W.; Svoboda, C.; Ochi, M.; Matsuda, M.; Cao, H.B.; Cheng, J.G.; Sales, B.C.; Mandrus, D.G.; Arita, R.; Trivedi, N.; et al. High antiferromagnetic transition temperature of the honeycomb compound SrRu2O6. Phys. Rev. B 2015, 92, 100404. [Google Scholar] [CrossRef]
- Milam-Guerrero, J.; Zheng, M.; Spence, N.R.; Falsaperna, M.; Calder, S.; Lapidus, S.; Saines, P.J.; Melot, B.C. Influence of the cubic sublattice on magnetic coupling between the tetrahedral sites of garnet. Inorg. Chem. 2021, 60, 8500. [Google Scholar] [CrossRef]
- Kurbakov, A.I.; Susloparova, A.E.; Pomjakushin, V.Y.; Skourski, Y.; Vavilova, E.L.; Vasilchikova, T.M.; Raganyan, G.V.; Vasiliev, A.N. Commensurate helicoidal order in the triangular layered magnet Na2MnTeO6. Phys. Rev. B 2022, 105, 064416. [Google Scholar] [CrossRef]
- Soh, J.R.; Yi, C.; Zivkovic, I.; Qureshi, N.; Stunault, A.; Ouladdiaf, B.; Rodríguez-Velamazán, J.A.; Shi, Y.; Rønnow, H.M.; Boothroyd, A.T. Magnetic structure of the topological semimetal Co3Sn2S2. Phys. Rev. B 2022, 105, 094435. [Google Scholar] [CrossRef]
- Ding, L.; Xu, X.; Jeschke, H.O.; Bai, X.; Feng, E.; Alemayehu, A.S.; Kim, J.; Huang, F.T.; Zhang, Q.; Ding, X.; et al. Field-tunable toroidal moment in a chiral-lattice magnet. Nat. Commun. 2021, 12, 5339. [Google Scholar] [CrossRef]
- Brown, P.; Chatterji, T. Neutron diffraction and polarimetric study of the magnetic and crystal structures of HoMnO3 and YMnO3. J. Phys. Condens. Matter 2006, 18, 10085. [Google Scholar] [CrossRef]
- Gondek, L.; Szytuła, A.; Penc, B.; Hernandez-Velasco, J.; Zygmunt, A. Magnetic structures of RTIn (R = Ce, Er; T = Au, Ni) compounds. J. Magn. Magn. Mater. 2003, 262, L177–L180. [Google Scholar] [CrossRef]
- Pomjakushin, V.; Perez-Mato, J.M.; Fischer, P.; Keller, L.; Sikora, W. Revisiting the antiferromagnetic structure of Tb14Ag51: The importance of distinguishing alternative symmetries for a multidimensional order parameter. Acta Cryst. B 2022, 78. [Google Scholar] [CrossRef]
- Leblanc, M.; De Pape, R.; Ferey, G.; Pannetier, J. Ordered magnetic frustration–V. Antiferromagnetic structure of the hexagonal bronzoid HTB FeF3; Comparison with the non frustrated rhombohedral form. Solid State Commun. 1986, 58, 171–176. [Google Scholar] [CrossRef]
- Garlea, V.O.; Sanjeewa, L.D.; McGuire, M.A.; Batista, C.D.; Samarakoon, A.M.; Graf, D.; Winn, B.; Ye, F.; Hoffmann, C.; Kolis, J.W. Exotic Magnetic Field-Induced Spin-Superstructures in a Mixed Honeycomb-Triangular Lattice System. Phys. Rev. X 2019, 9, 011038. [Google Scholar] [CrossRef]
- Brown, P.; Crangle, J.; Neumann, K.U.; Smith, J.G.; Ziebeck, K. The structure and magnetic moment distribution in the antiferromagnetic phase of. J. Phys. Condens. Matter 1997, 9, 4729. [Google Scholar] [CrossRef]
- Schobinger-Papamantellos, P.; Rodríguez-Carvajal, J.; Buschow, K. Magnetic ordering of ScMn6Ge6 by neutron diffraction. J. Magn. Magn. Mater. 2014, 369, 243–248. [Google Scholar] [CrossRef]
- Riberolles, S.X.; Trevisan, T.V.; Kuthanazhi, B.; Heitmann, T.; Ye, F.; Johnston, D.; Bud’ko, S.; Ryan, D.; Canfield, P.; Kreyssig, A.; et al. Magnetic crystalline-symmetry-protected axion electrodynamics and field-tunable unpinned Dirac cones in EuIn2As2. Nat. Commun. 2021, 12, 999. [Google Scholar] [CrossRef]
- Munoz, A.; Alonso, J.; Martínez-Lope, M.; Casáis, M.; Martínez, J.; Fernandez-Diaz, M. Evolution of the magnetic structure of hexagonal HoMnO3 from neutron powder diffraction data. Chem. Mater. 2001, 13, 1497–1505. [Google Scholar] [CrossRef]
- Tang, Y.S.; Wang, S.M.; Lin, L.; Li, C.; Zheng, S.H.; Li, C.F.; Zhang, J.H.; Yan, Z.B.; Jiang, X.P.; Liu, J.M. Collinear magnetic structure and multiferroicity in the polar magnet Co2Mo3O8. Phys. Rev. B 2019, 100, 134112. [Google Scholar] [CrossRef]
- Disseler, S.M.; Borchers, J.A.; Brooks, C.M.; Mundy, J.A.; Moyer, J.A.; Hillsberry, D.A.; Thies, E.L.; Tenne, D.A.; Heron, J.; Holtz, M.E.; et al. Magnetic Structure and Ordering of Multiferroic Hexagonal LuFeO3. Phys. Rev. Lett. 2015, 114, 217602. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Kamiya, Y.; Hong, T.; Cao, H.B.; Ehlers, G.; Tian, W.; Batista, C.D.; Dun, Z.L.; Zhou, H.D.; Matsuda, M. Static and Dynamical Properties of the Spin-1/2 Equilateral Triangular-Lattice Antiferromagnet Ba3CoSb2O9. Phys. Rev. Lett. 2016, 116, 087201. [Google Scholar] [CrossRef]
- Hayashida, S.; Hagihala, M.; Avdeev, M.; Miura, Y.; Manaka, H.; Masuda, T. Magnetic order in the chemically substituted frustrated antiferromagnet CsCrF4. Phys. Rev. B 2020, 102, 174440. [Google Scholar] [CrossRef]
