Next Article in Journal
Novel Hybrid Crayfish Optimization Algorithm and Self-Adaptive Differential Evolution for Solving Complex Optimization Problems
Next Article in Special Issue
Searching for Extra Higgs Boson Effects in General Two-Higgs Doublet Model (2HDM)
Previous Article in Journal
Spherical Superpixel Segmentation with Context Identity and Contour Intensity
Previous Article in Special Issue
The Schwarzian Approach in Sturm–Liouville Problems
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Symmetry Classification of Antiferromagnets with Four Types of Multipoles

Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
Symmetry 2024, 16(7), 926; https://doi.org/10.3390/sym16070926
Submission received: 15 June 2024 / Revised: 13 July 2024 / Accepted: 15 July 2024 / Published: 19 July 2024
(This article belongs to the Special Issue Feature Papers in 'Physics' Section 2024)

Abstract

:
A plethora of antiferromagnetic structures have been so far found in condensed matter physics, where the antiferromagnetic phase transition is characterized by symmetry lowering under the magnetic point group. Depending on the types of symmetry lowering, various cross-correlation phenomena, such as the anomalous Hall effect, magneto-electric effect, and magneto-piezoelectric effect, emerge below the critical temperature. We revisit a close relationship between the symmetry of the antiferromagnetic structures and cross-correlations based on the augmented multipoles consisting of electric, magnetic, magnetic toroidal, and electric toroidal multipoles with different spatial inversion and time-reversal parities. The symmetry classification will be useful for further exploration of functional antiferromagnetic materials.

1. Introduction

Magnetic ordering is one of the most fundamental electronic orderings in solids, where the spin degree of freedom in electrons is ordered through the electron correlation. Owing to the breaking of time-reversal symmetry, various physical phenomena emerge below the magnetic phase transition temperature; ferromagnetic ordering gives rise to the anomalous Hall effect [1,2,3,4,5,6,7] and antiferromagnetic ordering breaking the spatial inversion symmetry gives rise to the linear magnetoelectric effect [8,9,10,11,12,13,14]. Meanwhile, recent studies have revealed that the same physical phenomena are often caused under totally different magnetic structures when the symmetry of the magnetic structures is the same. For example, the anomalous Hall effect is induced by various types of antiferromagnetic structures including collinear [15,16,17,18,19,20,21,22], noncollinear [23,24,25,26,27], and noncoplanar ones [28,29,30,31] when the symmetry of the antiferromagnetic state is the same as that of the ferromagnetic state. This example suggests that antiferromagnetic ordering has the potential to exhibit further intriguing physical phenomena, which would be important for the realization of functional antiferromagnetic materials applied to spintronic devices.
The concept of augmented multipoles has been introduced to smoothly make the antiferromagnetic structures correspond to physical phenomena [32,33]. There are four types of multipoles with different spatial inversion and time-reversal parities: electric multipole with ( P , T ) = [ ( 1 ) l , + 1 ] , magnetic multipole with ( P , T ) = [ ( 1 ) l + 1 , 1 ] , magnetic toroidal multipole with ( P , T ) = [ ( 1 ) l , 1 ] , and electric toroidal multipole with ( P , T ) = [ ( 1 ) l + 1 , + 1 ] , where P and T stand for the spatial inversion and time-reversal parities, respectively, and l is the rank of the multipole. Since the four types of multipoles constitute a complete basis set in physical Hilbert space, any antiferromagnetic structures can be described by a ferroic alignment of any multipoles [34,35]. Figure 1 represents the examples of symmetry lowering by magnetic phase transitions under the tetragonal symmetry 4 / m m m 1 ; the antiferromagnetic structures are characterized by the magnetic monopole M 0 and the magnetic toroidal dipole T z with ( P , T ) = ( 1 , 1 ) . Furthermore, the systematic classification of antiferromagnetic structures has been performed under the 122 magnetic point groups based on magnetic representation analysis [36].
In the present study, we revisit such a correspondence between antiferromagnetic structures and multipoles under 122 magnetic point groups in order to demonstrate which magnetic materials exhibit functional properties. By classifying the 122 magnetic point groups in terms of the four types of multipoles, we show that almost all of the magnetic point groups accompany the multipole moments up to rank 3, and hence, we expect rich cross-correlation phenomena in antiferromagnetic materials. In order to stimulate the experimental observation, we list candidate materials and expected cross-correlations in each multipole. The present results provide useful information not only in exploring functional antiferromagnetic materials but also in reexamining the well-known materials from the multipole viewpoint.
The rest of this paper is organized as follows: In Section 2, we first introduce the four types of multipoles. Then, we show the correspondence between antiferromagnetic structures and multipoles by taking an example in the tetragonal system in Section 3. In Section 4, we discuss the expected cross-correlations when the multipole is induced. We conclude the present results in Section 5.

2. Four Types of Multipoles

First, we briefly review the four types of multipoles, consisting of electric multipole Q l m , magnetic multipole M l m , magnetic toroidal multipole T l m , and electric toroidal multipole G l m , where the subscripts l and m represent the orbital angular momentum (rank of multipole) and its z component, respectively; m = l , l + 1 , , l . The operator expressions of the four multipoles in spinless space are given by [37,38]
Q l m = O l m ,
M l m = 1 2 ( O l m ) · m l ^ + m l ^ · ( O l m ) ,
T l m = 1 2 ( O l m ) · t ^ t ^ · ( O l m ) ,
G l m = 1 2 ( α β O l m ) g ^ l α β ( g ^ l α β ) ( α β O l m ) ,
where O l m ( r ) is proportional to the spherical harmonics as follows:
O l m ( r ) = 4 π 2 l + 1 r l Y l m ( r ^ ) ,
with r ^ = r / r . m ^ l , t ^ l , and g ^ l α β are represented by
m ^ l = 2 l ^ l + 1 ,
t ^ l = 2 ( l + 1 ) ( l + 2 ) ( r × l ^ ) ,
g ^ l α β = t ^ l α m ^ l β ,
l ^ = i ( r × ) .
The expression of multipoles in spinful space is obtained by the addition rule of the above multipole operator and Pauli matrix in spin space [38].
We denote the monopole as X 0 , dipole as X 1 m = ( X x , X y , X z ) , quadrupole as X 2 m = ( X u , X v , X y z , X z x , X x y ) , and octupole as X 3 m = ( X x y z , X x α , X y α , X z α , X x β , X y β , X z β ) for X = Q , M , T , G . The specific expressions of O l m up to rank 3 are given by
O 0 = 1 ,
( O x , O y , O z ) = ( x , y , z ) ,
O u = 1 2 ( 3 z 2 r 2 ) ,
O v = 3 2 ( x 2 y 2 ) ,
( O y z , O z x , O x y ) = 3 ( y z , z x , x y ) ,
O x y z = 15 x y z ,
O x α , O y α , O z α = 1 2 x ( 5 x 2 3 r 2 ) , y ( 5 y 2 3 r 2 ) , z ( 5 z 2 3 r 2 ) ,
O x β , O y β , O z β = 15 2 x ( y 2 z 2 ) , y ( z 2 x 2 ) , z ( x 2 y 2 ) .
The spatial inversion and time-reversal parities in each multipole are summarized in Table 1.
The four types of multipoles also describe the spin-split band structures and band deformations in momentum space. By reading r with the wave vector k in O l m ( r ) , the momentum-space description of multipoles is given by [39]
Q l m ( k ) σ 0 O l m ( k ) ( l = 0 , 2 , 4 , 6 , ) ( k × σ ) · k O l m ( k ) ( l = 1 , 3 , 5 , )
M l m ( k ) 0 ( l = 0 , 2 , 4 , 6 , ) σ · k O l m ( k ) ( l = 1 , 3 , 5 , )
T l m ( k ) 0 ( l = 0 ) ( k × σ ) · k O l m ( k ) ( l = 2 , 4 , 6 , ) σ 0 O l m ( k ) ( l = 1 , 3 , 5 , )
G l m ( k ) k · σ ( l = 0 ) σ · k O l m ( k ) ( l = 2 , 4 , 6 , ) 0 ( l = 1 , 3 , 5 , )
where σ 0 and σ denote the identity and Pauli matrices in spin space, respectively. Thus, the even-rank (odd-rank) electric (magnetic toroidal) multipoles describe the symmetric (antisymmetric) band deformation without spin dependence. Meanwhile, the odd-rank (even-rank) electric (magnetic toroidal) multipoles and the even-rank (odd-rank) electric toroidal (magnetic) multipoles describe the antisymmetric (symmetric) spin splitting in the band structure.
The multipole description is also useful for understanding the cross-correlation phenomena when the external field or current is applied [39,40]. When the applied field/current is a rank-1 quantity, the rank of the induced multipoles is characterized by l 1 , l, and l + 1 for the rank-l multipole in antiferromagnets. For example, when the electric field E , which corresponds to Q 1 m , is applied to the antiferromagnet with the magnetic toroidal dipole T 1 m , any of the magnetic toroidal monopole T 0 , magnetic dipole M 1 m , or magnetic toroidal quadrupole T 2 m are induced depending on the field direction owing to the tensor product Q 1 m T 1 m T 0 M 1 m T 2 m . Thus, the linear magneto-electric effect as a consequence of the cross-coupling between M 1 m and Q 1 m is expected under the T 1 m order. In addition, one finds that cross-correlations between Q 1 m and T 0 ( T 2 m ) occur, which means that T 0 ( T 2 m ) is induced by the electric field in antiferromagnets with T 1 m . Similar cross-correlation phenomena are straightforwardly investigated for different fields/currents, such as the magnetic field H corresponding to M 1 m and the electric current J corresponding to T 1 m . We summarize the correspondence among the multipoles, band dispersions, and couplings to E , H , and J in Table 1.

3. Multipoles in Antiferromagnets

By using the four types of multipoles, we describe any complicated magnetic structures by the ferroic alignment of the multipoles. In order to exemplify this, we consider the magnetic point group 4 / m m m 1 . As shown in Table 2, all the irreducible representations without the time-reversal symmetry are characterized by either magnetic or magnetic toroidal multipoles [36]. For example, when the magnetic structure is characterized by the irreducible representation B 1 g , the magnetic toroidal quadrupole T v and magnetic octupole M x y z are induced. In such a situation, one expects the appearance of the symmetric spin-split band structure and electric-field-induced magnetic quadrupole from Table 1.
The correspondence between the irreducible representations and magnetic patterns is investigated for the space group P 4 / m m m . We show the possible multipole orderings when the ions with the magnetic moments are located at the 1 a , 2 f , 4 l , and 8 p sites in Table 2 [35]. For the 1 a site, the possible magnetic structure is a ferromagnetic one, which indicates that only the irreducible representations corresponding to the magnetic dipole ( M x , M y , M z ) are possible. When the site symmetry is lowered, other multipoles belonging to different irreducible representations are induced; the magnetic toroidal quadrupole T x y belonging to the irreducible representation B 2 g is possible for the 2 f site and odd-parity multipoles like M 0 and T z are possible for the 4 l site. Furthermore, in the case of the 8 p site, all the irreducible representations are possible. The real-space spin configurations belonging to the different irreducible representations in the 8 p site are shown in Figure 2. One finds that unconventional multipole orderings, such as the magnetic toroidal monopole T 0 belonging to A 1 g and magnetic toroidal quadrupole T v belonging to B 1 g , are constructed various collinear and noncollinear spin configurations.
The above example indicates that various multipoles are activated in the antiferromagnetic structures according to their magnetic point groups. Indeed, 32, 31, 42, and 58 out of 122 magnetic point groups possess M 0 , M 1 m , M 2 m , and M 3 m , respectively. Similarly, 122, 31, 106, and 58 magnetic point groups possess Q 0 , Q 1 m , Q 2 m , and Q 3 m , respectively, 32, 31, 42, and 58 magnetic point groups possess T 0 , T 1 m , T 2 m , and T 3 m , respectively, and 32, 43, 42, and 71 magnetic point groups possess G 0 , G 1 m , G 2 m , and G 3 m , respectively. In order to show the active multipoles under 122 magnetic point groups, we classify them in each magnetic point group, as shown in Table 3. It is noted that magnetic structures without the breaking of the time-reversal symmetry are possible when the q 0 state is considered. The typical magnetic materials from MAGNDATA [41] are also listed. This table is useful for seeing which types of multipoles are present in magnetic materials.

4. Cross-Correlations in Antiferromagnets with Multipoles

In this section, we briefly show the expected cross-correlations and transports in magnetic materials with multipoles: the electric dipole Q 1 m in Section 4.1, the electric quadrupole Q 2 m in Section 4.2, the electric octupole Q 3 m in Section 4.3, the magnetic monopole M 0 in Section 4.4, the magnetic dipole M 1 m in Section 4.5, the magnetic quadrupole M 2 m in Section 4.6, the magnetic octupole M 3 m in Section 4.7, the magnetic toroidal monopole T 0 in Section 4.8, the magnetic toroidal dipole T 1 m in Section 4.9, the magnetic toroidal quadrupole T 2 m in Section 4.10, the magnetic toroidal octupole T 3 m in Section 4.11, the electric toroidal monopole G 0 in Section 4.12, the electric toroidal dipole G 1 m in Section 4.13, the electric toroidal quadrupole G 2 m in Section 4.14, and the electric toroidal octupole G 3 m in Section 4.15.

4.1. Electric Dipole

There are 31 magnetic point groups accompanying the electric dipole Q 1 m , as shown in Table 4. We classify 31 magnetic point groups in terms of the presence and absence of M 1 m and T 1 m . Since M 1 m and T 1 m are coupled to the magnetic field and electric current, respectively, they can be used to control the domain of the antiferromagnetic state with Q 1 m .
The magnetic materials with Q 1 m exhibit the antisymmetric spin polarization in the band structure, which corresponds to the Rashba-type spin–orbit coupling in the form of k × σ . Accordingly, the transverse Edelstein effect, where the magnetization is induced by the electric current in a perpendicular way, occurs. The materials with Q 1 m also show the nonlinear Hall effect based on the Berry curvature dipole mechanism [139]. Moreover, the system with Q 1 m shows the magnetic toroidal moment in the external magnetic field. One of the candidate materials is CrSe, where the symmetry reduces from P 6 3 / m m c to P 31 m (magnetic point group 3 m ) by the magnetic phase transition [104]. In this material, the above physical phenomena are induced only below the critical temperature. In addition, the single domain can be obtained by performing magnetic field cooling.

4.2. Electric Quadrupole

There are 106 magnetic point groups accompanying the electric quadrupole Q 2 m . We classify them in terms of the presence and absence of Q 1 m , M 1 m , and T 1 m , as shown in Table 5, where the presence of Q 1 m means that the single-domain formation can be controlled by applying the electric field when Q 1 m is simultaneously induced below the critical temperature. The nematic ordering belongs to this category.
Although Q 2 m has the same spatial inversion and time-reversal properties as the electric monopole Q 0 , it exhibits intriguing electromagnetic responses according to its spatial anisotropy. In addition to the conjugate physical quantities, additional higher-rank multipoles are induced under external fields and currents. In other words, the responses against the fields and currents are different from the case with Q 0 . For example, the electric toroidal quadrupole G 2 m , the magnetic toroidal quadrupole T 2 m , and the magnetic quadrupole M 2 m are induced by the electric field, magnetic field, and electric current, respectively. In particular, the momentum-dependent spin splitting, which arises from T 2 m , in addition to Zeeman-type uniform spin splitting, occurs in the magnetic field.

