Symmetry and Historicity in the Game of Life: Modifying Rules to Simulate Evolutionary Dynamics
Abstract
:1. Introduction
- (1)
- Simultaneous cell updates according to the classical rules.
- (2)
- A historicity-driven feedback loop as a sequential update, where each individual cell is updated based on varying degrees of “visibility” of updated and non-updated cells in the environment.
- (3)
- Stochastic (probability factor) variation in cell updates.
2. Game of Life
2.1. The Goals and Methods of Classical GoL
2.2. Stochasticity in the GoL (An Overview)
2.3. Discretization of Evolution in GoL: The Simultaneous Update Approach and Related Constraints
3. GoL, Stochasticity, and Historicity
3.1. Historicity in Evolution
3.2. Introducing Historicity in GoL Simulations
4. A Case Study: Generating and Breaking Symmetries in Living Systems
4.1. Evolving Symmetries
4.2. Simulating Symmetries with Classical GoL Rules (Regime 1)
4.3. From Emergence to Breaking of Symmetries and Back: Realistic Evolutionary Trajectories and Historicity in GoL
5. The Platform
5.1. Preliminaries
5.2. Brute-Force Pattern Search
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McConwell, A.K. Contingency’s Causality and Structural Diversity. Biol. Philos. 2019, 34, 26. [Google Scholar] [CrossRef]
- Montévil, M. Historicity at the Heart of Biology. Theory Biosci. 2020, 141, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Gould, S.J. Wonderful Life: The Burgess Shale and the Nature of History, 1st ed.; W.W. Norton: New York, NY, USA, 1989; ISBN 978-0-393-02705-1. [Google Scholar]
- Langton, C.G. Studying Artificial Life with Cellular Automata. Phys. Nonlinear Phenom. 1986, 22, 120–149. [Google Scholar] [CrossRef]
- Verhulst, P.-F. Recherches mathématiques sur la loi d’accroissement de la population. Mém. Académie R. Belg. 1845, 18, 1–40. [Google Scholar] [CrossRef]
- Verhulst, P.-F. Sur la loi d’accroissement de la population (Deuxième mémoire). Mém. Académie R. Belg. 1847, 20, 1–32. [Google Scholar] [CrossRef]
- May, R.M. Simple Mathematical Models with Very Complicated Dynamics. Nature 1976, 261, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Peper, F.; Adachi, S.; Lee, J. Variations on the Game of Life. In Game of Life Cellular Automata; Adamatzky, A., Ed.; Springer: London, UK, 2010; pp. 235–255. ISBN 978-1-84996-216-2. [Google Scholar]
- Johnston, N.; Greene, D. Conway’s Game of Life: Mathematics and Construction. Amazon: Seattle, DC, USA, 2022. [Google Scholar] [CrossRef]
- Sayama, H. Constructing Evolutionary Systems on a Simple Deterministic Cellular Automata Space; University of Tokyo, Department of Information Science: Tokyo, Japan, 1998. [Google Scholar]
- Bleh, D.; Calarco, T.; Montangero, S. Quantum Game of Life. EPL 2012, 97, 20012. [Google Scholar] [CrossRef]
- Abbott, D.; Davies, P.C.W.; Pati, A.K. (Eds.) Quantum Aspects of Life; Imperial College Press, Distributed by World Scientific: Hackensack, NJ, USA; London, UK; ISBN 978-1-84816-253-2.