- Maletta, H.; Robinson, R.; Lawson, A.; Sechovskỳ, V.; Havela, L.; Jirman, L.; Divis, M.; Brück, E.; De Boer, F.; Andreev, A.; et al. On the magnetic structure of UNiGa. J. Magn. Magn. Mater. 1992, 104, 21–22. [Google Scholar] [CrossRef]
- Hayashida, S.; Zaharko, O.; Kurita, N.; Tanaka, H.; Hagihala, M.; Soda, M.; Itoh, S.; Uwatoko, Y.; Masuda, T. Pressure-induced quantum phase transition in the quantum antiferromagnet CsFeCl3. Phys. Rev. B 2018, 97, 140405. [Google Scholar] [CrossRef]
- Gondek, L.; Baran, S.; Szytuła, A.; Kaczorowski, D.; Hernández-Velasco, J. Crystal and magnetic structures of RPdIn (R = Nd, Ho, Er) compounds. J. Magn. Magn. Mater. 2005, 285, 272–278. [Google Scholar] [CrossRef]
- Watanabe, H.; Kunitomi, N. On the neutron diffraction study of FeGe. J. Phys. Soc. Jpn. 1966, 21, 1932–1935. [Google Scholar] [CrossRef]
- Mekata, M.; Adachi, K. Magnetic structure of CsCoCl3. J. Phys. Soc. Jpn. 1978, 44, 806–812. [Google Scholar] [CrossRef]
- May, A.F.; Calder, S.; Cantoni, C.; Cao, H.; McGuire, M.A. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3−xGeTe2. Phys. Rev. B 2016, 93, 014411. [Google Scholar] [CrossRef]
- Eriksson, T.; Lizárraga, R.; Felton, S.; Bergqvist, L.; Andersson, Y.; Nordblad, P.; Eriksson, O. Crystal and magnetic structure of Mn3IrSi. Phys. Rev. B 2004, 69, 054422. [Google Scholar] [CrossRef]
- Pomjakushin, V.; Plokhikh, I.; White, J.S.; Fujishiro, Y.; Kanazawa, N.; Tokura, Y.; Pomjakushina, E. Topological magnetic structures in MnGe: Neutron diffraction and symmetry analysis. Phys. Rev. B 2023, 107, 024410. [Google Scholar] [CrossRef]
- Yano, S.; Louca, D.; Yang, J.; Chatterjee, U.; Bugaris, D.E.; Chung, D.Y.; Peng, L.; Grayson, M.; Kanatzidis, M.G. Magnetic structure of NiS2−xSex. Phys. Rev. B 2016, 93, 024409. [Google Scholar] [CrossRef]
- Sato, T.J.; Ishikawa, A.; Sakurai, A.; Hattori, M.; Avdeev, M.; Tamura, R. Whirling spin order in the quasicrystal approximant Au72Al14Tb14. Phys. Rev. B 2019, 100, 054417. [Google Scholar] [CrossRef]
- Saeaun, P.; Zhao, Y.; Piyawongwatthana, P.; Sato, T.J.; Chou, F.C.; Avdeev, M.; Gitgeatpong, G.; Matan, K. Magnetic properties and magnetic structure of the frustrated quasi-one-dimensional antiferromagnet SrCuTe2O6. Phys. Rev. B 2020, 102, 134407. [Google Scholar] [CrossRef]
- Samartzis, A.; Chillal, S.; Islam, A.T.M.N.; Siemensmeyer, K.; Prokes, K.; Voneshen, D.J.; Senyshyn, A.; Khalyavin, D.; Lake, B. Structural and magnetic properties of the quantum magnet BaCuTe2O6. Phys. Rev. B 2021, 103, 094417. [Google Scholar] [CrossRef]
- Stewart, J.; Ehlers, G.; Wills, A.; Bramwell, S.T.; Gardner, J. Phase transitions, partial disorder and multi-k structures in Gd2Ti2O7. J. Phys. Condens. Matter 2004, 16, L321. [Google Scholar] [CrossRef]
- Fujii, H.; Uwatoko, Y.; Motoya, K.; Ito, Y.; Okamoto, T. Neutron diffraction and magnetic studies of CeZn and NdZn single crystals. J. Magn. Magn. Mater. 1987, 63, 114–116. [Google Scholar] [CrossRef]
- Wawrzyńczak, R.; Tomasello, B.; Manuel, P.; Khalyavin, D.; Le, M.D.; Guidi, T.; Cervellino, A.; Ziman, T.; Boehm, M.; Nilsen, G.J.; et al. Magnetic order and single-ion anisotropy in Tb3Ga5O12. Phys. Rev. B 2019, 100, 094442. [Google Scholar] [CrossRef]
- Sodemann, I.; Fu, L. Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials. Phys. Rev. Lett. 2015, 115, 216806. [Google Scholar] [CrossRef]
- Spaldin, N.A.; Fechner, M.; Bousquet, E.; Balatsky, A.; Nordström, L. Monopole-based formalism for the diagonal magnetoelectric response. Phys. Rev. B 2013, 88, 094429. [Google Scholar] [CrossRef]
- Khomskii, D. Magnetic monopoles and unusual dynamics of magnetoelectrics. Nat. Commun. 2014, 5, 4793. [Google Scholar] [CrossRef] [PubMed]
- Thöle, F.; Fechner, M.; Spaldin, N.A. First-principles calculation of the bulk magnetoelectric monopole density: Berry phase and Wannier function approaches. Phys. Rev. B 2016, 93, 195167. [Google Scholar] [CrossRef]
- Thöle, F.; Spaldin, N.A. Magnetoelectric multipoles in metals. Philos. Trans. R. Soc. A 2018, 376, 20170450. [Google Scholar] [CrossRef] [PubMed]
- Misawa, R.; Arakawa, K.; Yoshioka, T.; Ueda, H.; Iga, F.; Tamasaku, K.; Tanaka, Y.; Kimura, T. Resonant X-ray diffraction study using circularly polarized X-rays on antiferromagnetic TbB4. Phys. Rev. B 2023, 108, 134433. [Google Scholar] [CrossRef]
- Arakawa, K.; Hayashida, T.; Kimura, K.; Misawa, R.; Nagai, T.; Miyamoto, T.; Okamoto, H.; Iga, F.; Kimura, T. Detecting Magnetoelectric Effect in a Metallic Antiferromagnet via Nonreciprocal Rotation of Reflected Light. Phys. Rev. Lett. 2023, 131, 236702. [Google Scholar] [CrossRef] [PubMed]
- Aizu, K. Possible species of ferroelectrics. Phys. Rev. 1966, 146, 423. [Google Scholar] [CrossRef]