4.3. Electric Octupole

The electric octupole Q 3 m is included in 58 magnetic point groups, where 27 magnetic point groups do not possess Q 1 m , as shown in Table 6. Similarly to Q 1 m , the magnetic materials with Q 3 m also exhibit the antisymmetric spin-split band structure including the Dresselhaus-type one in the form of k x ( k y 2 k z 2 ) σ x + k y ( k z 2 k x 2 ) σ y + k z ( k x 2 k y 2 ) σ z . Meanwhile, the magnetic octupole instead of the magnetic dipole (magnetization) is induced by the electric current in contrast to Q 1 m . The candidate material is VNb3S6, where the symmetry reduction occurs from P 6 3 22 to C 2 2 2 1 (magnetic point group 2 2 2 ) [60]. Since M 1 m and T 1 m are simultaneously induced under 2 2 2 , either the magnetic field or electric current cooling can lead to the single domain of Q 3 m .

4.4. Magnetic Monopole

Among 122 magnetic point groups, 32 magnetic point groups include the magnetic monopole M 0 , as shown in Table 7. This becomes the origin of the linear longitudinal magneto-electric effect, where the magnetization M 1 m (electric polarization Q 1 m ) is induced in the electric-field (magnetic-field) direction [140,141,142,143]. TbB4 (magnetic point group m m m ) [69,144,145] and FePO4 (magnetic point group 222) [58] are typical examples to exhibit physical phenomena related to magnetic monopoles.

4.5. Magnetic Dipole

The magnetic dipole M 1 m is included in 31 magnetic point groups, as shown in Table 8 [146,147,148]. Since M 1 m corresponds to the ferroic alignment of spin, i.e., the ferromagnetic state, the Berry curvature occurs in the band structure, which becomes the origin of the physical phenomena under magnetization or magnetic field occur, such as the Hall effect, Nernst effect, and magneto-optical Kerr effect [149,150]. Meanwhile, the magnetic point groups with M 1 m are also realized in the antiferromagnetic structure even without (or with a negligibly small) net magnetization, as found in the noncollinear antiferromagnets like Mn3Sn [25,26,151,152,153] and collinear antiferromagnets [19,154] like LaMO3 ( M = Cr, Mn, and Fe) [15], the bilayer MnPSe3 [16], κ -type organic conductors [18], and so on. Recently, different types of magnetic dipole have been introduced such as the “anisotropic magnetic dipole” M 1 m , which consists of the product of the electric quadrupole Q 2 m and conventional magnetic dipole (spin) M 1 m , and they are regarded as a microscopic indicator of the presence of the anomalous Hall effect in antiferromagnets [21,155]. Since the symmetry conditions for M 1 m and M 1 m are the same as each other, the magnetic materials belonging to 31 magnetic point groups in Table 8 result in “ferromagnetic” physical phenomena irrespective of the ferromagnetic and antiferromagnetic structures.
In addition, the materials with M 1 m exhibit further cross-correlations. One of the examples is the switching response between the magnetic dipole and magnetic toroidal dipole ( T 1 m ) of circularly polarized light. Another example is the electric-current-induced chirality (electric toroidal monopole G 0 ).

4.6. Magnetic Quadrupole

A total of 42 out of 122 magnetic point groups possess the magnetic quadrupole M 2 m , as shown in Table 9; of these, 27 magnetic point groups accompany M 0 , while the remaining 15 magnetic point groups do not have M 0 . Since the physical properties of M 2 m are similar to those of M 0 owing to the same spatial inversion and time-reversal parities, it is desired to focus on the materials listed in the lower columns when the pure nature of the magnetic quadrupole is investigated. Similarly to the materials with M 0 , the materials with M 2 m show the linear magneto-electric effect [156,157,158], as found in Cr2O3 [159,160,161,162,163]. In addition, M 2 m becomes the microscopic origin of the magneto-piezoelectric effect found in EuMnBi [164,165], which arises from the spin-orbital-momentum locking in the band structure [166], and the intrinsic nonlinear Hall effect [167,168,169]. KOsO4 (magnetic point group 4 / m ) [76,170] and Er2Ge2O7 (magnetic point group 4 22 ) [79] are other candidate materials with M 2 m but without Q 1 m , M 1 m , or T 1 m .

4.7. Magnetic Octupole

There are 58 magnetic point groups to possess the magnetic octupole M 3 m , as shown in Table 10. Among them, 27 magnetic point groups are characterized by the magnetic point groups without M 1 m ; the pure effect of M 3 m is expected. The materials with magnetic octupole M 3 m induce rank-2, rank-3, and rank-4 multipoles when external fields and currents are applied. Since T 3 m ( Q 2 m ) are induced for the applied electric field (magnetic field), the band structure is modulated in an antisymmetric (symmetric) way. In addition, M 3 m becomes the microscopic origin of the magnetic-field-induced striction, i.e., magnetostriction [171]. Er2Ge2O7 (magnetic point group 4 22 ) [79] is one of the candidates to have M 3 m .

4.8. Magnetic Toroidal Monopole

Magnetic toroidal monopole T 0 is included in the 32 magnetic point groups, as shown in Table 11. Since T 0 corresponds to a time-reversal-odd scalar quantity, it leads to the time-reversal switching responses, such as the electric-field-induced magnetic toroidal dipole T 1 m and the magnetic-field-induced electric toroidal dipole G 1 m [172,173]. Such cross-correlations have recently been observed in Co2SiO4 [174]. Another candidate is Ho2Ge2O7 under magnetic point group 422 [77], for example.

4.9. Magnetic Toroidal Dipole

Magnetic toroidal dipole T 1 m is allowed for 31 magnetic point groups, as shown in Table 12 [175]. It is the most typical multipole degree of freedom to exhibit the cross-correlation phenomena in magnetic materials. The representative phenomenon is the linear transverse magneto-electric effect in magnetic insulators [176,177,178,179,180], although a similar phenomenon has been observed in magnetic metals like UNi4B [181,182,183,184,185]. In addition, as T 1 m corresponds to the time-reversal-odd polar vector, it gives rise to asymmetric band deformation without the spin dependence. Accordingly, T 1 m induces further cross-correlations and transports, such as nonreciprocal transport [186,187,188,189,190], asymmetric magnon excitations [191,192,193], and nonlinear spin Hall/Nernst effect [194,195].

4.10. Magnetic Toroidal Quadrupole

There are 42 magnetic point groups to possess the magnetic toroidal quadrupole T 2 m , as shown in Table 13; 27 out of 42 magnetic point groups possess T 0 , whereas 15 magnetic point groups do not. The materials with T 2 m show the momentum-dependent symmetric spin-split band structure, which results in the directional-dependent spin current generation [196,197]. Moreover, in the materials with T 2 m , the ferroaxial nature is induced when the magnetic field is applied. One of the candidate materials is CoF2 under magnetic point group 4 / m m m [90], although the domain control might be difficult in this material owing to no simple conjugate fields to T 2 m . In this context, Mn3Ti2Te6 under magnetic point group 2 / m [57] is another candidate material, where the magnetic field cooling enables us to select a single domain.

4.11. Magnetic Toroidal Octupole

A total of 58 magnetic point groups possess the magnetic toroidal octupole T 3 m , where 31 magnetic point groups also possess T 1 m , as shown in Table 14. Since T 3 m induces asymmetric band modulation similar to T 1 m , the materials with T 3 m show nonreciprocal transport against the electric field and thermal gradient [198,199,200]. One of the potential candidates is CrSe under the magnetic point group 3 m [104], where physical phenomena related to the MT octupole can be controlled by both electric and magnetic fields.

4.12. Electric Toroidal Monopole

A total of 32 magnetic point groups possess the electric toroidal monopole G 0 , as shown in Table 15. As G 0 is characterized as the time-reversal-even pseudoscalar quantity, it corresponds to the chirality [201,202,203], which becomes the microscopic origin of the hedgehog-type antisymmetric spin–orbit coupling k · σ , the longitudinal Edelstein effect [204,205,206], and the electrical magnetochiral effect [207]. Although such a chirality is usually accompanied by lattice structures without the mirror and spatial inversion symmetries, it can be generated by the magnetic phase transition when G 0 additionally belongs to the totally symmetric irreducible representation below the critical temperature. For example, FePO4 under magnetic point group 222 [58], ScMn6Ge6 under magnetic point group 6221 [117], and La0.33Sr0.67FeO3 under magnetic point group 32 [99] belong to the materials showing the G 0 property driven by the magnetic phase transition.

4.13. Electric Toroidal Dipole

The electric toroidal dipole G 1 m is included in 43 magnetic point groups, as shown in Table 16. The electric toroidal dipole has recently been attracted since it brings about an unconventional electronic state, invariant under both spatial inversion and time-reversal operations; its ordering is referred to as ferro-rotational order or ferro-axial order [208,209,210,211,212], which have been observed in RbFe(MoO4)2 [210,213] and NiTiO3 [213,214,215,216]. The materials with G 1 m exhibit transverse responses of the conjugate physical quantities, such as antisymmetric thermopolarization [217], longitudinal spin current generation [218,219], nonlinear transverse magnetization [220], and second-order nonlinear magnetostriction [221]. Such physical properties driven by G 1 m can be induced by the magnetic phase transition. FeF3, which undergoes the phase transition from P 6 / m m m to P 6 3 / m (magnetic point group 6 / m ), is one of the candidate materials to exhibit the property of G 1 m by magnetic phase transition [114]. Another candidate is a magnetic vortex accompanying both magnetic monopole and magnetic toroidal dipole [222]. In magnetic materials, G 1 m contributes to the magnetic anisotropy to tilt the spin moments from the crystal axis by combining the relativistic spin–orbit coupling [223].

4.14. Electric Toroidal Quadrupole

The electric toroidal quadrupole G 2 m can be found in 42 magnetic point groups, as shown in Table 17. Among them, 27 magnetic point groups also possess G 0 . The materials with G 2 m show parity-violating physical phenomena, such as the nonlinear Hall effect based on the Berry curvature dipole mechanism [139] and Edelstein effect [224,225,226]. GeCu2O4 under the magnetic point group 4 ¯ 2 m 1 is one of the candidate materials to exhibit the physical phenomena of G 2 m below the critical temperature [84].

4.15. Electric Toroidal Octupole

There are 71 magnetic point groups that include the electric toroidal octupole G 3 m , as shown in Table 18. Of these, 28 out of the 71 do not possess G 1 m . Although the physical phenomena of G 3 m have not been investigated compared to other multipoles, the materials with G 3 m show similar physical phenomena to G 1 m owing to the same spatial inversion and time-reversal parities. For example, the longitudinal spin current generation is possible in materials with G 3 m [219]. FePO4 (magnetic point group 222) [58] is one of the candidates to exhibit physical phenomena by G 3 m through the magnetic phase transition.

5. Conclusions

To summarize, we have revisited the multipole classification under 122 magnetic point groups, with an emphasis on magnetic materials. We have shown that four types of multipoles (electric, magnetic, magnetic toroidal, and electric toroidal multipoles) emerge in magnetic materials irrespective of their rank. Since each multipole gives rise to different cross-correlations and transports, the systematic correspondence between multipoles and magnetic point groups enables us to design and engineer functional magnetic materials, including topological spin textures like magnetic skyrmions [227,228,229], which will be useful for future spintronic applications.

Funding

This research was supported by JSPS KAKENHI Grants Numbers JP21H01037, JP22H00101, JP22H01183, JP23H04869, JP23K03288, JP23K20827, and by JST CREST (JPMJCR23O4).

Data Availability Statement

The data presented in this study are available on request from the corresponding author.

Conflicts of Interest

The author declares no conflicts of interest.