- Beatty, J. Replaying Life’s Tape. J. Philos. 2006, 103, 336–362. [Google Scholar] [CrossRef]
- Gould, S.J. Dollo on Dollo’s Law: Irreversibility and the Status of Evolutionary Laws. J. Hist. Biol. 1970, 3, 189–212. [Google Scholar] [CrossRef]
- Bak, P.; Chen, K.; Creutz, M. Self-Organized Criticality in the “Game of Life”. Nature 1989, 342, 780–782. [Google Scholar] [CrossRef]
- Reia, S.M.; Kinouchi, O. Conway’s Game of Life Is a near-Critical Metastable State in the Multiverse of Cellular Automata. Phys. Rev. E 2014, 89, 052123. [Google Scholar] [CrossRef] [PubMed]
- Bak, P.; Tang, C.; Wiesenfeld, K. Self-Organized Criticality. Phys. Rev. A 1988, 38, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.; Bourzutschky, M.S. “Life” Not Critical? Nature 1991, 350, 468. [Google Scholar] [CrossRef]
- Blok, H.J.; Bergersen, B. Synchronous versus Asynchronous Updating in the “Game of Life”. Phys. Rev. E 1999, 59, 3876–3879. [Google Scholar] [CrossRef]
- Rechtsteiner, A. Complexity Properties of the Cellular Automaton Game of Life; Portland State University, Department of Physics: Portland, OR, USA, 1995. [Google Scholar]
- Ortega, R.; Wulff, E.; Fortuna, M.A. Ontology for the Avida Digital Evolution Platform. Sci. Data 2023, 10, 608. [Google Scholar] [CrossRef] [PubMed]
- Cisneros, H.; Sivic, J.; Mikolov, T. Evolving Structures in Complex Systems. In Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6–9 December 2019; pp. 230–237. [Google Scholar]
- Gaspard, P.; Wang, X.-J. Noise, Chaos, and (ε, τ)-Entropy per Unit Time. Phys. Rep. 1993, 235, 291–343. [Google Scholar] [CrossRef]
- Monetti, R.A.; Albano, E.V. Stochastic Game of Life in One Dimension. Phys. Stat. Mech. Its Appl. 1997, 234, 785–791. [Google Scholar] [CrossRef]
- Monetti, R.A.; Albano, E.V. On the Emergence of Large-Scale Complex Behavior in the Dynamics of a Society of Living Individuals: The Stochastic Game of Life. J. Theor. Biol. 1997, 187, 183–194. [Google Scholar] [CrossRef]
- Monetti, R.A.; Albano, E.V. Critical Edge between Frozen Extinction and Chaotic Life. Phys. Rev. E 1995, 52, 5825–5831. [Google Scholar] [CrossRef]
- Yaroslavsky, L. Self-Controlled Growth, Coherent Shrinkage, Eternal Life in a Self-Bounded Space and Other Amazing Evolutionary Dynamics of Stochastic Pattern Formation and Growth Models Inspired by Conways Game of Life. arXiv 2013, arXiv:arXiv:1310.7604. [Google Scholar]
- Yaroslavsky, L. The Amazing Dynamics of Stochastic Pattern Formation and Growth Models Inspired by the Conway’s Game of Life. arXiv 2013, arXiv:arXiv:1304.8104. [Google Scholar]
- Vieira, A.P.; Goles, E.; Herrmann, H.J. Phase Transitions in a Conservative Game of Life. Phys. Rev. E 2021, 103, 012132. [Google Scholar] [CrossRef] [PubMed]
- Fatès, N. Does Life Resist Asynchrony? In Game of Life Cellular Automata; Adamatzky, A., Ed.; Springer: London, UK, 2010; pp. 257–274. ISBN 978-1-84996-216-2. [Google Scholar]
- Lee, J.; Adachi, S.; Peper, F.; Morita, K. Asynchronous Game of Life. Phys. Nonlinear Phenom. 2004, 194, 369–384. [Google Scholar] [CrossRef]
- Huang, S.-Y.; Zou, X.-W.; Tan, Z.-J.; Jin, Z.-Z. Network-Induced Nonequilibrium Phase Transition in the “Game of Life”. Phys. Rev. E 2003, 67, 026107. [Google Scholar] [CrossRef]
- Doob, J.L. Stochastic Processes; Wiley series in probability and mathematical statistics; 7. printing; Wiley: New York, NY, USA, 1953; ISBN 978-0-471-21813-5. [Google Scholar]
- Lawen, A. Apoptosis—an Introduction. BioEssays 2003, 25, 888–896. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Carroll, S.B. Stephen Jay Gould (1941–2002): A Wonderful Life. Dev. Cell 2002, 3, 21–23. [Google Scholar] [CrossRef]
- Szathmáry, E. Path Dependence and Historical Contingency in Biology; Wimmer, A., Kössler, R., Eds.; Palgrave Macmillan UK: London, UK, 2006; pp. 140–157. [Google Scholar]
- Williams, G.C. Natural Selection: Domains, Levels, and Challenges; Oxford University Press: Oxford, UK, 1992; ISBN 978-0-19-802339-5. [Google Scholar]
- Morris, S.C. Life’s Solution: Inevitable Humans in a Lonely Universe; Cambridge University Press: Cambridge, UK, 2003; ISBN 978-1-139-44080-6. [Google Scholar]
- Turner, D.; Havstad, J.C. Philosophy of Macroevolution. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2019. [Google Scholar]