- Aizu, K. Possible species of “ferroelastic” crystals and of simultaneously ferroelectric and ferroelastic crystals. J. Phys. Soc. Jpn. 1969, 27, 387–396. [Google Scholar] [CrossRef]
- Aizu, K. Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phs. Rev. B 1970, 2, 754. [Google Scholar] [CrossRef]
- Nagaosa, N.; Sinova, J.; Onoda, S.; MacDonald, A.H.; Ong, N.P. Anomalous Hall effect. Rev. Mod. Phys. 2010, 82, 1539–1592. [Google Scholar] [CrossRef]
- Xiao, D.; Chang, M.C.; Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 2010, 82, 1959–2007. [Google Scholar] [CrossRef]
- Ikhlas, M.; Tomita, T.; Koretsune, T.; Suzuki, M.T.; Nishio-Hamane, D.; Arita, R.; Otani, Y.; Nakatsuji, S. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 2017, 13, 1085. [Google Scholar] [CrossRef]
- Kuroda, K.; Tomita, T.; Suzuki, M.T.; Bareille, C.; Nugroho, A.; Goswami, P.; Ochi, M.; Ikhlas, M.; Nakayama, M.; Akebi, S.; et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 2017, 16, 1090. [Google Scholar] [CrossRef] [PubMed]
- Higo, T.; Man, H.; Gopman, D.B.; Wu, L.; Koretsune, T.; van’t Erve, O.M.; Kabanov, Y.P.; Rees, D.; Li, Y.; Suzuki, M.T.; et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photonics 2018, 12, 73. [Google Scholar] [CrossRef] [PubMed]
- Chen, H. Electronic chiralization as an indicator of the anomalous Hall effect in unconventional magnetic systems. Phys. Rev. B 2022, 106, 024421. [Google Scholar] [CrossRef]
- Yamasaki, Y.; Nakao, H.; Arima, T.h. Augmented Magnetic Octupole in Kagomé 120-degree Antiferromagnets Detectable via X-ray Magnetic Circular Dichroism. J. Phys. Soc. Jpn. 2020, 89, 083703. [Google Scholar] [CrossRef]
- Hayami, S.; Kusunose, H.; Motome, Y. Spontaneous parity breaking in spin-orbital coupled systems. Phys. Rev. B 2014, 90, 081115. [Google Scholar] [CrossRef]
- Hayami, S.; Kusunose, H.; Motome, Y. Emergent odd-parity multipoles and magnetoelectric effects on a diamond structure: Implication for the 5d transition metal oxides AOsO4 (A = K, Rb, and Cs). Phys. Rev. B 2018, 97, 024414. [Google Scholar] [CrossRef]
- Yanagi, Y.; Hayami, S.; Kusunose, H. Manipulating the magnetoelectric effect: Essence learned from Co4Nb2O9. Phys. Rev. B 2018, 97, 020404. [Google Scholar] [CrossRef]
- Dzyaloshinskii, I. On the magneto-electrical effect in antiferromagnets. Sov. Phys. JETP 1960, 10, 628–629. [Google Scholar]
- Astrov, D. The magnetoelectric effect in antiferromagnetics. Sov. Phys. JETP-USSR 1960, 11, 708–709. [Google Scholar]
- Astrov, D. Magnetoelectric effect in chromium oxide. Sov. Phys. JETP 1961, 13, 729–733. [Google Scholar]
- Folen, V.J.; Rado, G.T.; Stalder, E.W. Anisotropy of the Magnetoelectric Effect in Cr2O3. Phys. Rev. Lett. 1961, 6, 607–608. [Google Scholar] [CrossRef]
- Shitade, A.; Watanabe, H.; Yanase, Y. Theory of orbital magnetic quadrupole moment and magnetoelectric susceptibility. Phys. Rev. B 2018, 98, 020407(R). [Google Scholar] [CrossRef]
- Watanabe, H.; Yanase, Y. Magnetic hexadecapole order and magnetopiezoelectric metal state in Ba1−xKxMn2As2. Phys. Rev. B 2017, 96, 064432. [Google Scholar] [CrossRef]
- Shiomi, Y.; Watanabe, H.; Masuda, H.; Takahashi, H.; Yanase, Y.; Ishiwata, S. Observation of a Magnetopiezoelectric Effect in the Antiferromagnetic Metal EuMnBi2. Phys. Rev. Lett. 2019, 122, 127207. [Google Scholar] [CrossRef] [PubMed]
- Hayami, S.; Kusunose, H. Spin-orbital-momentum locking under odd-parity magnetic quadrupole ordering. Phys. Rev. B 2021, 104, 045117. [Google Scholar] [CrossRef]
- Wang, C.; Gao, Y.; Xiao, D. Intrinsic Nonlinear Hall Effect in Antiferromagnetic Tetragonal CuMnAs. Phys. Rev. Lett. 2021, 127, 277201. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhao, J.; Huang, Y.X.; Wu, W.; Sheng, X.L.; Xiao, C.; Yang, S.A. Intrinsic Second-Order Anomalous Hall Effect and Its Application in Compensated Antiferromagnets. Phys. Rev. Lett. 2021, 127, 277202. [Google Scholar] [CrossRef]
- Kirikoshi, A.; Hayami, S. Microscopic mechanism for intrinsic nonlinear anomalous Hall conductivity in noncollinear antiferromagnetic metals. Phys. Rev. B 2023, 107, 155109. [Google Scholar] [CrossRef]
- Yamaura, J.i.; Hiroi, Z. Crystal structure and magnetic properties of the 5d transition metal oxides AOsO4(A = K, Rb, Cs). Phys. Rev. B 2019, 99, 155113. [Google Scholar] [CrossRef]
- Arima, T. Time-Reversal Symmetry Breaking and Consequent Physical Responses Induced by All-In-All-Out Type Magnetic Order on the Pyrochlore Lattice. J. Phys. Soc. Jpn. 2013, 82, 013705. [Google Scholar] [CrossRef]