References

  1. Karplus, R.; Luttinger, J.M. Hall Effect in Ferromagnetics. Phys. Rev. 1954, 95, 1154–1160. [Google Scholar] [CrossRef]
  2. Smit, J. The spontaneous Hall effect in ferromagnetics II. Physica 1958, 24, 39–51. [Google Scholar] [CrossRef]
  3. Maranzana, F.E. Contributions to the Theory of the Anomalous Hall Effect in Ferro- and Antiferromagnetic Materials. Phys. Rev. 1967, 160, 421–429. [Google Scholar] [CrossRef]
  4. Berger, L. Side-Jump Mechanism for the Hall Effect of Ferromagnets. Phys. Rev. B 1970, 2, 4559–4566. [Google Scholar] [CrossRef]
  5. Nozieres, P.; Lewiner, C. A simple theory of the anomalous Hall effect in semiconductors. J. Phys. 1973, 34, 901–915. [Google Scholar] [CrossRef]
  6. Jungwirth, T.; Niu, Q.; MacDonald, A.H. Anomalous Hall Effect in Ferromagnetic Semiconductors. Phys. Rev. Lett. 2002, 88, 207208. [Google Scholar] [CrossRef]
  7. Gosálbez-Martínez, D.; Souza, I.; Vanderbilt, D. Chiral degeneracies and Fermi-surface Chern numbers in bcc Fe. Phys. Rev. B 2015, 92, 085138. [Google Scholar] [CrossRef]
  8. Kimura, T.; Goto, T.; Shintani, H.; Ishizaka, K.; Arima, T.; Tokura, Y. Magnetic control of ferroelectric polarization. Nature 2003, 426, 55–58. [Google Scholar] [CrossRef] [PubMed]
  9. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 2005, 38, R123. [Google Scholar] [CrossRef]
  10. Spaldin, N.A.; Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 2005, 309, 391–392. [Google Scholar] [CrossRef] [PubMed]
  11. Ramesh, R.; Spaldin, N.A. Multiferroics: Progress and prospects in thin films. Nat. Mater. 2007, 6, 21. [Google Scholar] [CrossRef] [PubMed]
  12. Khomskii, D. Classifying multiferroics: Mechanisms and effects. Physics 2009, 2, 20. [Google Scholar] [CrossRef]
  13. Tokura, Y.; Seki, S.; Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 2014, 77, 076501. [Google Scholar] [CrossRef] [PubMed]
  14. Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 2016, 1, 16046. [Google Scholar] [CrossRef]
  15. Solovyev, I.V. Magneto-optical effect in the weak ferromagnets LaMO3 (M = Cr, Mn, and Fe). Phys. Rev. B 1997, 55, 8060–8063. [Google Scholar] [CrossRef]
  16. Sivadas, N.; Okamoto, S.; Xiao, D. Gate-Controllable Magneto-optic Kerr Effect in Layered Collinear Antiferromagnets. Phys. Rev. Lett. 2016, 117, 267203. [Google Scholar] [CrossRef]
  17. Li, X.; MacDonald, A.H.; Chen, H. Quantum Anomalous Hall Effect through Canted Antiferromagnetism. arXiv 2019, arXiv:1902.10650. [Google Scholar]
  18. Naka, M.; Hayami, S.; Kusunose, H.; Yanagi, Y.; Motome, Y.; Seo, H. Anomalous Hall effect in κ-type organic antiferromagnets. Phys. Rev. B 2020, 102, 075112. [Google Scholar] [CrossRef]
  19. Šmejkal, L.; González-Hernández, R.; Jungwirth, T.; Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 2020, 6, eaaz8809. [Google Scholar] [CrossRef] [PubMed]
  20. Samanta, K.; Ležaić, M.; Merte, M.; Freimuth, F.; Blügel, S.; Mokrousov, Y. Crystal Hall and crystal magneto-optical effect in thin films of SrRuO3. J. Appl. Phys. 2020, 127, 213904. [Google Scholar] [CrossRef]
  21. Hayami, S.; Kusunose, H. Essential role of the anisotropic magnetic dipole in the anomalous Hall effect. Phys. Rev. B 2021, 103, L180407. [Google Scholar] [CrossRef]
  22. Feng, Z.; Zhou, X.; Šmejkal, L.; Wu, L.; Zhu, Z.; Guo, H.; González-Hernández, R.; Wang, X.; Yan, H.; Qin, P.; et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 2022, 5, 735–743. [Google Scholar] [CrossRef]
  23. Tomizawa, T.; Kontani, H. Anomalous Hall effect in the t2g orbital kagome lattice due to noncollinearity: Significance of the orbital Aharonov-Bohm effect. Phys. Rev. B 2009, 80, 100401. [Google Scholar] [CrossRef]
  24. Chen, H.; Niu, Q.; MacDonald, A.H. Anomalous Hall Effect Arising from Noncollinear Antiferromagnetism. Phys. Rev. Lett. 2014, 112, 017205. [Google Scholar] [CrossRef]
  25. Nakatsuji, S.; Kiyohara, N.; Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 2015, 527, 212. [Google Scholar] [CrossRef]
  26. Suzuki, M.T.; Koretsune, T.; Ochi, M.; Arita, R. Cluster multipole theory for anomalous Hall effect in antiferromagnets. Phys. Rev. B 2017, 95, 094406. [Google Scholar] [CrossRef]
  27. Chen, H.; Wang, T.C.; Xiao, D.; Guo, G.Y.; Niu, Q.; MacDonald, A.H. Manipulating anomalous Hall antiferromagnets with magnetic fields. Phys. Rev. B 2020, 101, 104418. [Google Scholar] [CrossRef]
  28. Ohgushi, K.; Murakami, S.; Nagaosa, N. Spin anisotropy and quantum Hall effect in the kagomé lattice: Chiral spin state based on a ferromagnet. Phys. Rev. B 2000, 62, R6065–R6068. [Google Scholar] [CrossRef]
  29. Shindou, R.; Nagaosa, N. Orbital Ferromagnetism and Anomalous Hall Effect in Antiferromagnets on the Distorted fcc Lattice. Phys. Rev. Lett. 2001, 87, 116801. [Google Scholar] [CrossRef]
  30. Taguchi, Y.; Oohara, Y.; Yoshizawa, H.; Nagaosa, N.; Tokura, Y. Spin chirality, Berry phase, and anomalous Hall effect in a frustrated ferromagnet. Science 2001, 291, 2573–2576. [Google Scholar] [CrossRef]
  31. Neubauer, A.; Pfleiderer, C.; Binz, B.; Rosch, A.; Ritz, R.; Niklowitz, P.G.; Böni, P. Topological Hall Effect in the A Phase of MnSi. Phys. Rev. Lett. 2009, 102, 186602. [Google Scholar] [CrossRef]
  32. Hayami, S.; Kusunose, H. Unified description of electronic orderings and cross correlations by complete multipole representation. J. Phys. Soc. Jpn. 2024, 93, 072001. [Google Scholar] [CrossRef]
  33. Kusunose, H.; Hayami, S. Generalization of microscopic multipoles and cross-correlated phenomena by their orderings. J. Phys. Condense. Matter 2022, 34, 464002. [Google Scholar] [CrossRef]
  34. Suzuki, M.T.; Nomoto, T.; Arita, R.; Yanagi, Y.; Hayami, S.; Kusunose, H. Multipole expansion for magnetic structures: A generation scheme for a symmetry-adapted orthonormal basis set in the crystallographic point group. Phys. Rev. B 2019, 99, 174407. [Google Scholar] [CrossRef]
  35. Kusunose, H.; Oiwa, R.; Hayami, S. Symmetry-adapted modeling for molecules and crystals. Phys. Rev. B 2023, 107, 195118. [Google Scholar] [CrossRef]
  36. Yatsushiro, M.; Kusunose, H.; Hayami, S. Multipole classification in 122 magnetic point groups for unified understanding of multiferroic responses and transport phenomena. Phys. Rev. B 2021, 104, 054412. [Google Scholar] [CrossRef]
  37. Hayami, S.; Kusunose, H. Microscopic Description of Electric and Magnetic Toroidal Multipoles in Hybrid Orbitals. J. Phys. Soc. Jpn. 2018, 87, 033709. [Google Scholar] [CrossRef]
  38. Kusunose, H.; Oiwa, R.; Hayami, S. Complete Multipole Basis Set for Single-Centered Electron Systems. J. Phys. Soc. Jpn. 2020, 89, 104704. [Google Scholar] [CrossRef]
  39. Hayami, S.; Yatsushiro, M.; Yanagi, Y.; Kusunose, H. Classification of atomic-scale multipoles under crystallographic point groups and application to linear response tensors. Phys. Rev. B 2018, 98, 165110. [Google Scholar] [CrossRef]
  40. Winkler, R.; Zülicke, U. Theory of electric, magnetic, and toroidal polarizations in crystalline solids with applications to hexagonal lonsdaleite and cubic diamond. Phys. Rev. B 2023, 107, 155201. [Google Scholar] [CrossRef]
  41. Gallego, S.V.; Perez-Mato, J.M.; Elcoro, L.; Tasci, E.S.; Hanson, R.M.; Momma, K.; Aroyo, M.I.; Madariaga, G. MAGNDATA: Towards a database of magnetic structures. I. The commensurate case. J. Appl. Crystallogr. 2016, 49, 1750–1776. [Google Scholar] [CrossRef]
  42. Solana-Madruga, E.; Dos santos García, A.; Arévalo-López, A.; Ávila-Brande, D.; Ritter, C.; Attfield, J.; Sáez-Puche, R. High pressure synthesis of polar and non-polar cation-ordered polymorphs of Mn2ScSbO6. Dalton Trans. 2015, 44, 20441–20448. [Google Scholar] [CrossRef] [PubMed]
  43. Rousse, G.; Rodríguez-Carvajal, J.; Wurm, C.; Masquelier, C. Spiral magnetic structure in the iron diarsenate LiFeAs2O7: A neutron diffraction study. Phys. Rev. B 2013, 88, 214433. [Google Scholar] [CrossRef]
  44. Moron, M.C.; Palacio, F.; Rodríguez-Carvajal, J. Crystal and magnetic structures of RbMnF4 and KMnF4 investigated by neutron powder diffraction: The relationship between structure and magnetic properties in the Mn3+ layered perovskites AMnF4 (A = Na, K, Rb, Cs). J. Phys. Condens. Matter 1993, 5, 4909. [Google Scholar] [CrossRef]
  45. Damay, F.; Poienar, M.; Martin, C.; Maignan, A.; Rodriguez-Carvajal, J.; André, G.; Doumerc, J.P. Spin-lattice coupling induced phase transition in the S = 2 frustrated antiferromagnet CuMnO2. Phys. Rev. B 2009, 80, 094410. [Google Scholar] [CrossRef]
  46. Calder, S.; Haglund, A.V.; Kolesnikov, A.I.; Mandrus, D. Magnetic exchange interactions in the van der Waals layered antiferromagnet MnPSe3. Phys. Rev. B 2021, 103, 024414. [Google Scholar] [CrossRef]
  47. Rousse, G.; Rodríguez-Carvajal, J.; Wurm, C.; Masquelier, C. A neutron diffraction study of the antiferromagnetic diphosphate LiFeP2O7. Solid State Sci. 2002, 4, 973–978. [Google Scholar] [CrossRef]
  48. Blasco, J.; García-Muñoz, J.L.; García, J.; Subías, G.; Stankiewicz, J.; Rodríguez-Velamazán, J.A.; Ritter, C. Magnetic order and magnetoelectric properties of R2CoMnO6 perovskites (R = Ho, Tm, Yb, and Lu). Phys. Rev. B 2017, 96, 024409. [Google Scholar] [CrossRef]
  49. Khalyavin, D.D.; Manuel, P.; Hatnean, M.C.; Petrenko, O.A. Fragile ground state and rigid field-induced structures in the zigzag ladder compound BaDy2O4. Phys. Rev. B 2021, 103, 134434. [Google Scholar] [CrossRef]
  50. Solana-Madruga, E.; Ritter, C.; Aguilar-Maldonado, C.; Mentré, O.; Attfield, J.P.; Arévalo-López, Á.M. Mn3MnNb2O9: High-pressure triple perovskite with 1: 2 B-site order and modulated spins. Chem. Commun. 2021, 57, 8441–8444. [Google Scholar] [CrossRef]
  51. Ghara, S.; Suard, E.; Fauth, F.m.c.; Tran, T.T.; Halasyamani, P.S.; Iyo, A.; Rodríguez-Carvajal, J.; Sundaresan, A. Ordered aeschynite-type polar magnets RFeWO6 (R = Dy, Eu, Tb, and Y): A new family of type-II multiferroics. Phys. Rev. B 2017, 95, 224416. [Google Scholar] [CrossRef]
  52. Li, M.R.; Adem, U.; McMitchell, S.R.; Xu, Z.; Thomas, C.I.; Warren, J.E.; Giap, D.V.; Niu, H.; Wan, X.; Palgrave, R.G.; et al. A polar corundum oxide displaying weak ferromagnetism at room temperature. J. Am. Chem. Soc. 2012, 134, 3737–3747. [Google Scholar] [CrossRef] [PubMed]
  53. Favre, V.Y.; Tucker, G.S.; Ritter, C.; Sibille, R.; Manuel, P.; Frontzek, M.D.; Kriener, M.; Yang, L.; Berger, H.; Magrez, A.; et al. Ferrimagnetic 120 magnetic structure in Cu2OSO4. Phys. Rev. B 2020, 102, 094422. [Google Scholar] [CrossRef]
  54. Herak, M.; Zorko, A.; Pregelj, M.; Zaharko, O.; Posnjak, G.; Jagličić, Z.; Potočnik, A.; Luetkens, H.; van Tol, J.; Ozarowski, A.; et al. Magnetic order and low-energy excitations in the quasi-one-dimensional antiferromagnet CuSe2O5 with staggered fields. Phys. Rev. B 2013, 87, 104413. [Google Scholar] [CrossRef]
  55. Sala, G.; Stone, M.B.; Rai, B.K.; May, A.F.; Laurell, P.; Garlea, V.O.; Butch, N.P.; Lumsden, M.D.; Ehlers, G.; Pokharel, G.; et al. Van Hove singularity in the magnon spectrum of the antiferromagnetic quantum honeycomb lattice. Nat. Commun. 2021, 12, 171. [Google Scholar] [CrossRef]
  56. Ji, W.H.; Yin, L.; Zhu, W.M.; Kumar, C.M.N.; Li, C.; Li, H.F.; Jin, W.T.; Nandi, S.; Sun, X.; Su, Y.; et al. Noncollinear magnetic structure and anisotropic magnetoelastic coupling in cobalt pyrovanadate Co2V2O7. Phys. Rev. B 2019, 100, 134420. [Google Scholar] [CrossRef]
  57. May, A.F.; Liu, Y.; Calder, S.; Parker, D.S.; Pandey, T.; Cakmak, E.; Cao, H.; Yan, J.; McGuire, M.A. Magnetic order and interactions in ferrimagnetic Mn3Si2Te6. Phys. Rev. B 2017, 95, 174440. [Google Scholar] [CrossRef]
  58. Rousse, G.; Rodriguez-Carvajal, J.; Patoux, S.; Masquelier, C. Magnetic structures of the triphylite LiFePO4 and of its delithiated form FePO4. Chem. Mater. 2003, 15, 4082–4090. [Google Scholar] [CrossRef]