- Desjardins, E. Historicity and Experimental Evolution. Biol. Philos. 2011, 26, 339–364. [Google Scholar] [CrossRef]
- Turner, D.D. Gould’s Replay Revisited. Biol. Philos. 2011, 26, 65–79. [Google Scholar] [CrossRef]
- McConwell, A.K.; Currie, A. Gouldian Arguments and the Sources of Contingency. Biol. Philos. 2017, 32, 243–261. [Google Scholar] [CrossRef]
- Lenski, R.E.; Travisano, M. Dynamics of Adaptation and Diversification: A 10,000-Generation Experiment with Bacterial Populations. Proc. Natl. Acad. Sci. USA 1994, 91, 6808–6814. [Google Scholar] [CrossRef] [PubMed]
- Swan, L.S. Synthesizing Insight: Artificial Life as Thought Experimentation in Biology. Biol. Philos. 2009, 24, 687–701. [Google Scholar] [CrossRef]
- Erwin, D.H.; Arthur, W. The Origin of Animal Body Plans: A Study in Evolutionary Developmental Biology. PALAIOS 1998, 13, 608. [Google Scholar] [CrossRef]
- Gould, S.J. The Disparity of the Burgess Shale Arthropod Fauna and the Limits of Cladistic Analysis: Why We Must Strive to Quantify Morphospace. Paleobiology 1991, 17, 411–423. [Google Scholar] [CrossRef]
- Dalby, M.J.; Gadegaard, N.; Tare, R.; Andar, A.; Riehle, M.O.; Herzyk, P.; Wilkinson, C.D.W.; Oreffo, R.O.C. The Control of Human Mesenchymal Cell Differentiation Using Nanoscale Symmetry and Disorder. Nat. Mater. 2007, 6, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Goryachev, A.B.; Leda, M. Many Roads to Symmetry Breaking: Molecular Mechanisms and Theoretical Models of Yeast Cell Polarity. Mol. Biol. Cell 2017, 28, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Goodsell, D.S.; Olson, A.J. Structural Symmetry and Protein Function. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 105–153. [Google Scholar] [CrossRef]
- Møller, A.P.; Swaddle, J.P. Asymmetry, Developmental Stability, and Evolution; Oxford University Press: Oxford, UK, 1997; ISBN 978-0-19-854895-9. [Google Scholar]
- Korenić, A.; Perović, S.; Ćirković, M.M.; Miquel, P.-A. Symmetry Breaking and Functional Incompleteness in Biological Systems. Prog. Biophys. Mol. Biol. 2020, 150, 1–12. [Google Scholar] [CrossRef]
- Wagner, G.P.; Laubichler, M.D. Rupert Riedl and the Re-synthesis of Evolutionary and Developmental Biology: Body Plans and Evolvability. J. Exp. Zoolog. B Mol. Dev. Evol. 2004, 302B, 92–102. [Google Scholar] [CrossRef]
- The Arthropod Story: Bilateral (Left/Right) Symmetry. Available online: https://evolution.berkeley.edu/the-arthropod-story/what-is-an-arthropod/bilateral-left-right-symmetry/ (accessed on 10 August 2024).
- Kennedy, J. What Is Radial Symmetry in Marine Life? Available online: https://www.thoughtco.com/radial-symmetry-definition-2291676 (accessed on 8 August 2024).
- Spani, F.; Scalici, M.; Crandall, K.A.; Piras, P. Claw Asymmetry in Crabs: Approaching an Old Issue from a New Point of View. Biol. J. Linn. Soc. 2019, blz159. [Google Scholar] [CrossRef]
- Beck, F.; Eccles, J.C. Quantum Aspects of Brain Activity and the Role of Consciousness. Proc. Natl. Acad. Sci. USA 1992, 89, 11357–11361. [Google Scholar] [CrossRef] [PubMed]
- Blum, M.; Ott, T. Animal Left-Right Asymmetry. Curr. Biol. CB 2018, 28, R301–R304. [Google Scholar] [CrossRef] [PubMed]
- Blackmond, D.G. The Origin of Biological Homochirality. Cold Spring Harb. Perspect. Biol. 2010, 2, a002147. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadić, J.M.; Korenić, A.; Perović, S. Symmetry and Historicity in the Game of Life: Modifying Rules to Simulate Evolutionary Dynamics. Symmetry 2024, 16, 1024. https://doi.org/10.3390/sym16081024
Tadić JM, Korenić A, Perović S. Symmetry and Historicity in the Game of Life: Modifying Rules to Simulate Evolutionary Dynamics. Symmetry. 2024; 16(8):1024. https://doi.org/10.3390/sym16081024
Chicago/Turabian StyleTadić, Jovan M., Andrej Korenić, and Slobodan Perović. 2024. "Symmetry and Historicity in the Game of Life: Modifying Rules to Simulate Evolutionary Dynamics" Symmetry 16, no. 8: 1024. https://doi.org/10.3390/sym16081024
APA StyleTadić, J. M., Korenić, A., & Perović, S. (2024). Symmetry and Historicity in the Game of Life: Modifying Rules to Simulate Evolutionary Dynamics. Symmetry, 16(8), 1024. https://doi.org/10.3390/sym16081024