- Hayami, S.; Kusunose, H. Time-reversal switching responses in antiferromagnets. Phys. Rev. B 2023, 108, L140409. [Google Scholar] [CrossRef]
- Xu, X.; Huang, F.T.; Cheong, S.W. Magnetic toroidicity. J. Phys. Condens. Matter 2024, 36, 203002. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, T.; Matsumoto, K.; Kimura, T. Electric-field-induced magnetic toroidal moment in a time-reversal-odd antiferromagnet. arXiv 2024, arXiv:2406.03029. [Google Scholar]
- Litvin, D.B. Ferroic classifications extended to ferrotoroidic crystals. Acta Cryst. A 2008, 64, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Popov, Y.F.; Kadomtseva, A.; Belov, D.; Vorob’ev, G.; Zvezdin, A. Magnetic-field-induced toroidal moment in the magnetoelectric Cr2O3. J. Exp. Theor. Phys. Lett. 1999, 69, 330–335. [Google Scholar] [CrossRef]
- Schmid, H. On ferrotoroidics and electrotoroidic, magnetotoroidic and piezotoroidic effects. Ferroelectrics 2001, 252, 41–50. [Google Scholar] [CrossRef]
- Ederer, C.; Spaldin, N.A. Towards a microscopic theory of toroidal moments in bulk periodic crystals. Phys. Rev. B 2007, 76, 214404. [Google Scholar] [CrossRef]
- Spaldin, N.A.; Fiebig, M.; Mostovoy, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Matter 2008, 20, 434203. [Google Scholar] [CrossRef]
- Kopaev, Y.V. Toroidal ordering in crystals. Physics-Uspekhi 2009, 52, 1111–1125. [Google Scholar] [CrossRef]
- Yanase, Y. Magneto-Electric Effect in Three-Dimensional Coupled Zigzag Chains. J. Phys. Soc. Jpn. 2014, 83, 014703. [Google Scholar] [CrossRef]
- Hayami, S.; Kusunose, H.; Motome, Y. Toroidal order in metals without local inversion symmetry. Phys. Rev. B 2014, 90, 024432. [Google Scholar] [CrossRef]
- Hayami, S.; Kusunose, H.; Motome, Y. Spontaneous Multipole Ordering by Local Parity Mixing. J. Phys. Soc. Jpn. 2015, 84, 064717. [Google Scholar] [CrossRef]
- Hayami, S.; Kusunose, H.; Motome, Y. Emergent spin-valley-orbital physics by spontaneous parity breaking. J. Phys. Condens. Matter 2016, 28, 395601. [Google Scholar] [CrossRef]
- Saito, H.; Uenishi, K.; Miura, N.; Tabata, C.; Hidaka, H.; Yanagisawa, T.; Amitsuka, H. Evidence of a New Current-Induced Magnetoelectric Effect in a Toroidal Magnetic Ordered State of UNi4B. J. Phys. Soc. Jpn. 2018, 87, 033702. [Google Scholar] [CrossRef]
- Kawaguchi, H.; Tatara, G. Effective Hamiltonian theory for nonreciprocal light propagation in magnetic Rashba conductor. Phys. Rev. B 2016, 94, 235148. [Google Scholar] [CrossRef]
- Watanabe, H.; Yanase, Y. Nonlinear electric transport in odd-parity magnetic multipole systems: Application to Mn-based compounds. Phys. Rev. Res. 2020, 2, 043081. [Google Scholar] [CrossRef]
- Watanabe, H.; Yanase, Y. Photocurrent response in parity-time symmetric current-ordered states. Phys. Rev. B 2021, 104, 024416. [Google Scholar] [CrossRef]
- Suzuki, Y. Tunneling spin current in systems with spin degeneracy. Phys. Rev. B 2022, 105, 075201. [Google Scholar] [CrossRef]
- Yatsushiro, M.; Oiwa, R.; Kusunose, H.; Hayami, S. Analysis of model-parameter dependences on the second-order nonlinear conductivity in PT-symmetric collinear antiferromagnetic metals with magnetic toroidal moment on zigzag chains. Phys. Rev. B 2022, 105, 155157. [Google Scholar] [CrossRef]
- Miyahara, S.; Furukawa, N. Nonreciprocal Directional Dichroism and Toroidalmagnons in Helical Magnets. J. Phys. Soc. Jpn. 2012, 81, 023712. [Google Scholar] [CrossRef]
- Miyahara, S.; Furukawa, N. Theory of magneto-optical effects in helical multiferroic materials via toroidal magnon excitation. Phys. Rev. B 2014, 89, 195145. [Google Scholar] [CrossRef]
- Hayami, S.; Kusunose, H.; Motome, Y. Asymmetric Magnon Excitation by Spontaneous Toroidal Ordering. J. Phys. Soc. Jpn. 2016, 85, 053705. [Google Scholar] [CrossRef]
- Kondo, H.; Akagi, Y. Nonlinear magnon spin Nernst effect in antiferromagnets and strain-tunable pure spin current. Phys. Rev. Res. 2022, 4, 013186. [Google Scholar] [CrossRef]
- Hayami, S.; Yatsushiro, M.; Kusunose, H. Nonlinear spin Hall effect in PT-symmetric collinear magnets. Phys. Rev. B 2022, 106, 024405. [Google Scholar] [CrossRef]
- Mook, A.; Neumann, R.R.; Johansson, A.; Henk, J.; Mertig, I. Origin of the magnetic spin Hall effect: Spin current vorticity in the Fermi sea. Phys. Rev. Res. 2020, 2, 023065. [Google Scholar] [CrossRef]
- Hayami, S.; Yatsushiro, M. Spin Conductivity Based on Magnetic Toroidal Quadrupole Hidden in Antiferromagnets. J. Phys. Soc. Jpn. 2022, 91, 063702. [Google Scholar] [CrossRef]
- Matsumoto, T.; Hayami, S. Nonreciprocal magnons due to symmetric anisotropic exchange interaction in honeycomb antiferromagnets. Phys. Rev. B 2020, 101, 224419. [Google Scholar] [CrossRef]
- Hayami, S.; Yatsushiro, M. Nonlinear nonreciprocal transport in antiferromagnets free from spin-orbit coupling. Phys. Rev. B 2022, 106, 014420. [Google Scholar] [CrossRef]
- Hayami, S.; Yatsushiro, M. Nonreciprocal Transport in Noncoplanar Magnetic Systems without Spin–Orbit Coupling, Net Scalar Chirality, or Magnetization. J. Phys. Soc. Jpn. 2022, 91, 094704. [Google Scholar] [CrossRef]
- Kishine, J.i.; Kusunose, H.; Yamamoto, H.M. On the definition of chirality and enantioselective fields. Isr. J. Chem. 2022, 62, e202200049. [Google Scholar] [CrossRef]
- Hayami, S.; Kusunose, H. Chiral charge as hidden order parameter in URu2Si2. J. Phys. Soc. Jpn. 2023, 92, 113704. [Google Scholar] [CrossRef]
- Inda, A.; Oiwa, R.; Hayami, S.; Yamamoto, H.M.; Kusunose, H. Quantification of chirality based on electric toroidal monopole. J. Chem. Phys. 2024, 160, 184117. [Google Scholar] [CrossRef] [PubMed]
- Yoda, T.; Yokoyama, T.; Murakami, S. Current-induced orbital and spin magnetizations in crystals with helical structure. Sci. Rep. 2015, 5, 12024. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, T.; Shimokawa, Y.; Kobayashi, K.; Itou, T. Observation of current-induced bulk magnetization in elemental tellurium. Nat. Commun. 2017, 8, 954. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, T.; Watanabe, Y.; Ogasawara, N.; Kobayashi, K.; Itou, T. Current-induced magnetization caused by crystal chirality in nonmagnetic elemental tellurium. Phys. Rev. Res. 2021, 3, 023111. [Google Scholar] [CrossRef]
- Rikken, G.L.J.A.; Fölling, J.; Wyder, P. Electrical Magnetochiral Anisotropy. Phys. Rev. Lett. 2001, 87, 236602. [Google Scholar] [CrossRef] [PubMed]
- Hlinka, J. Eight Types of Symmetrically Distinct Vectorlike Physical Quantities. Phys. Rev. Lett. 2014, 113, 165502. [Google Scholar] [CrossRef]
- Hlinka, J.; Privratska, J.; Ondrejkovic, P.; Janovec, V. Symmetry Guide to Ferroaxial Transitions. Phys. Rev. Lett. 2016, 116, 177602. [Google Scholar] [CrossRef]
- Jin, W.; Drueke, E.; Li, S.; Admasu, A.; Owen, R.; Day, M.; Sun, K.; Cheong, S.W.; Zhao, L. Observation of a ferro-rotational order coupled with second-order nonlinear optical fields. Nat. Phys. 2020, 16, 42–46. [Google Scholar] [CrossRef]
- Cheong, S.W.; Lim, S.; Du, K.; Huang, F.T. Permutable SOS (symmetry operational similarity). NPJ Quantum Mater. 2021, 6, 58. [Google Scholar] [CrossRef]
- Cheong, S.W.; Huang, F.T.; Kim, M. Linking emergent phenomena and broken symmetries through one-dimensional objects and their dot/cross products. Rep. Prog. Phys. 2022, 85, 124501. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, T.; Uemura, Y.; Kimura, K.; Matsuoka, S.; Hagihala, M.; Hirose, S.; Morioka, H.; Hasegawa, T.; Kimura, T. Phase transition and domain formation in ferroaxial crystals. Phys. Rev. Mater. 2021, 5, 124409. [Google Scholar] [CrossRef]
- Hayashida, T.; Uemura, Y.; Kimura, K.; Matsuoka, S.; Morikawa, D.; Hirose, S.; Tsuda, K.; Hasegawa, T.; Kimura, T. Visualization of ferroaxial domains in an order-disorder type ferroaxial crystal. Nat. Commun. 2020, 11, 4582. [Google Scholar] [CrossRef] [PubMed]
- Yokota, H.; Hayashida, T.; Kitahara, D.; Kimura, T. Three-dimensional imaging of ferroaxial domains using circularly polarized second harmonic generation microscopy. NPJ Quantum Mater. 2022, 7, 106. [Google Scholar] [CrossRef]
- Fang, X.; De, C.; Huang, F.T.; Xu, X.; Du, K.; Wang, K.; Li, B.; Cheong, S.W. Ferrorotational Selectivity in Ilmenites. J. Am. Chem. Soc. 2023, 145, 28022–28029. [Google Scholar] [CrossRef]
- Nasu, J.; Hayami, S. Antisymmetric thermopolarization by electric toroidicity. Phys. Rev. B 2022, 105, 245125. [Google Scholar] [CrossRef]
- Roy, A.; Guimarães, M.H.D.; Sławińska, J. Unconventional spin Hall effects in nonmagnetic solids. Phys. Rev. Mater. 2022, 6, 045004. [Google Scholar] [CrossRef]
- Hayami, S.; Oiwa, R.; Kusunose, H. Electric Ferro-Axial Moment as Nanometric Rotator and Source of Longitudinal Spin Current. J. Phys. Soc. Jpn. 2022, 91, 113702. [Google Scholar] [CrossRef]
- Inda, A.; Hayami, S. Nonlinear Transverse Magnetic Susceptibility under Electric Toroidal Dipole Ordering. J. Phys. Soc. Jpn. 2023, 92, 043701. [Google Scholar] [CrossRef]
- Kirikoshi, A.; Hayami, S. Rotational Response Induced by Electric Toroidal Dipole. J. Phys. Soc. Jpn. 2023, 92, 123703. [Google Scholar] [CrossRef]
- Hayami, S. Ferroaxial moment induced by vortex spin texture. Phys. Rev. B 2022, 106, 144402. [Google Scholar] [CrossRef]
- Inda, A.; Hayami, S. Magnetic instability under ferroaxial moment. Phys. Rev. B 2024, 109, 174424. [Google Scholar] [CrossRef]
- Di Matteo, S.; Norman, M.R. Nature of the tensor order in Cd2Re2O7. Phys. Rev. B 2017, 96, 115156. [Google Scholar] [CrossRef]
- Hayami, S.; Yanagi, Y.; Kusunose, H.; Motome, Y. Electric Toroidal Quadrupoles in the Spin-Orbit-Coupled Metal Cd2Re2O7. Phys. Rev. Lett. 2019, 122, 147602. [Google Scholar] [CrossRef] [PubMed]
- Ishitobi, T.; Hattori, K. Magnetoelectric Effects and Charge-Imbalanced Solenoids: Antiferro Quadrupole Orders in a Diamond Structure. J. Phys. Soc. Jpn. 2019, 88, 063708. [Google Scholar] [CrossRef]
- Göbel, B.; Mook, A.; Henk, J.; Mertig, I. Magnetoelectric effect and orbital magnetization in skyrmion crystals: Detection and characterization of skyrmions. Phys. Rev. B 2019, 99, 060406. [Google Scholar] [CrossRef]
- Hayami, S.; Yambe, R. Helicity locking of a square skyrmion crystal in a centrosymmetric lattice system without vertical mirror symmetry. Phys. Rev. B 2022, 105, 104428. [Google Scholar] [CrossRef]
- Bhowal, S.; Spaldin, N.A. Magnetoelectric Classification of Skyrmions. Phys. Rev. Lett. 2022, 128, 227204. [Google Scholar] [CrossRef]
MP | Rank | Notation | # | Band Dispersion | E | H | J | ||
---|---|---|---|---|---|---|---|---|---|
E | 0 | 122 | 1 | ||||||
E | 1 | 31 | |||||||
E | 2 | 106 | |||||||
E | 3 | 58 | |||||||
M | 0 | 32 | – | ||||||
M | 1 | 31 | |||||||
M | 2 | 42 | – | ||||||
M | 3 | 58 | |||||||
MT | 0 | 32 | – | ||||||
MT | 1 | 31 | |||||||
MT | 2 | 42 | |||||||
MT | 3 | 58 | |||||||
ET | 0 | 32 | |||||||
ET | 1 | 43 | – | ||||||
ET | 2 | 42 | |||||||
ET | 3 | 71 | – |
Irrep | MP | Subgroup | (0 0 0) | (0 0) | (x 0 0) | (x y 0) |
---|---|---|---|---|---|---|
– | – | – | ✓ | |||
✓ | ✓ | ✓ | ✓ | |||
, | – | – | – | ✓ | ||
, | – | ✓ | ✓ | ✓ | ||
✓ | ✓ | ✓ | ✓ | |||
✓ | ✓ | ✓ | ✓ | |||
– | – | ✓ | ✓ | |||
– | – | ✓ | ✓ | |||
, | – | – | ✓ | ✓ | ||
, | – | – | ✓ | ✓ | ||
, | – | – | ✓ | ✓ | ||
, | – | – | ✓ | ✓ |
MPG | Material | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
#1 | 1 | 1 | 5 | 3 | 7 | 1 | 5 | 3 | 7 | 1 | 5 | 3 | 7 | 1 | 5 | 3 | 7 | Mn2ScSbO6 [42] | ||||
#2 | 1 | 5 | 3 | 7 | 1 | 5 | 3 | 7 | LiFeAs2O7 [43] | |||||||||||||
#3 | 1 | 5 | 3 | 7 | 1 | 5 | 3 | 7 | RbMnF4 [44] | |||||||||||||
#4 | 1 | 5 | 3 | 7 | CuMnO2 [45] | |||||||||||||||||
#5 | 1 | 5 | 3 | 7 | 1 | 5 | 3 | 7 | MnPSe3 [46] | |||||||||||||
#6 | 2 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | LiFeP2O7 [47] | ||||
#7 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | Yb2CoMnO6 [48] | |||||||||||||
#8 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 2 | 2 | 4 | 2 | 2 | 4 | BaDy2O4 [49] | |||||||
#9 | m | 1 | 3 | 1 | 3 | 2 | 2 | 4 | 1 | 3 | 1 | 3 | 2 | 2 | 4 | Mn4Nb2O9 [50] | ||||||
#10 | 1 | 3 | 1 | 3 | 2 | 2 | 4 | DyFeWO6 [51] | ||||||||||||||
#11 | 1 | 3 | 1 | 3 | 2 | 2 | 4 | 2 | 2 | 4 | 1 | 3 | 1 | 3 | ScFeO3 [52] | |||||||
#12 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | Cu2OSO4 [53] | |||||||||||||
#13 | 1 | 3 | 1 | 3 | CuSe2O5 [54] | |||||||||||||||||
#14 | 1 | 3 | 1 | 3 | 2 | 2 | 4 | YbCl3 [55] | ||||||||||||||
#15 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | Co2V2O7 [56] | |||||||||||||
#16 | 1 | 3 | 1 | 3 | 2 | 2 | 4 | Mn3Ti2Te6 [57] | ||||||||||||||
#17 | 222 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | FePO4 [58] | ||||||||
#18 | 1 | 2 | 1 | 1 | 2 | 1 | AgNiO2 [59] | |||||||||||||||
#19 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | VNb3S6 [60] | |||||||||
#20 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | FeSb2O4 [61] | |||||||||
#21 | 1 | 2 | 1 | 1 | 1 | 2 | EuNiO3 [62] | |||||||||||||||
#22 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | CaBaCo4O7 [63] | |||||||||
#23 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | -Cu2V2O7 [64] | |||||||||
#24 | 1 | 2 | 1 | 1 | 2 | 1 | -Mn2O3 [65] | |||||||||||||||
#25 | 1 | 2 | 1 | BaFe2As2 [66] | ||||||||||||||||||
#26 | 1 | 2 | 1 | 1 | 1 | 2 | U3Ru4Al12 [67] | |||||||||||||||
#27 | 1 | 2 | 1 | 1 | 1 | 2 | NiF2 [68] | |||||||||||||||
#28 | 1 | 2 | 1 | 1 | 2 | 1 | TbB4 [69] | |||||||||||||||
#29 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Ce5TeO8 [70] | ||||
#30 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | CeAuAl3 [71] | |||||||||||||
#31 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | ||||||||||
#32 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | ||||||||||
#33 | 1 | 1 | 1 | 1 | 2 | 2 | ||||||||||||||||
#34 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | CsCoF4 [72] | |||||||||
#35 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Mn3CuN [73] | |||||||||||||
#36 | 1 | 1 | 1 | 1 | Sr2FeOsO6 [74] | |||||||||||||||||
#37 | 1 | 1 | 1 | 1 | 2 | 2 | ||||||||||||||||
#38 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | TlFe1.6Se2 [75] | |||||||||||||
#39 | 1 | 1 | 1 | 1 | 2 | 2 | KOsO4 [76] | |||||||||||||||
#40 | 422 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Ho2Ge2O7 [77] | ||||||||||||
#41 | 1 | 1 | 1 | 1 | Ba(TiO)Cu4(PO4)4 [78] | |||||||||||||||||
#42 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Er2Ge2O7 [79] | |||||||||||||
#43 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Nd5Si4 [80] | |||||||||||||
#44 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||||
#45 | 1 | 1 | 1 | 1 | CeRhGe3 [81] | |||||||||||||||||
#46 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||||
#47 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | CeIrGe3 [82] | |||||||||||||
#48 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Ba2MnSi2O7 [83] | |||||||||||||
#49 | 1 | 1 | 1 | 1 | GeCu2O4 [84] | |||||||||||||||||
#50 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||||
#51 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Ce4Sb3 [85] | |||||||||||||
#52 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | EuCr2As2 [86] | |||||||||||||
#53 | 1 | 1 | 1 | 1 | CdYb2S4 [87] | |||||||||||||||||
#54 | 1 | 1 | EuMn2Si2 [88] | |||||||||||||||||||
#55 | 1 | 1 | 1 | 1 | Co3Al2Si3O12 [89] | |||||||||||||||||
#56 | 1 | 1 | 1 | 1 | CoF2 [90] | |||||||||||||||||
#57 | 1 | 1 | 1 | 1 | BaMn2Bi2 [91] | |||||||||||||||||
#58 | 1 | 1 | 1 | 1 | Ho2Ru2O7 [92] | |||||||||||||||||
#59 | 1 | 1 | 1 | 1 | GdB4 [93] | |||||||||||||||||
#60 | 3 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 3 | Cu2OSeO3 [94] | ||||
#61 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 3 | RbFe(MoO4)2 [95] | |||||||||||||
#62 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 3 | NiN2O6 [96] | |||||||||||||
#63 | 1 | 1 | 1 | 3 | LaMn3V4O12 [97] | |||||||||||||||||
#64 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 3 | MgMnO3 [98] | |||||||||||||
#65 | 32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | La0.33Sr0.67FeO3 [99] | ||||||||
#66 | 1 | 1 | 1 | 1 | 1 | 1 | DyFe3(B3)4 [100] | |||||||||||||||
#67 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | BaCu3V2O8(OD)2 [101] | |||||||||||
#68 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | PbNiO3 [102] | |||||||||||
#69 | 1 | 1 | 1 | 1 | 1 | Ba3Nb2NiO9 [103] | ||||||||||||||||
#70 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | CrSe [104] | |||||||||||
#71 | 1 | 1 | 1 | 1 | 1 | 1 | Li2MnTeO6 [105] | |||||||||||||||
#72 | 1 | 1 | 1 | SrRu2O6 [106] | ||||||||||||||||||
#73 | 1 | 1 | 1 | 1 | 2 | Ca2YZr2Fe3O12 [107] | ||||||||||||||||
#74 | 1 | 1 | 1 | 1 | 1 | 1 | Na2MnTeO6 [108] | |||||||||||||||
#75 | 1 | 1 | 1 | 1 | 2 | Co3Sn2S2 [109] | ||||||||||||||||
#76 | 6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | BaCoSiO4 [110] | ||||
#77 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||||
#78 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | YMnO3 [111] | |||||||||||
#79 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||
#80 | 1 | 1 | 1 | 1 | 1 | ErAuIn [112] | ||||||||||||||||
#81 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Tb14Ag51 [113] | |||||||||||
#82 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | FeF3 [114] | |||||||||||||
#83 | 1 | 1 | 1 | 1 | ||||||||||||||||||
#84 | 1 | 1 | 1 | 1 | 2 | K2Mn3(VO4)2CO3 [115] | ||||||||||||||||
#85 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | U14Au51 [116] | |||||||||||||
#86 | 1 | 1 | 1 | 1 | 2 | |||||||||||||||||
#87 | 622 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||||
#88 | 1 | 1 | 1 | 1 | ScMn6Ge6 [117] | |||||||||||||||||
#89 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||||||
#90 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | EuIn2As2 [118] | |||||||||||||
#91 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | HoMnO3 [119] | |||||||||||||
#92 | 1 | 1 | 1 | 1 | ||||||||||||||||||
#93 | 1 | 1 | 1 | 1 | 1 | 1 | Co2Mo3O8 [120] | |||||||||||||||
#94 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | LuFeO3 [121] | |||||||||||||
#95 | 1 | 1 | 1 | 1 | 1 | 1 | Ba3CoSb2O9 [122] | |||||||||||||||
#96 | 1 | 1 | 1 | CsCr0.94Fe0.06F4 [123] | ||||||||||||||||||
#97 | 1 | 1 | 1 | 1 | 1 | 1 | UNiGa [124] | |||||||||||||||
#98 | 1 | 1 | 1 | 1 | 1 | 1 | CsFeCl3 [125] | |||||||||||||||
#99 | 1 | 1 | 1 | 1 | 1 | 1 | HoPdIn [126] | |||||||||||||||
#100 | 1 | 1 | 1 | 1 | ||||||||||||||||||
#101 | 1 | 1 | FeGe [127] | |||||||||||||||||||
#102 | 1 | 1 | 1 | 1 | ||||||||||||||||||
#103 | 1 | 1 | 1 | |||||||||||||||||||
#104 | 1 | 1 | 1 | CsCoCl3 [128] | ||||||||||||||||||
#105 | 1 | 1 | 1 | 1 | Fe2.71GeTe2 [129] | |||||||||||||||||
#106 | 1 | 1 | 1 | 1 | ||||||||||||||||||
#107 | 23 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Mn3IrSi [130] | ||||||||||||
#108 | 1 | 1 | 1 | 1 | MnGe [131] | |||||||||||||||||
#109 | 1 | 1 | 1 | 1 | MnTe2 [132] | |||||||||||||||||
#110 | 1 | 1 | Au72Al14Tb14 [133] | |||||||||||||||||||
#111 | 1 | 1 | 1 | 1 | ||||||||||||||||||
#112 | 432 | 1 | 1 | 1 | 1 | SrCuTe2O6 [134] | ||||||||||||||||
#113 | 1 | 1 | ||||||||||||||||||||
#114 | 1 | 1 | 1 | 1 | BaCuTe2O6 [135] | |||||||||||||||||
#115 | 1 | 1 | 1 | 1 | ||||||||||||||||||
#116 | 1 | 1 | Gd2Ti2O7 [136] | |||||||||||||||||||
#117 | 1 | 1 | 1 | 1 | ||||||||||||||||||
#118 | 1 | 1 | ||||||||||||||||||||
#119 | 1 | NdZn [137] | ||||||||||||||||||||
#120 | 1 | 1 | ||||||||||||||||||||
#121 | 1 | 1 | Tb3Ga5O12 [138] | |||||||||||||||||||
#122 | 1 | 1 |
MPG | ||
---|---|---|
1, 2, , m, , , 4, 3, 6 | ✓ | ✓ |
, , , | ✓ | |
, , , | ✓ | |
, , , , , , | ||
, , , , , , |
MPG | |||
---|---|---|---|
1, 2, , m, , , 4, 3, 6 | ✓ | ✓ | ✓ |
, , , | ✓ | ✓ | |
, , , | ✓ | ✓ | |
, , , | ✓ | ✓ | |
, , , , , , | ✓ | ||
, , , , , , | ✓ | ||
, , , , , , | ✓ | ||
, , , , , , | ✓ | ||
, , , , , , | ✓ | ||
, , , , , , | ✓ | ||
, , 222, , , , | |||
, , , , 422, , , | |||
, , , , | |||
, , , 32, , | |||
, , , , , , 622 | |||
, , , , , | |||
, , , |
MPG | |||
---|---|---|---|
1, 2, , m, , , 4, 3, 6 | ✓ | ✓ | ✓ |
, , , | ✓ | ✓ | |
, , , | ✓ | ✓ | |
, , , , , , | ✓ | ||
, , , , , , | ✓ | ||
, | ✓ | ✓ | |
, , , | ✓ | ||
, , , | ✓ | ||
222, , , , , | |||
32, , , , , | |||
23, , , , |
MPG | |||
---|---|---|---|
1, 2, , 4, 3, 6 | ✓ | ✓ | ✓ |
, , , | ✓ | ✓ | |
, , , , , , | ✓ | ||
222, , 422, , , 32, | |||
622, , , 23, , 432, , |
MPG | ||
---|---|---|
1, 2, , m, , , 4, 3, 6 | ✓ | ✓ |
, , , | ✓ | |
, , , | ✓ | |
, , , , , , | ||
, , , , , , |
MPG | ||||
---|---|---|---|---|
1, 2, , 4, 3, 6 | ✓ | ✓ | ✓ | ✓ |
, , , | ✓ | ✓ | ✓ | |
, , , , , , | ✓ | ✓ | ||
222, , 422, , | ✓ | |||
32, , 622, , | ✓ | |||
, m, | ✓ | ✓ | ✓ | |
✓ | ✓ | |||
✓ | ✓ | |||
, | ✓ | |||
, | ✓ | |||
, | ✓ | |||
, , , |
MPG | |||
---|---|---|---|
1, 2, , m, , , 4, 3, 6 | ✓ | ✓ | ✓ |
, , , | ✓ | ✓ | |
, , , | ✓ | ✓ | |
, , , , , , | ✓ | ||
, , , , , , | ✓ | ||
, | ✓ | ✓ | |
, , , | ✓ | ||
, , , | ✓ | ||
222, , , , , | |||
32, , , , , | |||
23, , , , |
MPG | |||
---|---|---|---|
1, 2, m, 4, 3, 6 | ✓ | ✓ | ✓ |
, , , | ✓ | ✓ | |
, , , , , , | ✓ | ||
222, , 422, , , 32, , 622 | |||
, , 23, , 432, , |
MPG | ||
---|---|---|
1, 2, , m, , , 4, 3, 6 | ✓ | ✓ |
, , , | ✓ | |
, , , | ✓ | |
, , , , , , | ||
, , , , , , |
MPG | ||||
---|---|---|---|---|
1, 2, m, 4, 3, 6 | ✓ | ✓ | ✓ | ✓ |
, , , | ✓ | ✓ | ✓ | |
, , , , , , | ✓ | ✓ | ||
222, , 422, , , 32 | ✓ | |||
, 622, , | ✓ | |||
, , | ✓ | ✓ | ✓ | |
✓ | ✓ | |||
✓ | ✓ | |||
, | ✓ | |||
, | ✓ | |||
, | ✓ | |||
, , , |
MPG | |||
---|---|---|---|
1, 2, , m, , , 4, 3, 6 | ✓ | ✓ | ✓ |
, , , | ✓ | ✓ | |
, , , | ✓ | ✓ | |
, , , , , , | ✓ | ||
, , , , , , | ✓ | ||
, | ✓ | ✓ | |
, , , | ✓ | ||
, , , | ✓ | ||
222, , , , , | |||
32, , , , | |||
, 23, , , , |
MPG | |||
---|---|---|---|
1, 2, , 4, 3, 6 | ✓ | ✓ | ✓ |
, , , | ✓ | ✓ | |
, , , , , , | ✓ | ||
222, , 422, , , 32, , 622 | |||
, , 23, , 432, , |
MPG | |||
---|---|---|---|
1, 2, , m, , 4, 3, 6 | ✓ | ✓ | ✓ |
, , , , , , , | ✓ | ||
, , , , , , , | ✓ | ||
, , , , , , , | ✓ | ||
, , , , , | |||
, , , , |
MPG | ||||
---|---|---|---|---|
1, 2, , 4, 3, 6 | ✓ | ✓ | ✓ | ✓ |
, , , | ✓ | ✓ | ✓ | |
, , , , , , | ✓ | ✓ | ||
222, , 422, , | ✓ | |||
32, , 622, , | ✓ | |||
m, , | ✓ | ✓ | ✓ | |
✓ | ✓ | |||
✓ | ✓ | |||
, | ✓ | |||
, | ✓ | |||
, | ✓ | |||
, , , |
MPG | ||||
---|---|---|---|---|
1, 2, , m, , 4, 3, 6 | ✓ | ✓ | ✓ | ✓ |
, , , , , , , | ✓ | ✓ | ||
, , , , , , , | ✓ | ✓ | ||
, , , , , , , | ✓ | ✓ | ||
, , , , , | ✓ | |||
, , , , | ✓ | |||
✓ | ✓ | ✓ | ||
, | ✓ | ✓ | ||
, | ✓ | ✓ | ||
, | ✓ | ✓ | ||
, | ✓ | |||
, | ✓ | |||
, | ✓ | |||
222, , , , , 32, | ||||
, , , 23, , , , |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayami, S. Symmetry Classification of Antiferromagnets with Four Types of Multipoles. Symmetry 2024, 16, 926. https://doi.org/10.3390/sym16070926
Hayami S. Symmetry Classification of Antiferromagnets with Four Types of Multipoles. Symmetry. 2024; 16(7):926. https://doi.org/10.3390/sym16070926
Chicago/Turabian StyleHayami, Satoru. 2024. "Symmetry Classification of Antiferromagnets with Four Types of Multipoles" Symmetry 16, no. 7: 926. https://doi.org/10.3390/sym16070926
APA StyleHayami, S. (2024). Symmetry Classification of Antiferromagnets with Four Types of Multipoles. Symmetry, 16(7), 926. https://doi.org/10.3390/sym16070926