  59. Wawrzyńska, E.; Coldea, R.; Wheeler, E.M.; Sörgel, T.; Jansen, M.; Ibberson, R.M.; Radaelli, P.G.; Koza, M.M. Charge disproportionation and collinear magnetic order in the frustrated triangular antiferromagnet AgNiO2. Phys. Rev. B 2008, 77, 094439. [Google Scholar] [CrossRef]
  60. Lu, K.; Sapkota, D.; DeBeer-Schmitt, L.; Wu, Y.; Cao, H.B.; Mannella, N.; Mandrus, D.; Aczel, A.A.; MacDougall, G.J. Canted antiferromagnetic order in the monoaxial chiral magnets V1/3TaS2 and V1/3NbS2. Phys. Rev. Mater. 2020, 4, 054416. [Google Scholar] [CrossRef]
  61. Gonzalo, J.A.; Cox, D.E.; Shirane, G. The Magnetic Structure of FeSb2O4. Phys. Rev. 1966, 147, 415–418. [Google Scholar] [CrossRef]
  62. Rodríguez-Carvajal, J.; Rosenkranz, S.; Medarde, M.; Lacorre, P.; Fernandez-Díaz, M.T.; Fauth, F.; Trounov, V. Neutron-diffraction study of the magnetic and orbital ordering in 154SmNiO3 and 153EuNiO3. Phys. Rev. B 1998, 57, 456–464. [Google Scholar] [CrossRef]
  63. Caignaert, V.; Pralong, V.; Hardy, V.; Ritter, C.; Raveau, B. Magnetic structure of CaBaCo4O7: Lifting of geometrical frustration towards ferrimagnetism. Phys. Rev. B 2010, 81, 094417. [Google Scholar] [CrossRef]
  64. Gitgeatpong, G.; Zhao, Y.; Avdeev, M.; Piltz, R.O.; Sato, T.J.; Matan, K. Magnetic structure and Dzyaloshinskii-Moriya interaction in the S = 12 helical-honeycomb antiferromagnet α-Cu2V2O7. Phys. Rev. B 2015, 92, 024423. [Google Scholar] [CrossRef]
  65. Cockayne, E.; Levin, I.; Wu, H.; Llobet, A. Magnetic structure of bixbyite α-Mn2O3: A combined DFT+U and neutron diffraction study. Phys. Rev. B 2013, 87, 184413. [Google Scholar] [CrossRef]
  66. Huang, Q.; Qiu, Y.; Bao, W.; Green, M.A.; Lynn, J.W.; Gasparovic, Y.C.; Wu, T.; Wu, G.; Chen, X.H. Neutron-Diffraction Measurements of Magnetic Order and a Structural Transition in the Parent BaFe2As2 Compound of FeAs-Based High-Temperature Superconductors. Phys. Rev. Lett. 2008, 101, 257003. [Google Scholar] [CrossRef]
  67. Troć, R.; Pasturel, M.; Tougait, O.; Sazonov, A.P.; Gukasov, A.; Sułkowski, C.; Noël, H. Single-crystal study of the kagome antiferromagnet U3Ru4Al12. Phys. Rev. B 2012, 85, 064412. [Google Scholar] [CrossRef]
  68. Brown, P.; Forsyth, J. A neutron diffraction study of weak ferromagnetism in nickel fluoride. J. Phys. C Solid State Phys. 1981, 14, 5171. [Google Scholar] [CrossRef]
  69. Will, G.; Schäfer, W.; Pfeiffer, F.; Elf, F.; Etourneau, J. Neutron diffraction studies of TbB4 and ErB4. J. Less-Common Met. 1981, 82, 349–355. [Google Scholar] [CrossRef]
  70. Podchezertsev, S.; Barrier, N.; Pautrat, A.; Suard, E.; Retuerto, M.; Alonso, J.A.; Fernandez-Diaz, M.T.; Rodríguez-Carvajal, J. Influence of Polymorphism on the Magnetic Properties of Co5TeO8 Spinel. Inorg. Chem. 2021, 60, 13990–14001. [Google Scholar] [CrossRef]
  71. Adroja, D.T.; de la Fuente, C.; Fraile, A.; Hillier, A.D.; Daoud-Aladine, A.; Kockelmann, W.; Taylor, J.W.; Koza, M.M.; Burzurí, E.; Luis, F.; et al. Muon spin rotation and neutron scattering study of the noncentrosymmetric tetragonal compound CeAuAl3. Phys. Rev. B 2015, 91, 134425. [Google Scholar] [CrossRef]
  72. Lacorre, P.; Pannetier, J.; Fleischer, T.; Hoppe, R.; Ferey, G. Ordered magnetic frustration: XVI. Magnetic structure of CsCoF4 at 1.5 K. J. Solid State Chem. 1991, 93, 37–45. [Google Scholar] [CrossRef]
  73. Fruchart, D.; Bertaut, E.F. Magnetic studies of the metallic perovskite-type compounds of manganese. J. Phys. Soc. Jpn. 1978, 44, 781–791. [Google Scholar] [CrossRef]
  74. Paul, A.K.; Reehuis, M.; Ksenofontov, V.; Yan, B.; Hoser, A.; Többens, D.M.; Abdala, P.M.; Adler, P.; Jansen, M.; Felser, C. Lattice Instability and Competing Spin Structures in the Double Perovskite Insulator Sr2FeOsO6. Phys. Rev. Lett. 2013, 111, 167205. [Google Scholar] [CrossRef]
  75. May, A.F.; McGuire, M.A.; Cao, H.; Sergueev, I.; Cantoni, C.; Chakoumakos, B.C.; Parker, D.S.; Sales, B.C. Spin Reorientation in TlFe1.6Se2 with Complete Vacancy Ordering. Phys. Rev. Lett. 2012, 109, 077003. [Google Scholar] [CrossRef]
  76. Injac, S.; Yuen, A.K.; Avdeev, M.; Orlandi, F.; Kennedy, B.J. Structural and magnetic studies of KOsO4, a 5d 1 quantum magnet oxide. Phys. Chem. Chem. Phys. 2019, 21, 7261–7264. [Google Scholar] [CrossRef]
  77. Morosan, E.; Fleitman, J.A.; Huang, Q.; Lynn, J.W.; Chen, Y.; Ke, X.; Dahlberg, M.L.; Schiffer, P.; Craley, C.R.; Cava, R.J. Structure and magnetic properties of the Ho2Ge2O7 pyrogermanate. Phys. Rev. B 2008, 77, 224423. [Google Scholar] [CrossRef]
  78. Babkevich, P.; Testa, L.; Kimura, K.; Kimura, T.; Tucker, G.S.; Roessli, B.; Rønnow, H.M. Magnetic structure of Ba(TiO)Cu4(PO4)4 probed using spherical neutron polarimetry. Phys. Rev. B 2017, 96, 214436. [Google Scholar] [CrossRef]
  79. Taddei, K.M.; Sanjeewa, L.; Kolis, J.W.; Sefat, A.S.; de la Cruz, C.; Pajerowski, D.M. Local-Ising-type magnetic order and metamagnetism in the rare-earth pyrogermanate Er2Ge2O7. Phys. Rev. Mater. 2019, 3, 014405. [Google Scholar] [CrossRef]
  80. Cadogan, J.; Ryan, D.; Altounian, Z.; Wang, H.; Swainson, I. The magnetic structures of Nd5Si4 and Nd5Ge4. J. Phys. Condens. Matter 2002, 14, 7191. [Google Scholar] [CrossRef]
  81. Hillier, A.D.; Adroja, D.T.; Manuel, P.; Anand, V.K.; Taylor, J.W.; McEwen, K.A.; Rainford, B.D.; Koza, M.M. Muon spin relaxation and neutron scattering investigations of the noncentrosymmetric heavy-fermion antiferromagnet CeRhGe3. Phys. Rev. B 2012, 85, 134405. [Google Scholar] [CrossRef]
  82. Anand, V.K.; Hillier, A.D.; Adroja, D.T.; Khalyavin, D.D.; Manuel, P.; Andre, G.; Rols, S.; Koza, M.M. Understanding the magnetism in noncentrosymmetric CeIrGe3: Muon spin relaxation and neutron scattering studies. Phys. Rev. B 2018, 97, 184422. [Google Scholar] [CrossRef]
  83. Sale, M.; Xia, Q.; Avdeev, M.; Ling, C.D. Crystal and Magnetic Structures of Melilite-Type Ba2MnSi2O7. Inorg. Chem. 2019, 58, 4164–4172. [Google Scholar] [CrossRef]
  84. Zou, T.; Cai, Y.Q.; Dela Cruz, C.R.; Garlea, V.O.; Mahanti, S.D.; Cheng, J.G.; Ke, X. Up-up-down-down magnetic chain structure of the spin-12 tetragonally distorted spinel GeCu2O4. Phys. Rev. B 2016, 94, 214406. [Google Scholar] [CrossRef]
  85. Nirmala, R.; Morozkin, A.; Isnard, O.; Nigam, A. Understanding the magnetic ground state of rare-earth intermetallic compound Ce4Sb3: Magnetization and neutron diffraction studies. J. Magn. Magn. Mater. 2009, 321, 188–191. [Google Scholar] [CrossRef]
  86. Nandi, S.; Xiao, Y.; Qureshi, N.; Paramanik, U.B.; Jin, W.T.; Su, Y.; Ouladdiaf, B.; Hossain, Z.; Brückel, T. Magnetic structures of the Eu and Cr moments in EuCr2As2: Neutron diffraction study. Phys. Rev. B 2016, 94, 094411. [Google Scholar] [CrossRef]
  87. Dalmas de Réotier, P.; Marin, C.; Yaouanc, A.; Ritter, C.; Maisuradze, A.; Roessli, B.; Bertin, A.; Baker, P.J.; Amato, A. Long-range dynamical magnetic order and spin tunneling in the cooperative paramagnetic states of the pyrochlore analogous spinel antiferromagnets CdYb 2X4 (X = S or Se). Phys. Rev. B 2017, 96, 134403. [Google Scholar] [CrossRef]
  88. Hofmann, M.; Campbell, S.J.; Edge, A.V.J. EuMn2Ge2 and EuMn2Si2: Magnetic structures and valence transitions. Phys. Rev. B 2004, 69, 174432. [Google Scholar] [CrossRef]
  89. Cui, Q.; Huang, Q.; Alonso, J.A.; Sheptyakov, D.; De la Cruz, C.R.; Fernández-Díaz, M.T.; Wang, N.N.; Cai, Y.Q.; Li, D.; Dong, X.L.; et al. Complex antiferromagnetic order in the garnet Co3Al2Si3O12. Phys. Rev. B 2020, 101, 144424. [Google Scholar] [CrossRef]
  90. Jauch, W.; Reehuis, M.; Schultz, A. γ-ray and neutron diffraction studies of CoF2: Magnetostriction, electron density and magnetic moments. Acta Crystallogr. A 2004, 60, 51–57. [Google Scholar] [CrossRef]
  91. Calder, S.; Saparov, B.; Cao, H.B.; Niedziela, J.L.; Lumsden, M.D.; Sefat, A.S.; Christianson, A.D. Magnetic structure and spin excitations in BaMn2Bi2. Phys. Rev. B 2014, 89, 064417. [Google Scholar] [CrossRef]
  92. Wiebe, C.R.; Gardner, J.S.; Kim, S.J.; Luke, G.M.; Wills, A.S.; Gaulin, B.D.; Greedan, J.E.; Swainson, I.; Qiu, Y.; Jones, C.Y. Magnetic Ordering in the Spin-Ice Candidate Ho2Ru2O7. Phys. Rev. Lett. 2004, 93, 076403. [Google Scholar] [CrossRef]
  93. Blanco, J.A.; Brown, P.J.; Stunault, A.; Katsumata, K.; Iga, F.; Michimura, S. Magnetic structure of GdB4 from spherical neutron polarimetry. Phys. Rev. B 2006, 73, 212411. [Google Scholar] [CrossRef]
  94. Bos, J.W.G.; Colin, C.V.; Palstra, T.T.M. Magnetoelectric coupling in the cubic ferrimagnet Cu2OSeO3. Phys. Rev. B 2008, 78, 094416. [Google Scholar] [CrossRef]
  95. Kenzelmann, M.; Lawes, G.; Harris, A.B.; Gasparovic, G.; Broholm, C.; Ramirez, A.P.; Jorge, G.A.; Jaime, M.; Park, S.; Huang, Q.; et al. Direct Transition from a Disordered to a Multiferroic Phase on a Triangular Lattice. Phys. Rev. Lett. 2007, 98, 267205. [Google Scholar] [CrossRef]
  96. Volkova, O.S.; Mazurenko, V.V.; Solovyev, I.V.; Deeva, E.B.; Morozov, I.V.; Lin, J.Y.; Wen, C.K.; Chen, J.M.; Abdel-Hafiez, M.; Vasiliev, A.N. Noncollinear ferrimagnetic ground state in Ni(NO3)2. Phys. Rev. B 2014, 90, 134407. [Google Scholar] [CrossRef]
  97. Saito, T.; Toyoda, M.; Ritter, C.; Zhang, S.; Oguchi, T.; Attfield, J.P.; Shimakawa, Y. Symmetry-breaking 60°-spin order in the A-site-ordered perovskite LaMn3V4O12. Phys. Rev. B 2014, 90, 214405. [Google Scholar] [CrossRef]
  98. Haraguchi, Y.; Nawa, K.; Michioka, C.; Ueda, H.; Matsuo, A.; Kindo, K.; Avdeev, M.; Sato, T.J.; Yoshimura, K. Frustrated magnetism in the J1-J2 honeycomb lattice compounds MgMnO3 and ZnMnO3 synthesized via a metathesis reaction. Phys. Rev. Mater. 2019, 3, 124406. [Google Scholar] [CrossRef]
  99. Li, F.; Pomjakushin, V.; Mazet, T.; Sibille, R.; Malaman, B.; Yadav, R.; Keller, L.; Medarde, M.; Conder, K.; Pomjakushina, E. Revisiting the magnetic structure and charge ordering in La1/3Sr2/3FeO3 by neutron powder diffraction and Mössbauer spectroscopy. Phys. Rev. B 2018, 97, 174417. [Google Scholar] [CrossRef]
  100. Ritter, C.; Pankrats, A.; Gudim, I.; Vorotynov, A. Magnetic structure of iron borate DyFe3 (BO3) 4: A neutron diffraction study. J. Phys. Conf. Ser. 2012, 340, 012065. [Google Scholar] [CrossRef]
  101. Boldrin, D.; Fåk, B.; Canévet, E.; Ollivier, J.; Walker, H.C.; Manuel, P.; Khalyavin, D.D.; Wills, A.S. Vesignieite: An S = 12 Kagome Antiferromagnet with Dominant Third-Neighbor Exchange. Phys. Rev. Lett. 2018, 121, 107203. [Google Scholar] [CrossRef]
  102. Hao, X.F.; Stroppa, A.; Picozzi, S.; Filippetti, A.; Franchini, C. Exceptionally large room-temperature ferroelectric polarization in the PbNiO3 multiferroic nickelate: First-principles study. Phys. Rev. B 2012, 86, 014116. [Google Scholar] [CrossRef]
  103. Hwang, J.; Choi, E.S.; Ye, F.; Dela Cruz, C.R.; Xin, Y.; Zhou, H.D.; Schlottmann, P. Successive Magnetic Phase Transitions and Multiferroicity in the Spin-One Triangular-Lattice Antiferromagnet Ba3NiNb2O9. Phys. Rev. Lett. 2012, 109, 257205. [Google Scholar] [CrossRef]
  104. Corliss, L.M.; Elliott, N.; Hastings, J.M.; Sass, R.L. Magnetic Structure of Chromium Selenide. Phys. Rev. 1961, 122, 1402–1406. [Google Scholar] [CrossRef]
  105. Zvereva, E.A.; Raganyan, G.V.; Vasilchikova, T.M.; Nalbandyan, V.B.; Gafurov, D.A.; Vavilova, E.L.; Zakharov, K.V.; Koo, H.J.; Pomjakushin, V.Y.; Susloparova, A.E.; et al. Hidden magnetic order in the triangular-lattice magnet Li2MnTeO6. Phys. Rev. B 2020, 102, 094433. [Google Scholar] [CrossRef]
  106. Tian, W.; Svoboda, C.; Ochi, M.; Matsuda, M.; Cao, H.B.; Cheng, J.G.; Sales, B.C.; Mandrus, D.G.; Arita, R.; Trivedi, N.; et al. High antiferromagnetic transition temperature of the honeycomb compound SrRu2O6. Phys. Rev. B 2015, 92, 100404. [Google Scholar] [CrossRef]
  107. Milam-Guerrero, J.; Zheng, M.; Spence, N.R.; Falsaperna, M.; Calder, S.; Lapidus, S.; Saines, P.J.; Melot, B.C. Influence of the cubic sublattice on magnetic coupling between the tetrahedral sites of garnet. Inorg. Chem. 2021, 60, 8500. [Google Scholar] [CrossRef]
  108. Kurbakov, A.I.; Susloparova, A.E.; Pomjakushin, V.Y.; Skourski, Y.; Vavilova, E.L.; Vasilchikova, T.M.; Raganyan, G.V.; Vasiliev, A.N. Commensurate helicoidal order in the triangular layered magnet Na2MnTeO6. Phys. Rev. B 2022, 105, 064416. [Google Scholar] [CrossRef]
  109. Soh, J.R.; Yi, C.; Zivkovic, I.; Qureshi, N.; Stunault, A.; Ouladdiaf, B.; Rodríguez-Velamazán, J.A.; Shi, Y.; Rønnow, H.M.; Boothroyd, A.T. Magnetic structure of the topological semimetal Co3Sn2S2. Phys. Rev. B 2022, 105, 094435. [Google Scholar] [CrossRef]
  110. Ding, L.; Xu, X.; Jeschke, H.O.; Bai, X.; Feng, E.; Alemayehu, A.S.; Kim, J.; Huang, F.T.; Zhang, Q.; Ding, X.; et al. Field-tunable toroidal moment in a chiral-lattice magnet. Nat. Commun. 2021, 12, 5339. [Google Scholar] [CrossRef]
  111. Brown, P.; Chatterji, T. Neutron diffraction and polarimetric study of the magnetic and crystal structures of HoMnO3 and YMnO3. J. Phys. Condens. Matter 2006, 18, 10085. [Google Scholar] [CrossRef]
  112. Gondek, L.; Szytuła, A.; Penc, B.; Hernandez-Velasco, J.; Zygmunt, A. Magnetic structures of RTIn (R = Ce, Er; T = Au, Ni) compounds. J. Magn. Magn. Mater. 2003, 262, L177–L180. [Google Scholar] [CrossRef]
  113. Pomjakushin, V.; Perez-Mato, J.M.; Fischer, P.; Keller, L.; Sikora, W. Revisiting the antiferromagnetic structure of Tb14Ag51: The importance of distinguishing alternative symmetries for a multidimensional order parameter. Acta Cryst. B 2022, 78. [Google Scholar] [CrossRef]
  114. Leblanc, M.; De Pape, R.; Ferey, G.; Pannetier, J. Ordered magnetic frustration–V. Antiferromagnetic structure of the hexagonal bronzoid HTB FeF3; Comparison with the non frustrated rhombohedral form. Solid State Commun. 1986, 58, 171–176. [Google Scholar] [CrossRef]
  115. Garlea, V.O.; Sanjeewa, L.D.; McGuire, M.A.; Batista, C.D.; Samarakoon, A.M.; Graf, D.; Winn, B.; Ye, F.; Hoffmann, C.; Kolis, J.W. Exotic Magnetic Field-Induced Spin-Superstructures in a Mixed Honeycomb-Triangular Lattice System. Phys. Rev. X 2019, 9, 011038. [Google Scholar] [CrossRef]
  116. Brown, P.; Crangle, J.; Neumann, K.U.; Smith, J.G.; Ziebeck, K. The structure and magnetic moment distribution in the antiferromagnetic phase of. J. Phys. Condens. Matter 1997, 9, 4729. [Google Scholar] [CrossRef]
  117. Schobinger-Papamantellos, P.; Rodríguez-Carvajal, J.; Buschow, K. Magnetic ordering of ScMn6Ge6 by neutron diffraction. J. Magn. Magn. Mater. 2014, 369, 243–248. [Google Scholar] [CrossRef]
  118. Riberolles, S.X.; Trevisan, T.V.; Kuthanazhi, B.; Heitmann, T.; Ye, F.; Johnston, D.; Bud’ko, S.; Ryan, D.; Canfield, P.; Kreyssig, A.; et al. Magnetic crystalline-symmetry-protected axion electrodynamics and field-tunable unpinned Dirac cones in EuIn2As2. Nat. Commun. 2021, 12, 999. [Google Scholar] [CrossRef]
  119. Munoz, A.; Alonso, J.; Martínez-Lope, M.; Casáis, M.; Martínez, J.; Fernandez-Diaz, M. Evolution of the magnetic structure of hexagonal HoMnO3 from neutron powder diffraction data. Chem. Mater. 2001, 13, 1497–1505. [Google Scholar] [CrossRef]
  120. Tang, Y.S.; Wang, S.M.; Lin, L.; Li, C.; Zheng, S.H.; Li, C.F.; Zhang, J.H.; Yan, Z.B.; Jiang, X.P.; Liu, J.M. Collinear magnetic structure and multiferroicity in the polar magnet Co2Mo3O8. Phys. Rev. B 2019, 100, 134112. [Google Scholar] [CrossRef]
  121. Disseler, S.M.; Borchers, J.A.; Brooks, C.M.; Mundy, J.A.; Moyer, J.A.; Hillsberry, D.A.; Thies, E.L.; Tenne, D.A.; Heron, J.; Holtz, M.E.; et al. Magnetic Structure and Ordering of Multiferroic Hexagonal LuFeO3. Phys. Rev. Lett. 2015, 114, 217602. [Google Scholar] [CrossRef] [PubMed]
  122. Ma, J.; Kamiya, Y.; Hong, T.; Cao, H.B.; Ehlers, G.; Tian, W.; Batista, C.D.; Dun, Z.L.; Zhou, H.D.; Matsuda, M. Static and Dynamical Properties of the Spin-1/2 Equilateral Triangular-Lattice Antiferromagnet Ba3CoSb2O9. Phys. Rev. Lett. 2016, 116, 087201. [Google Scholar] [CrossRef]
  123. Hayashida, S.; Hagihala, M.; Avdeev, M.; Miura, Y.; Manaka, H.; Masuda, T. Magnetic order in the chemically substituted frustrated antiferromagnet CsCrF4. Phys. Rev. B 2020, 102, 174440. [Google Scholar] [CrossRef]
  124. Maletta, H.; Robinson, R.; Lawson, A.; Sechovskỳ, V.; Havela, L.; Jirman, L.; Divis, M.; Brück, E.; De Boer, F.; Andreev, A.; et al. On the magnetic structure of UNiGa. J. Magn. Magn. Mater. 1992, 104, 21–22. [Google Scholar] [CrossRef]
  125. Hayashida, S.; Zaharko, O.; Kurita, N.; Tanaka, H.; Hagihala, M.; Soda, M.; Itoh, S.; Uwatoko, Y.; Masuda, T. Pressure-induced quantum phase transition in the quantum antiferromagnet CsFeCl3. Phys. Rev. B 2018, 97, 140405. [Google Scholar] [CrossRef]
  126. Gondek, L.; Baran, S.; Szytuła, A.; Kaczorowski, D.; Hernández-Velasco, J. Crystal and magnetic structures of RPdIn (R = Nd, Ho, Er) compounds. J. Magn. Magn. Mater. 2005, 285, 272–278. [Google Scholar] [CrossRef]
  127. Watanabe, H.; Kunitomi, N. On the neutron diffraction study of FeGe. J. Phys. Soc. Jpn. 1966, 21, 1932–1935. [Google Scholar] [CrossRef]
  128. Mekata, M.; Adachi, K. Magnetic structure of CsCoCl3. J. Phys. Soc. Jpn. 1978, 44, 806–812. [Google Scholar] [CrossRef]
  129. May, A.F.; Calder, S.; Cantoni, C.; Cao, H.; McGuire, M.A. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3−xGeTe2. Phys. Rev. B 2016, 93, 014411. [Google Scholar] [CrossRef]
  130. Eriksson, T.; Lizárraga, R.; Felton, S.; Bergqvist, L.; Andersson, Y.; Nordblad, P.; Eriksson, O. Crystal and magnetic structure of Mn3IrSi. Phys. Rev. B 2004, 69, 054422. [Google Scholar] [CrossRef]
  131. Pomjakushin, V.; Plokhikh, I.; White, J.S.; Fujishiro, Y.; Kanazawa, N.; Tokura, Y.; Pomjakushina, E. Topological magnetic structures in MnGe: Neutron diffraction and symmetry analysis. Phys. Rev. B 2023, 107, 024410. [Google Scholar] [CrossRef]
  132. Yano, S.; Louca, D.; Yang, J.; Chatterjee, U.; Bugaris, D.E.; Chung, D.Y.; Peng, L.; Grayson, M.; Kanatzidis, M.G. Magnetic structure of NiS2−xSex. Phys. Rev. B 2016, 93, 024409. [Google Scholar] [CrossRef]
  133. Sato, T.J.; Ishikawa, A.; Sakurai, A.; Hattori, M.; Avdeev, M.; Tamura, R. Whirling spin order in the quasicrystal approximant Au72Al14Tb14. Phys. Rev. B 2019, 100, 054417. [Google Scholar] [CrossRef]
  134. Saeaun, P.; Zhao, Y.; Piyawongwatthana, P.; Sato, T.J.; Chou, F.C.; Avdeev, M.; Gitgeatpong, G.; Matan, K. Magnetic properties and magnetic structure of the frustrated quasi-one-dimensional antiferromagnet SrCuTe2O6. Phys. Rev. B 2020, 102, 134407. [Google Scholar] [CrossRef]
  135. Samartzis, A.; Chillal, S.; Islam, A.T.M.N.; Siemensmeyer, K.; Prokes, K.; Voneshen, D.J.; Senyshyn, A.; Khalyavin, D.; Lake, B. Structural and magnetic properties of the quantum magnet BaCuTe2O6. Phys. Rev. B 2021, 103, 094417. [Google Scholar] [CrossRef]
  136. Stewart, J.; Ehlers, G.; Wills, A.; Bramwell, S.T.; Gardner, J. Phase transitions, partial disorder and multi-k structures in Gd2Ti2O7. J. Phys. Condens. Matter 2004, 16, L321. [Google Scholar] [CrossRef]
  137. Fujii, H.; Uwatoko, Y.; Motoya, K.; Ito, Y.; Okamoto, T. Neutron diffraction and magnetic studies of CeZn and NdZn single crystals. J. Magn. Magn. Mater. 1987, 63, 114–116. [Google Scholar] [CrossRef]
  138. Wawrzyńczak, R.; Tomasello, B.; Manuel, P.; Khalyavin, D.; Le, M.D.; Guidi, T.; Cervellino, A.; Ziman, T.; Boehm, M.; Nilsen, G.J.; et al. Magnetic order and single-ion anisotropy in Tb3Ga5O12. Phys. Rev. B 2019, 100, 094442. [Google Scholar] [CrossRef]
  139. Sodemann, I.; Fu, L. Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials. Phys. Rev. Lett. 2015, 115, 216806. [Google Scholar] [CrossRef]
  140. Spaldin, N.A.; Fechner, M.; Bousquet, E.; Balatsky, A.; Nordström, L. Monopole-based formalism for the diagonal magnetoelectric response. Phys. Rev. B 2013, 88, 094429. [Google Scholar] [CrossRef]
  141. Khomskii, D. Magnetic monopoles and unusual dynamics of magnetoelectrics. Nat. Commun. 2014, 5, 4793. [Google Scholar] [CrossRef] [PubMed]
  142. Thöle, F.; Fechner, M.; Spaldin, N.A. First-principles calculation of the bulk magnetoelectric monopole density: Berry phase and Wannier function approaches. Phys. Rev. B 2016, 93, 195167. [Google Scholar] [CrossRef]
  143. Thöle, F.; Spaldin, N.A. Magnetoelectric multipoles in metals. Philos. Trans. R. Soc. A 2018, 376, 20170450. [Google Scholar] [CrossRef] [PubMed]
  144. Misawa, R.; Arakawa, K.; Yoshioka, T.; Ueda, H.; Iga, F.; Tamasaku, K.; Tanaka, Y.; Kimura, T. Resonant X-ray diffraction study using circularly polarized X-rays on antiferromagnetic TbB4. Phys. Rev. B 2023, 108, 134433. [Google Scholar] [CrossRef]
  145. Arakawa, K.; Hayashida, T.; Kimura, K.; Misawa, R.; Nagai, T.; Miyamoto, T.; Okamoto, H.; Iga, F.; Kimura, T. Detecting Magnetoelectric Effect in a Metallic Antiferromagnet via Nonreciprocal Rotation of Reflected Light. Phys. Rev. Lett. 2023, 131, 236702. [Google Scholar] [CrossRef] [PubMed]
  146. Aizu, K. Possible species of ferroelectrics. Phys. Rev. 1966, 146, 423. [Google Scholar] [CrossRef]
  147. Aizu, K. Possible species of “ferroelastic” crystals and of simultaneously ferroelectric and ferroelastic crystals. J. Phys. Soc. Jpn. 1969, 27, 387–396. [Google Scholar] [CrossRef]
  148. Aizu, K. Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phs. Rev. B 1970, 2, 754. [Google Scholar] [CrossRef]
  149. Nagaosa, N.; Sinova, J.; Onoda, S.; MacDonald, A.H.; Ong, N.P. Anomalous Hall effect. Rev. Mod. Phys. 2010, 82, 1539–1592. [Google Scholar] [CrossRef]
  150. Xiao, D.; Chang, M.C.; Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 2010, 82, 1959–2007. [Google Scholar] [CrossRef]
  151. Ikhlas, M.; Tomita, T.; Koretsune, T.; Suzuki, M.T.; Nishio-Hamane, D.; Arita, R.; Otani, Y.; Nakatsuji, S. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 2017, 13, 1085. [Google Scholar] [CrossRef]
  152. Kuroda, K.; Tomita, T.; Suzuki, M.T.; Bareille, C.; Nugroho, A.; Goswami, P.; Ochi, M.; Ikhlas, M.; Nakayama, M.; Akebi, S.; et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 2017, 16, 1090. [Google Scholar] [CrossRef] [PubMed]
  153. Higo, T.; Man, H.; Gopman, D.B.; Wu, L.; Koretsune, T.; van’t Erve, O.M.; Kabanov, Y.P.; Rees, D.; Li, Y.; Suzuki, M.T.; et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photonics 2018, 12, 73. [Google Scholar] [CrossRef] [PubMed]
  154. Chen, H. Electronic chiralization as an indicator of the anomalous Hall effect in unconventional magnetic systems. Phys. Rev. B 2022, 106, 024421. [Google Scholar] [CrossRef]
  155. Yamasaki, Y.; Nakao, H.; Arima, T.h. Augmented Magnetic Octupole in Kagomé 120-degree Antiferromagnets Detectable via X-ray Magnetic Circular Dichroism. J. Phys. Soc. Jpn. 2020, 89, 083703. [Google Scholar] [CrossRef]
  156. Hayami, S.; Kusunose, H.; Motome, Y. Spontaneous parity breaking in spin-orbital coupled systems. Phys. Rev. B 2014, 90, 081115. [Google Scholar] [CrossRef]
  157. Hayami, S.; Kusunose, H.; Motome, Y. Emergent odd-parity multipoles and magnetoelectric effects on a diamond structure: Implication for the 5d transition metal oxides AOsO4 (A = K, Rb, and Cs). Phys. Rev. B 2018, 97, 024414. [Google Scholar] [CrossRef]
  158. Yanagi, Y.; Hayami, S.; Kusunose, H. Manipulating the magnetoelectric effect: Essence learned from Co4Nb2O9. Phys. Rev. B 2018, 97, 020404. [Google Scholar] [CrossRef]
  159. Dzyaloshinskii, I. On the magneto-electrical effect in antiferromagnets. Sov. Phys. JETP 1960, 10, 628–629. [Google Scholar]
  160. Astrov, D. The magnetoelectric effect in antiferromagnetics. Sov. Phys. JETP-USSR 1960, 11, 708–709. [Google Scholar]
  161. Astrov, D. Magnetoelectric effect in chromium oxide. Sov. Phys. JETP 1961, 13, 729–733. [Google Scholar]
  162. Folen, V.J.; Rado, G.T.; Stalder, E.W. Anisotropy of the Magnetoelectric Effect in Cr2O3. Phys. Rev. Lett. 1961, 6, 607–608. [Google Scholar] [CrossRef]
  163. Shitade, A.; Watanabe, H.; Yanase, Y. Theory of orbital magnetic quadrupole moment and magnetoelectric susceptibility. Phys. Rev. B 2018, 98, 020407(R). [Google Scholar] [CrossRef]
  164. Watanabe, H.; Yanase, Y. Magnetic hexadecapole order and magnetopiezoelectric metal state in Ba1−xKxMn2As2. Phys. Rev. B 2017, 96, 064432. [Google Scholar] [CrossRef]
  165. Shiomi, Y.; Watanabe, H.; Masuda, H.; Takahashi, H.; Yanase, Y.; Ishiwata, S. Observation of a Magnetopiezoelectric Effect in the Antiferromagnetic Metal EuMnBi2. Phys. Rev. Lett. 2019, 122, 127207. [Google Scholar] [CrossRef] [PubMed]
  166. Hayami, S.; Kusunose, H. Spin-orbital-momentum locking under odd-parity magnetic quadrupole ordering. Phys. Rev. B 2021, 104, 045117. [Google Scholar] [CrossRef]
  167. Wang, C.; Gao, Y.; Xiao, D. Intrinsic Nonlinear Hall Effect in Antiferromagnetic Tetragonal CuMnAs. Phys. Rev. Lett. 2021, 127, 277201. [Google Scholar] [CrossRef] [PubMed]
  168. Liu, H.; Zhao, J.; Huang, Y.X.; Wu, W.; Sheng, X.L.; Xiao, C.; Yang, S.A. Intrinsic Second-Order Anomalous Hall Effect and Its Application in Compensated Antiferromagnets. Phys. Rev. Lett. 2021, 127, 277202. [Google Scholar] [CrossRef]
  169. Kirikoshi, A.; Hayami, S. Microscopic mechanism for intrinsic nonlinear anomalous Hall conductivity in noncollinear antiferromagnetic metals. Phys. Rev. B 2023, 107, 155109. [Google Scholar] [CrossRef]
  170. Yamaura, J.i.; Hiroi, Z. Crystal structure and magnetic properties of the 5d transition metal oxides AOsO4(A = K, Rb, Cs). Phys. Rev. B 2019, 99, 155113. [Google Scholar] [CrossRef]
  171. Arima, T. Time-Reversal Symmetry Breaking and Consequent Physical Responses Induced by All-In-All-Out Type Magnetic Order on the Pyrochlore Lattice. J. Phys. Soc. Jpn. 2013, 82, 013705. [Google Scholar] [CrossRef]
  172. Hayami, S.; Kusunose, H. Time-reversal switching responses in antiferromagnets. Phys. Rev. B 2023, 108, L140409. [Google Scholar] [CrossRef]
  173. Xu, X.; Huang, F.T.; Cheong, S.W. Magnetic toroidicity. J. Phys. Condens. Matter 2024, 36, 203002. [Google Scholar] [CrossRef] [PubMed]
  174. Hayashida, T.; Matsumoto, K.; Kimura, T. Electric-field-induced magnetic toroidal moment in a time-reversal-odd antiferromagnet. arXiv 2024, arXiv:2406.03029. [Google Scholar]
  175. Litvin, D.B. Ferroic classifications extended to ferrotoroidic crystals. Acta Cryst. A 2008, 64, 316–320. [Google Scholar] [CrossRef] [PubMed]
  176. Popov, Y.F.; Kadomtseva, A.; Belov, D.; Vorob’ev, G.; Zvezdin, A. Magnetic-field-induced toroidal moment in the magnetoelectric Cr2O3. J. Exp. Theor. Phys. Lett. 1999, 69, 330–335. [Google Scholar] [CrossRef]
  177. Schmid, H. On ferrotoroidics and electrotoroidic, magnetotoroidic and piezotoroidic effects. Ferroelectrics 2001, 252, 41–50. [Google Scholar] [CrossRef]
  178. Ederer, C.; Spaldin, N.A. Towards a microscopic theory of toroidal moments in bulk periodic crystals. Phys. Rev. B 2007, 76, 214404. [Google Scholar] [CrossRef]
  179. Spaldin, N.A.; Fiebig, M.; Mostovoy, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Matter 2008, 20, 434203. [Google Scholar] [CrossRef]
  180. Kopaev, Y.V. Toroidal ordering in crystals. Physics-Uspekhi 2009, 52, 1111–1125. [Google Scholar] [CrossRef]
  181. Yanase, Y. Magneto-Electric Effect in Three-Dimensional Coupled Zigzag Chains. J. Phys. Soc. Jpn. 2014, 83, 014703. [Google Scholar] [CrossRef]
  182. Hayami, S.; Kusunose, H.; Motome, Y. Toroidal order in metals without local inversion symmetry. Phys. Rev. B 2014, 90, 024432. [Google Scholar] [CrossRef]
  183. Hayami, S.; Kusunose, H.; Motome, Y. Spontaneous Multipole Ordering by Local Parity Mixing. J. Phys. Soc. Jpn. 2015, 84, 064717. [Google Scholar] [CrossRef]
  184. Hayami, S.; Kusunose, H.; Motome, Y. Emergent spin-valley-orbital physics by spontaneous parity breaking. J. Phys. Condens. Matter 2016, 28, 395601. [Google Scholar] [CrossRef]
  185. Saito, H.; Uenishi, K.; Miura, N.; Tabata, C.; Hidaka, H.; Yanagisawa, T.; Amitsuka, H. Evidence of a New Current-Induced Magnetoelectric Effect in a Toroidal Magnetic Ordered State of UNi4B. J. Phys. Soc. Jpn. 2018, 87, 033702. [Google Scholar] [CrossRef]
  186. Kawaguchi, H.; Tatara, G. Effective Hamiltonian theory for nonreciprocal light propagation in magnetic Rashba conductor. Phys. Rev. B 2016, 94, 235148. [Google Scholar] [CrossRef]
  187. Watanabe, H.; Yanase, Y. Nonlinear electric transport in odd-parity magnetic multipole systems: Application to Mn-based compounds. Phys. Rev. Res. 2020, 2, 043081. [Google Scholar] [CrossRef]
  188. Watanabe, H.; Yanase, Y. Photocurrent response in parity-time symmetric current-ordered states. Phys. Rev. B 2021, 104, 024416. [Google Scholar] [CrossRef]
  189. Suzuki, Y. Tunneling spin current in systems with spin degeneracy. Phys. Rev. B 2022, 105, 075201. [Google Scholar] [CrossRef]
  190. Yatsushiro, M.; Oiwa, R.; Kusunose, H.; Hayami, S. Analysis of model-parameter dependences on the second-order nonlinear conductivity in PT-symmetric collinear antiferromagnetic metals with magnetic toroidal moment on zigzag chains. Phys. Rev. B 2022, 105, 155157. [Google Scholar] [CrossRef]
  191. Miyahara, S.; Furukawa, N. Nonreciprocal Directional Dichroism and Toroidalmagnons in Helical Magnets. J. Phys. Soc. Jpn. 2012, 81, 023712. [Google Scholar] [CrossRef]
  192. Miyahara, S.; Furukawa, N. Theory of magneto-optical effects in helical multiferroic materials via toroidal magnon excitation. Phys. Rev. B 2014, 89, 195145. [Google Scholar] [CrossRef]
  193. Hayami, S.; Kusunose, H.; Motome, Y. Asymmetric Magnon Excitation by Spontaneous Toroidal Ordering. J. Phys. Soc. Jpn. 2016, 85, 053705. [Google Scholar] [CrossRef]
  194. Kondo, H.; Akagi, Y. Nonlinear magnon spin Nernst effect in antiferromagnets and strain-tunable pure spin current. Phys. Rev. Res. 2022, 4, 013186. [Google Scholar] [CrossRef]
  195. Hayami, S.; Yatsushiro, M.; Kusunose, H. Nonlinear spin Hall effect in PT-symmetric collinear magnets. Phys. Rev. B 2022, 106, 024405. [Google Scholar] [CrossRef]
  196. Mook, A.; Neumann, R.R.; Johansson, A.; Henk, J.; Mertig, I. Origin of the magnetic spin Hall effect: Spin current vorticity in the Fermi sea. Phys. Rev. Res. 2020, 2, 023065. [Google Scholar] [CrossRef]
  197. Hayami, S.; Yatsushiro, M. Spin Conductivity Based on Magnetic Toroidal Quadrupole Hidden in Antiferromagnets. J. Phys. Soc. Jpn. 2022, 91, 063702. [Google Scholar] [CrossRef]
  198. Matsumoto, T.; Hayami, S. Nonreciprocal magnons due to symmetric anisotropic exchange interaction in honeycomb antiferromagnets. Phys. Rev. B 2020, 101, 224419. [Google Scholar] [CrossRef]
  199. Hayami, S.; Yatsushiro, M. Nonlinear nonreciprocal transport in antiferromagnets free from spin-orbit coupling. Phys. Rev. B 2022, 106, 014420. [Google Scholar] [CrossRef]
  200. Hayami, S.; Yatsushiro, M. Nonreciprocal Transport in Noncoplanar Magnetic Systems without Spin–Orbit Coupling, Net Scalar Chirality, or Magnetization. J. Phys. Soc. Jpn. 2022, 91, 094704. [Google Scholar] [CrossRef]
  201. Kishine, J.i.; Kusunose, H.; Yamamoto, H.M. On the definition of chirality and enantioselective fields. Isr. J. Chem. 2022, 62, e202200049. [Google Scholar] [CrossRef]
  202. Hayami, S.; Kusunose, H. Chiral charge as hidden order parameter in URu2Si2. J. Phys. Soc. Jpn. 2023, 92, 113704. [Google Scholar] [CrossRef]
  203. Inda, A.; Oiwa, R.; Hayami, S.; Yamamoto, H.M.; Kusunose, H. Quantification of chirality based on electric toroidal monopole. J. Chem. Phys. 2024, 160, 184117. [Google Scholar] [CrossRef] [PubMed]
  204. Yoda, T.; Yokoyama, T.; Murakami, S. Current-induced orbital and spin magnetizations in crystals with helical structure. Sci. Rep. 2015, 5, 12024. [Google Scholar] [CrossRef] [PubMed]
  205. Furukawa, T.; Shimokawa, Y.; Kobayashi, K.; Itou, T. Observation of current-induced bulk magnetization in elemental tellurium. Nat. Commun. 2017, 8, 954. [Google Scholar] [CrossRef] [PubMed]
  206. Furukawa, T.; Watanabe, Y.; Ogasawara, N.; Kobayashi, K.; Itou, T. Current-induced magnetization caused by crystal chirality in nonmagnetic elemental tellurium. Phys. Rev. Res. 2021, 3, 023111. [Google Scholar] [CrossRef]
  207. Rikken, G.L.J.A.; Fölling, J.; Wyder, P. Electrical Magnetochiral Anisotropy. Phys. Rev. Lett. 2001, 87, 236602. [Google Scholar] [CrossRef] [PubMed]
  208. Hlinka, J. Eight Types of Symmetrically Distinct Vectorlike Physical Quantities. Phys. Rev. Lett. 2014, 113, 165502. [Google Scholar] [CrossRef]
  209. Hlinka, J.; Privratska, J.; Ondrejkovic, P.; Janovec, V. Symmetry Guide to Ferroaxial Transitions. Phys. Rev. Lett. 2016, 116, 177602. [Google Scholar] [CrossRef]
  210. Jin, W.; Drueke, E.; Li, S.; Admasu, A.; Owen, R.; Day, M.; Sun, K.; Cheong, S.W.; Zhao, L. Observation of a ferro-rotational order coupled with second-order nonlinear optical fields. Nat. Phys. 2020, 16, 42–46. [Google Scholar] [CrossRef]
  211. Cheong, S.W.; Lim, S.; Du, K.; Huang, F.T. Permutable SOS (symmetry operational similarity). NPJ Quantum Mater. 2021, 6, 58. [Google Scholar] [CrossRef]
  212. Cheong, S.W.; Huang, F.T.; Kim, M. Linking emergent phenomena and broken symmetries through one-dimensional objects and their dot/cross products. Rep. Prog. Phys. 2022, 85, 124501. [Google Scholar] [CrossRef] [PubMed]
  213. Hayashida, T.; Uemura, Y.; Kimura, K.; Matsuoka, S.; Hagihala, M.; Hirose, S.; Morioka, H.; Hasegawa, T.; Kimura, T. Phase transition and domain formation in ferroaxial crystals. Phys. Rev. Mater. 2021, 5, 124409. [Google Scholar] [CrossRef]
  214. Hayashida, T.; Uemura, Y.; Kimura, K.; Matsuoka, S.; Morikawa, D.; Hirose, S.; Tsuda, K.; Hasegawa, T.; Kimura, T. Visualization of ferroaxial domains in an order-disorder type ferroaxial crystal. Nat. Commun. 2020, 11, 4582. [Google Scholar] [CrossRef] [PubMed]
  215. Yokota, H.; Hayashida, T.; Kitahara, D.; Kimura, T. Three-dimensional imaging of ferroaxial domains using circularly polarized second harmonic generation microscopy. NPJ Quantum Mater. 2022, 7, 106. [Google Scholar] [CrossRef]
  216. Fang, X.; De, C.; Huang, F.T.; Xu, X.; Du, K.; Wang, K.; Li, B.; Cheong, S.W. Ferrorotational Selectivity in Ilmenites. J. Am. Chem. Soc. 2023, 145, 28022–28029. [Google Scholar] [CrossRef]
  217. Nasu, J.; Hayami, S. Antisymmetric thermopolarization by electric toroidicity. Phys. Rev. B 2022, 105, 245125. [Google Scholar] [CrossRef]
  218. Roy, A.; Guimarães, M.H.D.; Sławińska, J. Unconventional spin Hall effects in nonmagnetic solids. Phys. Rev. Mater. 2022, 6, 045004. [Google Scholar] [CrossRef]
  219. Hayami, S.; Oiwa, R.; Kusunose, H. Electric Ferro-Axial Moment as Nanometric Rotator and Source of Longitudinal Spin Current. J. Phys. Soc. Jpn. 2022, 91, 113702. [Google Scholar] [CrossRef]
  220. Inda, A.; Hayami, S. Nonlinear Transverse Magnetic Susceptibility under Electric Toroidal Dipole Ordering. J. Phys. Soc. Jpn. 2023, 92, 043701. [Google Scholar] [CrossRef]
  221. Kirikoshi, A.; Hayami, S. Rotational Response Induced by Electric Toroidal Dipole. J. Phys. Soc. Jpn. 2023, 92, 123703. [Google Scholar] [CrossRef]
  222. Hayami, S. Ferroaxial moment induced by vortex spin texture. Phys. Rev. B 2022, 106, 144402. [Google Scholar] [CrossRef]
  223. Inda, A.; Hayami, S. Magnetic instability under ferroaxial moment. Phys. Rev. B 2024, 109, 174424. [Google Scholar] [CrossRef]
  224. Di Matteo, S.; Norman, M.R. Nature of the tensor order in Cd2Re2O7. Phys. Rev. B 2017, 96, 115156. [Google Scholar] [CrossRef]
  225. Hayami, S.; Yanagi, Y.; Kusunose, H.; Motome, Y. Electric Toroidal Quadrupoles in the Spin-Orbit-Coupled Metal Cd2Re2O7. Phys. Rev. Lett. 2019, 122, 147602. [Google Scholar] [CrossRef] [PubMed]
  226. Ishitobi, T.; Hattori, K. Magnetoelectric Effects and Charge-Imbalanced Solenoids: Antiferro Quadrupole Orders in a Diamond Structure. J. Phys. Soc. Jpn. 2019, 88, 063708. [Google Scholar] [CrossRef]
  227. Göbel, B.; Mook, A.; Henk, J.; Mertig, I. Magnetoelectric effect and orbital magnetization in skyrmion crystals: Detection and characterization of skyrmions. Phys. Rev. B 2019, 99, 060406. [Google Scholar] [CrossRef]
  228. Hayami, S.; Yambe, R. Helicity locking of a square skyrmion crystal in a centrosymmetric lattice system without vertical mirror symmetry. Phys. Rev. B 2022, 105, 104428. [Google Scholar] [CrossRef]
  229. Bhowal, S.; Spaldin, N.A. Magnetoelectric Classification of Skyrmions. Phys. Rev. Lett. 2022, 128, 227204. [Google Scholar] [CrossRef]
Figure 1. Examples of symmetry lowerings under magnetic phase transitions. The magnetic monopole ( M 0 ) and the magnetic toroidal dipole ( T z ) are induced when the A 1 u and A 2 u representations belong to the totally symmetric irreducible representation, where the superscript “−” of irrep indicates parity with respect to the antiunitary time-reversal operation.
Figure 1. Examples of symmetry lowerings under magnetic phase transitions. The magnetic monopole ( M 0 ) and the magnetic toroidal dipole ( T z ) are induced when the A 1 u and A 2 u representations belong to the totally symmetric irreducible representation, where the superscript “−” of irrep indicates parity with respect to the antiunitary time-reversal operation.
Symmetry 16 00926 g001
Figure 2. Magnetic structures belonging to different irreducible representations for the 8 p site under the space group P 4 / m m m . The arrows represent the direction of magnetic moments.
Figure 2. Magnetic structures belonging to different irreducible representations for the 8 p site under the space group P 4 / m m m . The arrows represent the direction of magnetic moments.
Symmetry 16 00926 g002
Table 1. Four types of multipoles (MPs) up to rank 3. “#" in the sixth column represents the number of magnetic point groups to possess multipoles in the totally symmetric irreducible representation. The seventh column represents the band dispersion in the presence of multipoles. The eighth, ninth, and tenth columns denote the induced multipoles under the electric field E , magnetic field H , and electric current J .
Table 1. Four types of multipoles (MPs) up to rank 3. “#" in the sixth column represents the number of magnetic point groups to possess multipoles in the totally symmetric irreducible representation. The seventh column represents the band dispersion in the presence of multipoles. The eighth, ninth, and tenth columns denote the induced multipoles under the electric field E , magnetic field H , and electric current J .
MPRankNotation P T #Band DispersionEHJ
E0 Q 0 + 1 + 1 1221 Q 1 m M 1 m T 1 m
E1 Q 1 m 1 + 1 31 k × σ Q 0 , G 1 m , Q 2 m M 0 , T 1 m , M 2 m T 0 , M 1 m , T 2 m
E2 Q 2 m + 1 + 1 106 O l m ( k ) Q 1 m , G 2 m , Q 3 m M 1 m , T 2 m , M 3 m T 1 m , M 2 m , T 3 m
E3 Q 3 m 1 + 1 58 ( k × σ ) · k O l m ( k ) Q 2 m , G 3 m , Q 4 m M 2 m , T 3 m , M 4 m T 2 m , M 3 m , T 4 m
M0 M 0 1 1 32 M 1 m Q 1 m G 1 m
M1 M 1 m + 1 1 31 σ M 0 , T 1 m , M 2 m Q 0 , G 1 m , Q 2 m G 0 , Q 1 m , G 2 m
M2 M 2 m 1 1 42 M 1 m , T 2 m , M 3 m Q 1 m , G 2 m , Q 3 m G 1 m , Q 2 m , G 3 m
M3 M 3 m + 1 1 58 σ · k O l m ( k ) M 2 m , T 3 m , M 4 m Q 2 m , G 3 m , Q 4 m G 2 m , Q 3 m , G 4 m
MT0 T 0 + 1 1 32 T 1 m G 1 m Q 1 m
MT1 T 1 m 1 1 31 k T 0 , M 1 m , T 2 m G 0 , Q 1 m , G 2 m Q 0 , G 1 m , Q 2 m
MT2 T 2 m + 1 1 42 ( k × σ ) · k O l m ( k ) T 1 m , M 2 m , T 3 m G 1 m , Q 2 m , G 3 m Q 1 m , G 2 m , Q 3 m
MT3 T 3 m 1 1 58 O l m ( k ) T 2 m , M 3 m , T 4 m G 2 m , Q 3 m , G 4 m Q 2 m , G 3 m , Q 4 m
ET0 G 0 1 + 1 32 k · σ G 1 m T 1 m M 1 m
ET1 G 1 m + 1 + 1 43 G 0 , Q 1 m , G 2 m T 0 , M 1 m , T 2 m M 0 , T 1 m , M 2 m
ET2 G 2 m 1 + 1 42 σ · k O l m ( k ) G 1 m , Q 2 m , G 3 m T 1 m , M 2 m , T 3 m M 1 m , T 2 m , M 3 m
ET3 G 3 m + 1 + 1 71 G 2 m , Q 3 m , G 4 m T 2 m , M 3 m , T 4 m M 2 m , T 3 m , M 4 m
Table 2. Irreducible representations (irreps) of four types of multipoles under the magnetic point group (MPG) 4 / m m m 1 [36]. The superscript “−” of irrep indicates the parity with respect to the antiunitary time-reversal operation. MP in the second column represents the multipole, which corresponds to the order parameter under magnetic orderings. From the fourth to seventh columns, possible q = 0 magnetic orderings for the Wyckoff positions under the space group P 4 / m m m are shown [35].
Table 2. Irreducible representations (irreps) of four types of multipoles under the magnetic point group (MPG) 4 / m m m 1 [36]. The superscript “−” of irrep indicates the parity with respect to the antiunitary time-reversal operation. MP in the second column represents the multipole, which corresponds to the order parameter under magnetic orderings. From the fourth to seventh columns, possible q = 0 magnetic orderings for the Wyckoff positions under the space group P 4 / m m m are shown [35].
IrrepMPSubgroup 1 a (0 0 0) 2 f (0 1 / 2 0) 4 l (x 0 0) 8 p (x y 0)
A 1 g T 0 , T u 4 / m m m
A 2 g M z , M z α 4 / m m m
B 1 g T v , M x y z 4 / m m m
B 2 g T x y , M z β 4 / m m m
E g T y z , M x , M x α , M x β m m m
T z x , M y , M y α , M y β m m m
A 1 u M 0 , M u 4 / m m m
A 2 u T z , T z α 4 / m m m
B 1 u T x y z , M v 4 / m m m
B 2 u T z β , M x y 4 / m m m
E u T x , T x α , T x β , M y z m m m
T y , T y α , T y β , M z x m m m
Table 3. Classification of four types of multipoles up to rank 3 under the 122 magnetic point groups. The number in the column for the multipoles X l m ( X = Q , M , T , G ) represents the number of active multipoles belonging to the totally symmetric irreducible representation. The materials taken from MAGNDATA [41] are also listed in the rightmost column.
Table 3. Classification of four types of multipoles up to rank 3 under the 122 magnetic point groups. The number in the column for the multipoles X l m ( X = Q , M , T , G ) represents the number of active multipoles belonging to the totally symmetric irreducible representation. The materials taken from MAGNDATA [41] are also listed in the rightmost column.
( P , T ) = ( + 1 , + 1 ) ( 1 , + 1 ) ( + 1 , 1 ) ( 1 , 1 )
MPG Q 0 Q 2 m G 1 m G 3 m G 0 G 2 m Q 1 m Q 3 m T 0 T 2 m M 1 m M 3 m M 0 M 2 m T 1 m T 3 m Material
#111537 1537 1537 1537 Mn2ScSbO6 [42]
#2 11 1537 1537 LiFeAs2O7 [43]
#3 1 ¯ 1537 1537 RbMnF4 [44]
#4 1 ¯ 1 1537 CuMnO2 [45]
#5 1 ¯ 1537 1537 MnPSe3 [46]
#621313 1313 1313 1313 LiFeP2O7 [47]
#7 21 1313 1313 Yb2CoMnO6 [48]
#8 2 1313 1313 224 224 BaDy2O4 [49]
#9m1313 224 1313 224 Mn4Nb2O9 [50]
#10 m 1 1313 224 DyFeWO6 [51]
#11 m 1313 224 224 1313 ScFeO3 [52]
#12 2 / m 1313 1313 Cu2OSO4 [53]
#13 2 / m 1 1313 CuSe2O5 [54]
#14 2 / m 1313 224 YbCl3 [55]
#15 2 / m 1313 1313 Co2V2O7 [56]
#16 2 / m 1313 224 Mn3Ti2Te6 [57]
#1722212 1 12 1 12 1 12 1 FePO4 [58]
#18 2221 12 1 12 1 AgNiO2 [59]
#19 2 2 2 12 1 12 1 112 112 VNb3S6 [60]
#20 m m 2 12 1 112 12 1 112 FeSb2O4 [61]
#21 m m 21 12 1 112 EuNiO3 [62]
#22 m m 2 12 1 112 112 112 CaBaCo4O7 [63]
#23 m m 2 12 1 112 112 12 1 α -Cu2V2O7 [64]
#24 m m m 12 1 12 1 α -Mn2O3 [65]
#25 m m m 1 12 1 BaFe2As2 [66]
#26 m m m 12 1 112 U3Ru4Al12 [67]
#27 m m m 12 1 112 NiF2 [68]
#28 m m m 12 1 12 1 TbB4 [69]
#2941111 1111 1111 1111 Ce5TeO8 [70]
#30 41 1111 1111 CeAuAl3 [71]
#31 4 1111 1111 2 2 2 2
#32 4 ¯ 1111 2 2 1111 2 2
#33 4 ¯ 1 1111 2 2
#34 4 ¯ 1111 2 2 2 2 1111 CsCoF4 [72]
#35 4 / m 1111 1111 Mn3CuN [73]
#36 4 / m 1 1111 Sr2FeOsO6 [74]
#37 4 / m 1111 2 2
#38 4 / m 1111 1111 TlFe1.6Se2 [75]
#39 4 / m 1111 2 2 KOsO4 [76]
#4042211 11 11 11 Ho2Ge2O7 [77]
#41 4221 11 11 Ba(TiO)Cu4(PO4)4 [78]
#42 4 22 11 11 1 1 1 1 Er2Ge2O7 [79]
#43 42 2 11 11 11 11 Nd5Si4 [80]
#44 4 m m 11 11 11 11
#45 4 m m 1 11 11 CeRhGe3 [81]
#46 4 m m 11 11 1 1 1 1
#47 4 m m 11 11 11 11 CeIrGe3 [82]
#48 4 ¯ 2 m 11 1 1 11 1 1 Ba2MnSi2O7 [83]
#49 4 ¯ 2 m 1 11 1 1 GeCu2O4 [84]
#50 4 ¯ m 2 11 1 1 1 1 11
#51 4 ¯ 2 m 11 1 1 1 1 11 Ce4Sb3 [85]
#52 4 ¯ 2 m 11 1 1 11 1 1 EuCr2As2 [86]
#53 4 / m m m 11 11 CdYb2S4 [87]
#54 4 / m m m 1 11 EuMn2Si2 [88]
#55 4 / m m m 11 11 Co3Al2Si3O12 [89]
#56 4 / m m m 11 1 1 CoF2 [90]
#57 4 / m m m 11 1 1 BaMn2Bi2 [91]
#58 4 / m m m 11 11 Ho2Ru2O7 [92]
#59 4 / m m m 11 11 GdB4 [93]
#6031113 1113 1113 1113 Cu2OSeO3 [94]
#61 31 1113 1113 RbFe(MoO4)2 [95]
#62 3 ¯ 1113 1113 NiN2O6 [96]
#63 3 ¯ 1 1113 LaMn3V4O12 [97]
#64 3 ¯ 1113 1113 MgMnO3 [98]
#653211 1 11 1 11 1 11 1 La0.33Sr0.67FeO3 [99]
#66 321 11 1 11 1 DyFe3(B3)4 [100]
#67 32 11 1 11 1 11 11 BaCu3V2O8(OD)2 [101]
#68 3 m 11 1 11 11 1 11 PbNiO3 [102]
#69 3 m 1 11 1 11 Ba3Nb2NiO9 [103]
#70 3 m 11 1 11 11 11 1 CrSe [104]
#71 3 ¯ m 11 1 11 1 Li2MnTeO6 [105]
#72 3 ¯ m 1 11 1 SrRu2O6 [106]
#73 3 ¯ m 11 1 12 Ca2YZr2Fe3O12 [107]
#74 3 ¯ m 11 1 11 1 Na2MnTeO6 [108]
#75 3 ¯ m 11 1 12 Co3Sn2S2 [109]
#7661111 1111 1111 1111 BaCoSiO4 [110]
#77 61 1111 1111
#78 6 1111 1111 1 1 YMnO3 [111]
#79 6 ¯ 1111 1 1111 1
#80 6 ¯ 1 1111 1 ErAuIn [112]
#81 6 ¯ 1111 1 1 1111 Tb14Ag51 [113]
#82 6 / m 1111 1111 FeF3 [114]
#83 6 / m 1 1111
#84 6 / m 1111 2 K2Mn3(VO4)2CO3 [115]
#85 6 / m 1111 1111 U14Au51 [116]
#86 6 / m 1111 2
#8762211 11 11 11
#88 6221 11 11 ScMn6Ge6 [117]
#89 6 22 11 11 1 1
#90 62 2 11 11 11 11 EuIn2As2 [118]
#91 6 m m 11 11 11 11 HoMnO3 [119]
#92 6 m m 1 11 11
#93 6 m m 11 11 1 1 Co2Mo3O8 [120]
#94 6 m m 11 11 11 11 LuFeO3 [121]
#95 6 ¯ m 2 11 1 11 1 Ba3CoSb2O9 [122]
#96 6 ¯ m 21 11 1 CsCr0.94Fe0.06F4 [123]
#97 6 ¯ m 2 11 1 1 11 UNiGa [124]
#98 6 ¯ m 2 11 1 1 11 CsFeCl3 [125]
#99 6 ¯ m 2 11 1 11 1 HoPdIn [126]
#100 6 / m m m 11 11
#101 6 / m m m 1 11 FeGe [127]
#102 6 / m m m 11 11
#103 6 / m m m 11 1
#104 6 / m m m 11 1 CsCoCl3 [128]
#105 6 / m m m 11 11 Fe2.71GeTe2 [129]
#106 6 / m m m 11 11
#107231 1 1 1 1 1 1 1 Mn3IrSi [130]
#108 231 1 1 1 1 MnGe [131]
#109 m 3 ¯ 1 1 1 1 MnTe2 [132]
#110 m 3 ¯ 1 1 1 Au72Al14Tb14 [133]
#111 m 3 ¯ 1 1 1 1
#1124321 1 1 1 SrCuTe2O6 [134]
#113 4321 1 1
#114 4 32 1 1 1 1 BaCuTe2O6 [135]
#115 4 ¯ 3 m 1 1 1 1
#116 4 ¯ 3 m 1 1 1 Gd2Ti2O7 [136]
#117 4 ¯ 3 m 1 1 1 1
#118 m 3 ¯ m 1 1
#119 m 3 ¯ m 1 1 NdZn [137]
#120 m 3 ¯ m 1 1
#121 m 3 ¯ m 1 1 Tb3Ga5O12 [138]
#122 m 3 ¯ m 1 1
Table 4. Classification of magnetic point groups (MPGs) with the electric dipole Q 1 m according to the presence and absence of the magnetic dipole M 1 m and the magnetic toroidal dipole T 1 m .
Table 4. Classification of magnetic point groups (MPGs) with the electric dipole Q 1 m according to the presence and absence of the magnetic dipole M 1 m and the magnetic toroidal dipole T 1 m .
MPG M 1 m T 1 m
1, 2, 2 , m, m , m m 2 , 4, 3, 6
m m 2 , 4 m m , 3 m , 6 m m
m m 2 , 4 m m , 3 m , 6 m m
11 , 21 , m 1 , m m 21 , 41 , 4 , 4 m m 1
4 m m , 31 , 3 m 1 , 61 , 6 , 6 m m 1 , 6 m m
Table 5. Classification of magnetic point groups (MPGs) with the electric quadrupole Q 2 m according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , and the magnetic toroidal dipole T 1 m .
Table 5. Classification of magnetic point groups (MPGs) with the electric quadrupole Q 2 m according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , and the magnetic toroidal dipole T 1 m .
MPG Q 1 m M 1 m T 1 m
1, 2, 2 , m, m , m m 2 , 4, 3, 6
m m 2 , 4 m m , 3 m , 6 m m
m m 2 , 4 m m , 3 m , 6 m m
2 2 2 , 42 2 , 32 , 62 2
11 , 21 , m 1 , m m 21 , 41 , 4 , 4 m m 1
4 m m , 31 , 3 m 1 , 61 , 6 , 6 m m 1 , 6 m m
1 ¯ , 2 / m , 2 / m , m m m , 4 ¯ , 4 / m , 4 ¯ 2 m
4 / m m m , 3 ¯ , 3 ¯ m , 6 ¯ , 6 / m , 6 ¯ m 2 , 6 / m m m
1 ¯ , 2 / m , 2 / m , m m m , 4 ¯ , 4 / m , 4 ¯ m 2
4 / m m m , 3 ¯ , 3 ¯ m , 6 ¯ , 6 / m , 6 ¯ m 2 , 6 / m m m
1 ¯ 1 , 2 / m 1 , 222, 2221 , m m m , m m m 1 , m m m
4 ¯ 1 , 4 / m 1 , 4 / m , 4 / m , 422, 4221 , 4 22 , 4 ¯ 2 m
4 ¯ 2 m 1 , 4 ¯ 2 m , 4 / m m m , 4 / m m m 1 , 4 / m m m
4 / m m m , 4 / m m m , 3 ¯ 1 , 32, 321 , 3 ¯ m
3 ¯ m 1 , 3 ¯ m , 6 ¯ 1 , 6 / m 1 , 6 / m , 6 / m , 622
6221 , 6 22 , 6 ¯ m 2 , 6 ¯ m 21 , 6 ¯ m 2 , 6 / m m m
6 / m m m 1 , 6 / m m m , 6 / m m m , 6 / m m m
Table 6. Classification of magnetic point groups (MPGs) with the electric octupole Q 3 m according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , and the magnetic toroidal dipole T 1 m . The upper (lower) columns represent the magnetic point groups with (without) Q 1 m .
Table 6. Classification of magnetic point groups (MPGs) with the electric octupole Q 3 m according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , and the magnetic toroidal dipole T 1 m . The upper (lower) columns represent the magnetic point groups with (without) Q 1 m .
MPG Q 1 m M 1 m T 1 m
1, 2, 2 , m, m , m m 2 , 4, 3, 6
m m 2 , 4 m m , 3 m , 6 m m
m m 2 , 4 m m , 3 m , 6 m m
11 , 21 , m 1 , m m 21 , 41 , 4 , 4 m m 1
4 m m , 31 , 3 m 1 , 61 , 6 , 6 m m 1 , 6 m m
2 2 2 , 32
4 ¯ , 4 ¯ 2 m , 6 ¯ , 6 ¯ m 2
4 ¯ , 4 ¯ m 2 , 6 ¯ , 6 ¯ m 2
222, 2221 , 4 ¯ 1 , 4 ¯ 2 m , 4 ¯ 2 m 1 , 4 ¯ 2 m
32, 321 , 6 ¯ 1 , 6 ¯ m 2 , 6 ¯ m 21 , 6 ¯ m 2
23, 231 , 4 ¯ 3 m , 4 ¯ 3 m 1 , 4 ¯ 3 m
Table 7. Classification of magnetic point groups (MPGs) with the magnetic monopole M 0 according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , and the magnetic toroidal dipole T 1 m .
Table 7. Classification of magnetic point groups (MPGs) with the magnetic monopole M 0 according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , and the magnetic toroidal dipole T 1 m .
MPG Q 1 m M 1 m T 1 m
1, 2, m , 4, 3, 6
m m 2 , 4 m m , 3 m , 6 m m
1 ¯ , 2 / m , 4 ¯ , 4 / m , 3 ¯ , 6 ¯ , 6 / m
222, m m m , 422, 4 ¯ 2 m , 4 / m m m , 32, 3 ¯ m
622, 6 ¯ m 2 , 6 / m m m , 23, m 3 ¯ , 432, 4 ¯ 3 m , m 3 ¯ m
Table 8. Classification of magnetic point groups (MPGs) with the magnetic dipole M 1 m according to the presence and absence of the electric dipole Q 1 m and the magnetic toroidal dipole T 1 m .
Table 8. Classification of magnetic point groups (MPGs) with the magnetic dipole M 1 m according to the presence and absence of the electric dipole Q 1 m and the magnetic toroidal dipole T 1 m .
MPG Q 1 m T 1 m
1, 2, 2 , m, m , m m 2 , 4, 3, 6
m m 2 , 4 m m , 3 m , 6 m m
2 2 2 , 42 2 , 32 , 62 2
1 ¯ , 2 / m , 2 / m , m m m , 4 ¯ , 4 / m , 4 ¯ 2 m
4 / m m m , 3 ¯ , 3 ¯ m , 6 ¯ , 6 / m , 6 ¯ m 2 , 6 / m m m
Table 9. Classification of magnetic point groups (MPGs) with the magnetic quadrupole M 2 m according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , the magnetic toroidal dipole T 1 m , and the magnetic monopole M 0 . The upper (lower) columns represent the magnetic point groups with (without) M 0 .
Table 9. Classification of magnetic point groups (MPGs) with the magnetic quadrupole M 2 m according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , the magnetic toroidal dipole T 1 m , and the magnetic monopole M 0 . The upper (lower) columns represent the magnetic point groups with (without) M 0 .
MPG Q 1 m M 1 m T 1 m M 0
1, 2, m , 4, 3, 6
m m 2 , 4 m m , 3 m , 6 m m
1 ¯ , 2 / m , 4 ¯ , 4 / m , 3 ¯ , 6 ¯ , 6 / m
222, m m m , 422, 4 ¯ 2 m , 4 / m m m
32, 3 ¯ m , 622, 6 ¯ m 2 , 6 / m m m
2 , m, m m 2
m m 2
2 2 2
4 , 4 m m
4 ¯ , 4 ¯ 2 m
2 / m , m m m
4 / m , 4 22 , 4 ¯ 2 m , 4 / m m m
Table 10. Classification of magnetic point groups (MPGs) with the magnetic octupole M 3 m according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , and the magnetic toroidal dipole T 1 m . The upper (lower) columns represent the magnetic point groups with (without) M 1 m .
Table 10. Classification of magnetic point groups (MPGs) with the magnetic octupole M 3 m according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , and the magnetic toroidal dipole T 1 m . The upper (lower) columns represent the magnetic point groups with (without) M 1 m .
MPG Q 1 m M 1 m T 1 m
1, 2, 2 , m, m , m m 2 , 4, 3, 6
m m 2 , 4 m m , 3 m , 6 m m
2 2 2 , 42 2 , 32 , 62 2
1 ¯ , 2 / m , 2 / m , m m m , 4 ¯ , 4 / m , 4 ¯ 2 m
4 / m m m , 3 ¯ , 3 ¯ m , 6 ¯ , 6 / m , 6 ¯ m 2 , 6 / m m m
m m 2 , 3 m
4 , 4 m m , 6 , 6 m m
4 ¯ , 4 ¯ m 2 , 6 ¯ , 6 ¯ m 2
222, m m m , 4 / m , 4 22 , 4 ¯ 2 m , 4 / m m m
32, 3 ¯ m , 6 / m , 6 22 , 6 ¯ m 2 , 6 / m m m
23, m 3 ¯ , 4 32 , 4 ¯ 3 m , m 3 ¯ m
Table 11. Classification of magnetic point groups (MPGs) with the magnetic toroidal monopole T 0 according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , and the magnetic toroidal dipole T 1 m .
Table 11. Classification of magnetic point groups (MPGs) with the magnetic toroidal monopole T 0 according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , and the magnetic toroidal dipole T 1 m .
MPG Q 1 m M 1 m T 1 m
1, 2, m, 4, 3, 6
m m 2 , 4 m m , 3 m , 6 m m
1 ¯ , 2 / m , 4 ¯ , 4 / m , 3 ¯ , 6 ¯ , 6 / m
222, m m m , 422, 4 ¯ 2 m , 4 / m m m , 32, 3 ¯ m , 622
6 ¯ m 2 , 6 / m m m , 23, m 3 ¯ , 432, 4 ¯ 3 m , m 3 ¯ m
Table 12. Classification of magnetic point groups (MPGs) with the magnetic toroidal dipole T 1 m according to the presence and absence of the electric dipole Q 1 m and the magnetic dipole M 1 m .
Table 12. Classification of magnetic point groups (MPGs) with the magnetic toroidal dipole T 1 m according to the presence and absence of the electric dipole Q 1 m and the magnetic dipole M 1 m .
MPG Q 1 m M 1 m
1, 2, 2 , m, m , m m 2 , 4, 3, 6
m m 2 , 4 m m , 3 m , 6 m m
2 2 2 , 42 2 , 32 , 62 2
1 ¯ , 2 / m , 2 / m , m m m , 4 ¯ , 4 / m , 4 ¯ m 2
4 / m m m , 3 ¯ , 3 ¯ m , 6 ¯ , 6 / m , 6 ¯ m 2 , 6 / m m m
Table 13. Classification of magnetic point groups (MPGs) with the magnetic toroidal quadrupole T 2 m according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , the magnetic toroidal dipole T 1 m , and the magnetic toroidal monopole T 0 . The upper (lower) columns represent the magnetic point groups with (without) T 0 .
Table 13. Classification of magnetic point groups (MPGs) with the magnetic toroidal quadrupole T 2 m according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , the magnetic toroidal dipole T 1 m , and the magnetic toroidal monopole T 0 . The upper (lower) columns represent the magnetic point groups with (without) T 0 .
MPG Q 1 m M 1 m T 1 m T 0
1, 2, m, 4, 3, 6
m m 2 , 4 m m , 3 m , 6 m m
1 ¯ , 2 / m , 4 ¯ , 4 / m , 3 ¯ , 6 ¯ , 6 / m
222, m m m , 422, 4 ¯ 2 m , 4 / m m m , 32
3 ¯ m , 622, 6 ¯ m 2 , 6 / m m m
2 , m , m m 2
m m 2
2 2 2
4 , 4 m m
2 / m , m m m
4 ¯ , 4 ¯ m 2
4 / m , 4 22 , 4 ¯ 2 m , 4 / m m m
Table 14. Classification of magnetic point groups (MPGs) with the magnetic toroidal octupole T 3 m according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , and the magnetic toroidal dipole T 1 m . The upper (lower) columns represent the magnetic point groups with (without) T 1 m .
Table 14. Classification of magnetic point groups (MPGs) with the magnetic toroidal octupole T 3 m according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , and the magnetic toroidal dipole T 1 m . The upper (lower) columns represent the magnetic point groups with (without) T 1 m .
MPG Q 1 m M 1 m T 1 m
1, 2, 2 , m, m , m m 2 , 4, 3, 6
m m 2 , 4 m m , 3 m , 6 m m
2 2 2 , 42 2 , 32 , 62 2
1 ¯ , 2 / m , 2 / m , m m m , 4 ¯ , 4 / m , 4 ¯ m 2
4 / m m m , 3 ¯ , 3 ¯ m , 6 ¯ , 6 / m , 6 ¯ m 2 , 6 / m m m
m m 2 , 3 m
4 , 4 m m , 6 , 6 m m
4 ¯ , 4 ¯ 2 m , 6 ¯ , 6 ¯ m 2
222, m m m , 4 / m , 4 22 , 4 ¯ 2 m , 4 / m m m
32, 3 ¯ m , 6 / m , 6 22 , 6 ¯ m 2
6 / m m m , 23, m 3 ¯ , 4 32 , 4 ¯ 3 m , m 3 ¯ m
Table 15. Classification of magnetic point groups (MPGs) with the electric toroidal monopole G 0 according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , and the magnetic toroidal dipole T 1 m .
Table 15. Classification of magnetic point groups (MPGs) with the electric toroidal monopole G 0 according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , and the magnetic toroidal dipole T 1 m .
MPG Q 1 m M 1 m T 1 m
1, 2, 2 , 4, 3, 6
2 2 2 , 42 2 , 32 , 62 2
11 , 21 , 41 , 4 , 31 , 61 , 6
222, 2221 , 422, 4221 , 4 22 , 32, 321 , 622
6221 , 6 22 , 23, 231 , 432, 4321 , 4 32
Table 16. Classification of magnetic point groups (MPGs) with the electric toroidal dipole G 1 m according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , and the magnetic toroidal dipole T 1 m .
Table 16. Classification of magnetic point groups (MPGs) with the electric toroidal dipole G 1 m according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , and the magnetic toroidal dipole T 1 m .
MPG Q 1 m M 1 m T 1 m
1, 2, 2 , m, m , 4, 3, 6
11 , 21 , m 1 , 41 , 4 , 31 , 61 , 6
1 ¯ , 2 / m , 2 / m , 4 ¯ , 4 / m , 3 ¯ , 6 ¯ , 6 / m
1 ¯ , 2 / m , 2 / m , 4 ¯ , 4 / m , 3 ¯ , 6 ¯ , 6 / m
1 ¯ 1 , 2 / m 1 , 4 ¯ 1 , 4 / m 1 , 4 / m , 4 / m
3 ¯ 1 , 6 ¯ 1 , 6 / m 1 , 6 / m , 6 / m
Table 17. Classification of magnetic point groups (MPGs) with the electric toroidal quadrupole G 2 m according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , the magnetic toroidal dipole T 1 m , and the electric toroidal monopole G 0 . The upper (lower) columns represent the magnetic point groups with (without) G 0 .
Table 17. Classification of magnetic point groups (MPGs) with the electric toroidal quadrupole G 2 m according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , the magnetic toroidal dipole T 1 m , and the electric toroidal monopole G 0 . The upper (lower) columns represent the magnetic point groups with (without) G 0 .
MPG Q 1 m M 1 m T 1 m G 0
1, 2, 2 , 4, 3, 6
2 2 2 , 42 2 , 32 , 62 2
11 , 21 , 41 , 4 , 31 , 61 , 6
222, 2221 , 422, 4221 , 4 22
32, 321 , 622, 6221 , 6 22
m, m , m m 2
m m 2
m m 2
m 1 , m m 21
4 ¯ , 4 ¯ 2 m
4 ¯ , 4 ¯ m 2
4 ¯ 1 , 4 ¯ 2 m , 4 ¯ 2 m 1 , 4 ¯ 2 m
Table 18. Classification of magnetic point groups (MPGs) with the electric toroidal octupole G 3 m according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , the magnetic toroidal dipole T 1 m , and the electric toroidal dipole G 1 m . The upper (lower) columns represent the magnetic point groups with (without) G 1 m .
Table 18. Classification of magnetic point groups (MPGs) with the electric toroidal octupole G 3 m according to the presence and absence of the electric dipole Q 1 m , the magnetic dipole M 1 m , the magnetic toroidal dipole T 1 m , and the electric toroidal dipole G 1 m . The upper (lower) columns represent the magnetic point groups with (without) G 1 m .
MPG Q 1 m M 1 m T 1 m G 1 m
1, 2, 2 , m, m , 4, 3, 6
11 , 21 , m 1 , 41 , 4 , 31 , 61 , 6
1 ¯ , 2 / m , 2 / m , 4 ¯ , 4 / m , 3 ¯ , 6 ¯ , 6 / m
1 ¯ , 2 / m , 2 / m , 4 ¯ , 4 / m , 3 ¯ , 6 ¯ , 6 / m
1 ¯ 1 , 2 / m 1 , 4 ¯ 1 , 4 / m 1 , 4 / m , 4 / m
3 ¯ 1 , 6 ¯ 1 , 6 / m 1 , 6 / m , 6 / m
m m 2
m m 2 , 3 m
m m 2 , 3 m
2 2 2 , 32
m m 21 , 3 m 1
m m m , 3 ¯ m
m m m , 3 ¯ m
222, 2221 , m m m , m m m 1 , m m m , 32, 321
3 ¯ m , 3 ¯ m 1 , 3 ¯ m , 23, 231 , m 3 ¯ , m 3 ¯ 1 , m 3 ¯
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Hayami, S. Symmetry Classification of Antiferromagnets with Four Types of Multipoles. Symmetry 2024, 16, 926. https://doi.org/10.3390/sym16070926

AMA Style

Hayami S. Symmetry Classification of Antiferromagnets with Four Types of Multipoles. Symmetry. 2024; 16(7):926. https://doi.org/10.3390/sym16070926

Chicago/Turabian Style

Hayami, Satoru. 2024. "Symmetry Classification of Antiferromagnets with Four Types of Multipoles" Symmetry 16, no. 7: 926. https://doi.org/10.3390/sym16070926

APA Style

Hayami, S. (2024). Symmetry Classification of Antiferromagnets with Four Types of Multipoles. Symmetry, 16(7), 926. https://doi.org/10.3390/sym16070926

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop