Next Article in Journal
Hierarchical Hypervapotron Structure Integrated with Microchannels for Advancement of Thermohydraulic Performance
Next Article in Special Issue
Enhanced Double Inertial Forward–Backward Splitting Algorithm for Variational Inclusion Problems: Applications in Mathematical Integrated Skill Prediction
Previous Article in Journal
Sex-Based Differences in Pressure Pain Thresholds of Myofascial Trigger Points in Cervical and Cranial Muscles in Tension-Type Headache: A Cross-Sectional Study
Previous Article in Special Issue
Some Common Fixed Point Results of Tower Mappings in (Pseudo)modular Metric Spaces
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Fixed Point Theorems for Generalized Meir–Keeler Type Nonlinear Mappings with Applications to Fixed Point Theory

Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 82444, Taiwan
*
Author to whom correspondence should be addressed.
Symmetry 2024, 16(8), 1088; https://doi.org/10.3390/sym16081088
Submission received: 5 July 2024 / Revised: 8 August 2024 / Accepted: 15 August 2024 / Published: 22 August 2024

Abstract

:
In this paper, we investigate new fixed point theorems for generalized Meir–Keeler type nonlinear mappings satisfying the condition (DH). As applications, we obtain many new fixed point theorems which generalize and improve several results available in the corresponding literature. An example is provided to illustrate and support our main results.

1. Introduction and Preliminaries

Since the pioneering establishment of the famous Banach contraction principle [1] and Brouwer fixed point theorem [2,3,4,5], fixed point theory and its applications have developed rapidly in the past one hundred years, and have been applied to study its uses in nonlinear analysis, economics, game theory, integral differential equations, optimization theory, dynamic system theory, signal and image processing and other related fields of applied mathematics. For more details, we refer the reader to the research monographs and papers [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20] and the references quoted therein.
Let A be a selfmapping from a metric space ( X , d ) into itself. A point z X is called a fixed point of A if A z = z . Let us recall the concepts of Meir–Keeler contraction and L-function.
Definition 1 
(see [20,21]). A selfmapping A on X is said to be a Meir–Keeler contraction if the condition (MK) holds, where
  • (MK) for each  β > 0 , there exists ϰ = ϰ ( β ) > 0 such that for x , y X ,
    d ( x , y ) [ β , β + ϰ ) i m p l i e s d ( A x , A y ) < β .
Definition 2 
(see [15,20]). A function τ : [ 0 , ) [ 0 , ) is called an L-function if τ ( 0 ) = 0 , τ ( t ) > 0 for t > 0 , and for every x > 0 , there exists c > 0 such that τ ( t ) x for all t [ x , x + c ] .
In [15], Lim used L-functions to characterize Meir–Keeler contractions.
Theorem 1 
(see [15]). A is a Meir–Keeler contraction if and only if there exists an (nondecreasing, right continuous) L-function τ, such that
d ( T x , T y ) < τ ( d ( x , y ) ) f o r a l l x , y X w i t h x y .
In 1969, Meir and Keeler established an interesting fixed point theorem (the so-called Meir–Keeler’s fixed point theorem) as follows:
Theorem 2 
(see [21]). Let ( X , d ) be a complete metric space and A : X X be a Meir–Keeler contraction. Then A admits a unique fixed point in X.
It is worth noting that Meir–Keeler’s fixed point theorem is a real generalization of the Banach contraction principle (see, e.g., [15,16,18,21,22]). Several authors have studied various types of generalized Meir–Keeler contractions to establish new Meir–Keeler-type fixed point theorems. For a more comprehensive understanding of the advances in the Meir–Keeler’s fixed point theorem, interested readers are encouraged to consult the remarkable monographs and papers [2,3,5,6,8,9,10,12,13,15,17,21].
The main purpose of this work is to establish new fixed point theorems for generalized Meir–Keeler type nonlinear mappings and their applications to fixed point theory. The paper is divided into four sections. In Section 2, we first establish a fixed point theorem for generalized Meir–Keeler type nonlinear mappings, satisfying the condition (DH) (see Theorem 3 below). As applications to fixed point theory, we obtain many new fixed point theorems in Section 3. An example (see Example 1) is given to illustrate that our new fixed point theorem (see Theorem 8) is a real simultaneous generalization of Banach contraction principle, Kannan’s fixed point theorem and Chatterjea’s fixed point theorem. The paper concludes by summarizing the results achieved and outlining future research directions in Section 4.

2. New Fixed Point Theorem for Generalized Meir–Keeler Type Mappings

The following theorem is one of the main results of this paper.
Theorem 3. 
Let ( X , d ) be a metric space and A : X X be a selfmapping. Define a mapping U : X × X [ 0 , ) by
U ( x , y ) = max 1 i 10 f i ( x , y )
where
f 1 ( x , y ) = d ( x , y ) ,
f 2 ( x , y ) = d ( x , A x ) + d ( y , A y ) 2 ,
f 3 ( x , y ) = d ( x , A y ) + d ( y , A x ) 2 ,
f 4 ( x , y ) = 2 d ( x , A x ) + d ( y , A x ) 3 ,
f 5 ( x , y ) = 2 d ( x , A x ) + d ( y , A y ) 3 ,
f 6 ( x , y ) = d ( x , y ) + 2 d ( y , A y ) 3 ,
f 7 ( x , y ) = 2 d ( x , A x ) + d ( y , A x ) + d ( y , A y ) 4 ,
f 8 ( x , y ) = 2 d ( x , y ) + d ( x , A x ) + d ( y , A x ) 4 ,
f 9 ( x , y ) = d ( x , A x ) + d ( x , A y ) + 2 d ( y , A x ) 4 ,
and
f 10 ( x , y ) = 2 d ( x , y ) + d ( x , A x ) + d ( y , A x ) + d ( y , A y ) 5 ,
for x , y X . Suppose that
  • (DH) for each  β > 0 , there exists ϰ = ϰ ( β ) > 0 such that for x , y X ,
    U ( x , y ) [ β , β + ϰ ) i m p l i e s d ( A x , A y ) < β .
    Given z X . Let { c n } n N be a sequence defined by c 1 = z , c n + 1 = A c n for all n N . If c n + 1 c n for all n N , then { c n } n N is Cauchy in X.
Proof. 
Since c n + 1 c n for all n N , we obtain
U ( c n , c n + 1 ) f 1 ( c n , c n + 1 ) = d ( c n , c n + 1 ) > 0 , n N .
For any n N , the following hold:
  • f 1 ( c n , c n + 1 ) = d ( c n , c n + 1 ) ,
  • f 2 ( c n , c n + 1 ) = d ( c n , c n + 1 ) + d ( c n + 1 , c n + 2 ) 2 ,
  • f 3 ( c n , c n + 1 ) = d ( c n , c n + 2 ) 2 d ( c n , c n + 1 ) + d ( c n + 1 , c n + 2 ) 2 ,
  • f 4 ( c n , c n + 1 ) = 2 d ( c n , c n + 1 ) 3 ,
  • f 5 ( c n , c n + 1 ) = 2 d ( c n , c n + 1 ) + d ( c n + 1 , c n + 2 ) 3 ,
  • f 6 ( c n , c n + 1 ) = d ( c n , c n + 1 ) + 2 d ( c n + 1 , c n + 2 ) 3 ,
  • f 7 ( c n , c n + 1 ) = 2 d ( c n , c n + 1 ) + d ( c n + 1 , c n + 2 ) 4 ,
  • f 8 ( c n , c n + 1 ) = 3 d ( c n , c n + 1 ) 4 ,
  • f 9 ( c n , c n + 1 ) = d ( c n , c n + 1 ) + d ( c n , c n + 2 ) 4 2 d ( c n , c n + 1 ) + d ( c n + 1 , c n + 2 ) 4 ,
  • f 10 ( c n , c n + 1 ) = 3 d ( c n , c n + 1 ) + d ( c n + 1 , c n + 2 ) 5 .
Suppose that there exists k N , such that d ( c k , c k + 1 ) d ( c k + 1 , c k + 2 ) . Hence, through the above, we obtain
U ( c k , c k + 1 ) = max 1 i 10 f i ( c k , c k + 1 ) d ( c k + 1 , c k + 2 ) .
For γ : = U ( c k , c k + 1 ) > 0 , through condition (DH), we acquire
d ( c k + 1 , c k + 2 ) = d ( A c k , A c k + 1 ) < γ = U ( c k , c k + 1 ) d ( c k + 1 , c k + 2 ) ,
which leads to a contradiction. Therefore, it must be d ( c n + 1 , c n + 2 ) < d ( c n , c n + 1 ) for all n N . Consequently, we arrive at
U ( c n , c n + 1 ) = max 1 i 10 f i ( c n , c n + 1 ) = d ( c n , c n + 1 ) for all n N .
Since { d ( c n + 1 , c n ) } n N is a strictly decreasing sequence in [ 0 , ) , we deduce that
: = lim n d ( c n + 1 , c n ) = inf n N d ( c n + 1 , c n ) exists .
We now need to prove = 0 . Suppose on the contrary that > 0 . For δ > 0 , by using (1) and (2), we have
U ( c p + 1 , x p ) = d ( c p + 1 , c p ) < + δ for some p N .
Hence, the condition (DH) yields
d ( c p + 2 , c p + 1 ) < = inf n N d ( c n + 1 , c n ) d ( c p + 2 , c p + 1 ) ,
a contradiction. So we conclude that
= inf n N d ( c n + 1 , c n ) = lim n d ( c n + 1 , c n ) = 0 .
We shall demonstrate that { c n } n N is Cauchy in X. Given β > 0 , take ζ > 0 satisfying β > 3 ζ . Using (DH), there exists 0 < ϰ ( ζ ) , satisfying the following implication:
U ( x , y ) [ ζ , ζ + ϰ ( ζ ) ) d ( A x , A y ) < ζ .
Choose ϰ = min 1 , ζ , ϰ ( ζ ) . Clearly, (4) also holds if ϰ ( ζ ) is replaced with ϰ . From (3), there exists j 0 N such that
d ( c n + 1 , c n ) < ϰ 6 , n j 0 .
Let
W = a N : a j 0 and d ( c a , c j 0 ) < ζ + ϰ 2 .
Clearly, j 0 W . So W . We want to prove that b W implies b + 1 W . Let b W be given. Thus b j 0 and
d ( c b , c j 0 ) < ζ + ϰ 2 .
If b = j 0 , then, using (5), we obtain b + 1 W . If b > j 0 , we need to use the following two possible cases to verify b + 1 W :
  • Case (i). Assume that ζ d ( c b , c j 0 ) < ζ + δ 2 . Since
    f 1 ( c b , c j 0 ) = d ( c b , c j 0 ) < ζ + ϰ 2 < ζ + ϰ ,
    f 2 ( c b , c j 0 ) = 1 2 d ( c b , c b + 1 ) + d ( c j 0 , c j 0 + 1 ) < 1 2 ϰ 6 + ϰ 6 < ζ + ϰ ,
    f 3 ( c b , c j 0 ) = 1 2 d ( c b , c j 0 + 1 ) + d ( c j 0 , c b + 1 ) 1 2 2 d ( c b , c j 0 ) + d ( c j 0 , c j 0 + 1 ) + d ( c b , c b + 1 ) < 1 2 2 ζ + ϰ 2 + ϰ 6 + ϰ 6 < ζ + ϰ ,
    f 4 ( c b , c j 0 ) = 1 3 2 d ( c b , c b + 1 ) + d ( c j 0 , c b + 1 ) 1 3 3 d ( c b , c b + 1 ) + d ( c j 0 , c b ) < 1 3 1 2 ϰ + ζ + ϰ 2 < ζ + ϰ ,
    f 5 ( c b , c j 0 ) = 1 3 2 d ( c b , c b + 1 ) + d ( c j 0 , c j 0 + 1 ) < 1 3 ( 1 3 ϰ + ϰ 6 ) < ζ + ϰ ,
    f 6 ( c b , c j 0 ) = 1 3 d ( c b , c j 0 ) + 2 d ( c j 0 , c j 0 + 1 ) < 1 3 ζ + ϰ 2 + ϰ 3 = 1 3 ζ + 5 18 ϰ < ζ + ϰ ,
    f 7 ( c b , c j 0 ) = 1 4 2 d ( c b , c b + 1 ) + d ( c j 0 , c b + 1 ) + d ( c j 0 , c j 0 + 1 ) 1 4 3 d ( c b , c b + 1 ) + d ( c j 0 , c b ) + d ( c j 0 , c j 0 + 1 ) < 1 4 1 2 ϰ + ζ + ϰ 2 + ϰ 6 < ζ + ϰ ,
    f 8 ( c b , c j 0 ) = 1 4 2 d ( c b , c j 0 ) + d ( c b , c b + 1 ) + d ( c j 0 , c b + 1 ) 1 4 3 d ( c b , c j 0 ) + 2 d ( c b , c b + 1 ) < 1 4 3 ( ζ + ϰ 2 ) + ϰ 3 < ζ + ϰ ,
    f 9 ( c b , c j 0 ) = 1 4 d ( c b , c b + 1 ) + d ( c b , c j 0 + 1 ) + 2 d ( c j 0 , c b + 1 ) 1 4 2 d ( c b , c b + 1 ) + 2 d ( c b , c j 0 ) + d ( c j 0 , c j 0 + 1 ) < 1 4 ϰ 3 + 2 ζ + ϰ 2 + ϰ 6 = 1 2 ζ + 3 8 ϰ < ζ + ϰ ,
    and
    f 10 ( c b , c j 0 ) = 1 5 2 d ( c b , c j 0 ) + d ( c b , c b + 1 ) + d ( c j 0 , c b + 1 ) + d ( c j 0 , c j 0 + 1 ) 1 5 3 d ( c b , ψ j 0 ) + 2 d ( c b , c b + 1 ) + d ( c j 0 , c j 0 + 1 ) < 1 5 3 ( ζ + ϰ 2 ) + ϰ 3 + ϰ 6 < ζ + ϰ ,
    we obtain
    ζ d ( c b , c j 0 ) U ( c b , c j 0 ) < ζ + ϰ .
    By virtue of (DH), we have
    d c b + 1 , c j 0 + 1 = d A c b , A c j 0 < ζ .
    Combining (5) with (6) reveals
    d c b + 1 , c j 0 d c b + 1 , c j 0 + 1 + d c j 0 + 1 , c j 0 < ζ + ϰ 6 < ζ + ϰ 2 ,
    which implies b + 1 W .
  • Case (ii). Assume that φ ( ψ b , ψ j 0 ) < ζ . Then we have
    φ ψ b + 1 , ψ j 0 φ ψ b + 1 , ψ b + φ ψ b , ψ j 0 < ζ + ϰ 6 < ζ + ϰ 2 ,
    which means that b + 1 W .
Consequently, from Cases (i) and (ii), we show that b W b + 1 W . Hence, the finite induction principle implies
W = b N : b j 0
and
d ( c b , c j 0 ) < ζ + ϰ 2 for all b j 0 .
For m , n N with m n j 0 , the inequality (2.6) yields
d ( c m , c n ) d ( c m , c j 0 ) + d ( c j 0 , c n ) < 2 ζ + ϰ 3 ζ < β ,
which concludes that { c n } n N is Cauchy in X. The proof is completed. □
Now, we establish the following new fixed point theorem for generalized Meir–Keeler type nonlinear mappings, satisfying condition (DH).
Theorem 4. 
Let ( X , d ) be a complete metric space. Let A, { f i } i = 1 10 and U be the same as in Theorem 3. Assuming that the condition (DH) holds, then A admits a unique fixed point in X.
Proof. 
Let z X be given. Let { c n } n N be a sequence defined by c 1 = z , c n + 1 = A c n for all n N . In order to verify that A has a fixed point in X, we consider two separate cases below:
  • Case 1. Assume that c α = c α + 1 = A c α for some α N . Therefore c α is a fixed point of A.
  • Case 2. Assume that c n + 1 c n for all n N . By applying Theorem 3, { c n } n N is a Cauchy sequence in X. Therefore the completeness of X guarantees that c n s as n for some s X . We now show that s F ( A ) (the set of fixed points of A). For any n N , straightforward computation yields
    • f 1 ( c n , s ) = d ( c n , s ) ,
    • f 2 ( c n , s ) = d ( c n , c n + 1 ) + d ( s , A s ) 2 ,
    • f 3 ( c n , s ) = d ( c n , A s ) + d ( s , c n + 1 ) 2 ,
    • f 4 ( c n , s ) = 2 d ( c n , c n + 1 ) + φ ( s , c n + 1 ) 3 ,
    • f 5 ( c n , s ) = 2 d ( c n , c n + 1 ) + d ( s , A s ) 3 ,
    • f 6 ( c n , s ) = d ( c n , s ) + 2 d ( s , A s ) 3 ,
    • f 7 ( c n , s ) = 2 d ( c n , c n + 1 ) + d ( s , c n + 1 ) + d ( s , A s ) 4 ,
    • f 8 ( c n , s ) = 2 d ( c n , s ) + d ( c n , c n + 1 ) + d ( s , c n + 1 ) 4 ,
    • f 9 ( c n , s ) = d ( c n , c n + 1 ) + d ( c n , A s ) + 2 d ( s , c n + 1 ) 4 ,
    • f 10 ( c n , s ) = 2 d ( c n , s ) + d ( c n , c n + 1 ) + d ( s , c n + 1 ) + d ( s , A s ) 5 .
    Since c n + 1 c n for all n N , we know d ( c n , c n + 1 ) > 0 . So
    U ( c n , s ) f 1 ( c n , s ) = d ( c n , c n + 1 ) + d ( s , A s ) 2 > 0 for all n N .
    Using (DH), we obtain
    d ( c n + 1 , A s ) < U ( c n , s ) for all n N .
    Since c n s as n , we obtain
    lim n d ( c n + 1 , A s ) = d ( s , A s )
    and
    lim n U ( c n , s ) = lim n max 1 i 10 f i ( c n , s ) = 2 3 d ( s , A s ) .
    Therefore, using (7), we conclude
    d ( s , A s ) = lim n d ( c n + 1 , A s ) lim n U ( c n , s ) = 2 3 d ( s , A s )
    which implies that d ( s , A s ) = 0 . Thus, we show A s = s and hence s F ( A ) . Finally, we claim that F ( A ) = { s } . Suppose there exists w F ( A ) with w s . Then, d ( w , s ) > 0 . Since
    f 2 ( w , s ) = f 5 ( w , s ) = 0 ,
    f 1 ( w , s ) = f 3 ( w , s ) = d ( w , s ) ,
    f 6 ( w , s ) = f 4 ( w , s ) = 1 3 d ( w , s ) ,
    f 7 ( w , s ) = 1 4 d ( w , s )
    f 8 ( w , s ) = f 9 ( w , s ) = 3 4 d ( w , s ) ,
    and
    f 10 ( w , s ) = 3 5 d ( w , s ) ,
    we obtain
    U ( w , s ) = max 1 i 10 f i ( w , s ) = d ( w , s ) > 0 .
    So, by virtue of (DH), we have
    d ( w , s ) = d ( A w , A s ) < U ( w , s ) = d ( w , s ) ,
    which is a contradiction. Accordingly, F ( A ) = { s } . Therefore, we prove that A admits a unique fixed point s in X. The proof is completed. □
In this article, we cannot directly apply Theorem 4 to prove Meir–Keeler’s fixed point theorem. Concerning conditions (MK) and (DH), we would like to propose the following open problems:
  • Open problem 1. Is the condition (DH) a real generalization of the condition (MK)? Or are these two conditions independent?
  • Open problem 2. Is Theorem 4 a real generalization of Meir–Keeler’s fixed point theorem? Or are these two theorems independent?

3. Applications to Fixed Point Theory

In this section, unless otherwise specified, we shall assume that ( X , d ) is a complete metric space and A : X X is a selfmapping.
We first recall the Banach contraction principle, Kannan’s fixed point theorem and Chatterjea’s fixed point theorem as follows:
Theorem 5 
(Banach contraction principle [1]). Suppose that there exists λ [ 0 , 1 ) such that
d ( A x , A y ) λ d ( x , y ) f o r a l l x , y X .
Then A has a unique fixed point in X.
Theorem 6 
(Kannan’s fixed point theorem [23]). Suppose that there exists λ 0 , 1 2 such that
d ( A x , A y ) λ ( d ( x , A x ) + d ( y , A y ) ) f o r a l l x , y X .
Then A has a unique fixed point in X.
Theorem 7 
(Chatterjea’s fixed point theorem [24]). Suppose that there exists λ 0 , 1 2 such that
d ( A x , A y ) λ ( d ( x , A y ) + d ( y , A x ) ) f o r a l l x , y X .
Then A has a unique fixed point in X.
By virtue of Theorem 4, we present the following simultaneous generalization of the Banach contraction principle, Chatterjea’s fixed point theorem, Kannan’s fixed point theorem and some known fixed point theorems in the literature.
Theorem 8. 
Let U be the same as in Theorem 3. Suppose that there exists ρ [ 0 , 1 ) such that
d ( A x , A y ) ρ U ( x , y ) f o r a l l x , y X .
Then A admits a unique fixed point in X.
Proof. 
Let β > 0 be given. Take κ ( ρ , 1 ) and define
ϰ ( β ) = β 1 κ 1 .
If β U ( x , y ) < β + ϰ ( β ) , then, using (8), we have
d ( A x , A y ) ρ U ( x , y ) < κ ( β + ϰ ( β ) ) = β .
Hence, we verify that the condition (DH) holds. By applying Theorem 4, A admits a unique fixed point in X. □
Here, we give an example to illustrate that Theorem 8 is a real simultaneous generalization of Banach contraction principle, Kannan’s fixed point theorem and Chatterjea’s fixed point theorem.
Example 1. 
Let X = [ 0 , 2 ] with the metric d ( x , y ) = x y for x , y X . Then ( X , d ) is a complete metric space. Define a mapping A : X X by
A x = 1 , i f 0 x < 2 , 0 , i f x = 2 .
Obviously, 1 is the unique fixed point of A. It is worth noting the following facts:
(a) 
Since d ( A ( 1 ) , A ( 2 ) ) = 1 > λ d ( 1 , 2 ) for any λ 0 , 1 , T is not a contraction. Hence, the Banach contraction principle is not applicable here.
(b) 
Since d ( A ( 1 ) , A ( 2 ) ) = 1 and d ( 1 , A ( 1 ) ) + d ( 2 , A ( 2 ) ) = 2 , we have
d ( A ( 1 ) , A ( 2 ) ) > λ d ( 1 , A ( 1 ) ) + d ( 2 , A ( 2 ) ) f o r a n y λ 0 , 1 2 .
Hence, Kannan’s fixed point theorem is not applicable here.
(c) 
Since d ( A ( 1 ) , A ( 2 ) ) = 1 and d ( 1 , A ( 2 ) ) + d ( 2 , A ( 1 ) ) = 2 , we have
d ( A ( 1 ) , A ( 2 ) ) > λ d ( 1 , A ( 2 ) ) + d ( 2 , A ( 1 ) ) f o r a n y λ 0 , 1 2 .
Hence, Chatterjea’s fixed point theorem is not applicable here.
We now claim that d ( A x , A y ) 4 5 U ( x , y ) for all x , y X . In order to verify this fact, we consider the following four possible cases:
  • Case 1. For x , y [ 0 , 2 ) , we have d ( A x , A y ) = 0 4 5 U ( x , y ) .
  • Case 2. For x [ 0 , 2 ) and y = 2 , we have d ( A x , A y ) = 1 . Since
    f 6 ( x , y ) = d ( x , y ) + 2 d ( y , A y ) 3 = x 2 + 4 3 ,
    we obtain 4 3 < f 6 ( x , y ) 2 . Hence
    d ( A x , A y ) = 1 < 4 5 × 4 3 < 4 5 f 6 ( x , y ) 4 5 U ( x , y ) .
  • Case 3. For x = 2 and y [ 0 , 2 ) , we have d ( A x , A y ) = 1 . Since
    f 4 ( x , y ) = 2 d ( x , A x ) + d ( y , A x ) 3 = 4 + y 3 ,
    we obtain 4 3 f 4 ( x , y ) < 2 . Hence
    d ( A x , A y ) = 1 < 4 5 × 4 3 4 5 f 4 ( x , y ) 4 5 U ( x , y ) .
  • Case 4. For  x = y = 2 , we have d ( A x , A y ) = 0 4 5 U ( x , y ) .
Hence, by Cases 1, 2, 3 and 4, we prove that d ( A x , A y ) 4 5 U ( x , y ) for all x , y X . Therefore, all the assumptions of Theorem 8 are satisfied. Applying Theorem 8, we also prove that A has a unique fixed point in X.
The following result is a direct consequence of Theorem 8.
Corollary 1. 
Let ρ [ 0 , 1 ) . Suppose that
d ( A x , A y ) ρ max d ( x , y ) , d ( x , A x ) + d ( y , A y ) 2 , d ( x , A y ) + d ( y , A x ) 2
for all x , y X . Then A admits a unique fixed point in X.
Proof. 
It is obvious that (9) implies
d ( A x , A y ) ρ max 1 i 10 f i ( x , y ) = ρ U ( x , y ) f o r a l l x , y X ,
where U ( x , y ) : = max 1 i 10 f i ( x , y ) for x , y X . Hence the desired conclusion follows immediately from Theorem 8. □
Remark 1. 
Corollary 1 is also a simultaneous generalization of the Banach contraction principle, Kannan’s fixed point theorem and Chatterjea’s fixed point theorem.
Theorem 9. 
Let { f i } i = 1 10 be the same as in Theorem 3. Suppose that there exists { λ i } i = 1 10 [ 0 , ) , satisfying i = 1 10 λ i < 1 , such that
d ( A x , A y ) i = 1 10 λ i f i ( x , y ) f o r a l l x , y X .
Then A admits a unique fixed point in X.
Proof. 
Let ρ : = i = 1 10 λ i and U ( x , y ) : = max 1 i 10 f i ( x , y ) for x , y X . Then ρ [ 0 , 1 ) . Since (10) yields
d ( A x , A y ) i = 1 10 λ i f i ( x , y ) i = 1 10 λ i max 1 i 10 f i ( x , y ) = ρ U ( x , y ) for all x , y X ,
the desired conclusion follows immediately from Theorem 8. □
Theorem 10. 
Let { f i } i = 1 10 be the same as in Theorem 3. Suppose that A satisfies one of the following conditions:
(1) 
d ( A x , A y ) ρ n i = 1 10 f i ( x , y )  for all  x , y X ;
(2) 
d ( A x , A y ) ρ i = 1 10 f i ( x , y ) 10 for all  x , y X , where i = 1 10 f i ( x , y ) : = f 1 ( x , y ) × f 2 ( x , y ) × × f 10 ( x , y ) for x , y X .
Then A admits a unique fixed point in X.
Proof. 
By using the arithmetic mean–geometric mean (AM-GM) inequality, we obtain
d ( A x , A y ) ρ i = 1 10 f i ( x , y ) 10 ρ n i = 1 10 f i ( x , y ) ρ max 1 i 10 f i ( x , y ) = ρ U ( x , y ) for all x , y X ,
where U ( x , y ) : = max 1 i 10 f i ( x , y ) for x , y X . Therefore, by using any condition and applying Theorem 8, we can prove the desired conclusion. □
Finally, applying Theorem 8, we can easily establish the following new fixed point theorems.
Corollary 2. 
Assume that ρ [ 0 , 1 ) and A satisfies one of the following conditions:
(1) 
d ( A x , A y ) ρ max d ( x , A x ) + d ( y , A y ) 2 , 2 d ( x , A x ) + d ( y , A y ) 3 for all  x , y X ;
(2) 
d ( A x , A y ) ρ max 2 d ( x , A x ) + d ( y , A x ) 3 , 2 d ( x , A x ) + d ( y , A x ) + d ( y , A y ) 4 for all  x , y X ;
(3) 
d ( A x , A y ) ρ max d ( x , A x ) + d ( x , A y ) + 2 d ( y , A x ) 4 , 2 d ( x , y ) + d ( x , A x ) + d ( y , A x ) + d ( y , A y ) 5
for all  x , y X .
Then A admits a unique fixed point in X.
Corollary 3. 
Assume that ρ [ 0 , 1 ) and A satisfies one of the following conditions:
(1) 
d ( A x , A y ) ρ max 2 d ( x , A x ) + d ( y , A x ) 3 , 2 d ( x , A x ) + d ( y , A y ) 3 , d ( x , y ) + 2 d ( y , A y ) 3
for all  x , y X ;
(2) 
d ( A x , A y ) ρ max 2 d ( x , A x ) + d ( y , A x ) + d ( y , A y ) 4 , 2 d ( x , y ) + d ( x , A x ) + d ( y , A x ) 4 ,
d ( x , A x ) + d ( x , A y ) + 2 d ( y , A x ) 4
for all  x , y X ;
(3) 
d ( A x , A y ) ρ max d ( x , y ) , 2 d ( x , A x ) + d ( y , A y ) 3 , 2 d ( x , y ) + d ( x , A x ) + d ( y , A x ) + d ( y , A y ) 5
for all  x , y X .
Then A admits a unique fixed point in X.
Corollary 4. 
Assume that ρ [ 0 , 1 ) and A satisfies one of the following conditions:
(1) 
d ( A x , A y ) ρ max d ( x , y ) , d ( x , A x ) + d ( y , A y ) 2 , d ( x , A y ) + d ( y , A x ) 2 , d ( x , y ) + 2 d ( y , A y ) 3
for all  x , y X ;
(2) 
d ( A x , A y ) ρ max d ( x , A y ) + d ( y , A x ) 2 , 2 d ( x , A x ) + d ( y , A x ) 3 ,
2 d ( x , y ) + d ( x , A x ) + d ( y , A x ) 4 , 2 d ( x , y ) + d ( x , A x ) + d ( y , A x ) + d ( y , A y ) 5
for all  x , y X ;
(3) 
d ( A x , A y ) ρ max d ( x , y ) , d ( x , y ) + 2 d ( y , A y ) 3 , d ( x , A x ) + d ( x , A y ) + 2 d ( y , A x ) 4 ,
2 d ( x , y ) + d ( x , A x ) + d ( y , A x ) + d ( y , A y ) 5
for all  x , y X .
Then A admits a unique fixed point in X.

4. Conclusions

In this paper, we establish the main result about fixed point theorems for generalized Meir–Keeler type nonlinear mappings as follows:
  • (See Theorem 4):
    Let ( X , d ) be a complete metric space and A : X X be a selfmapping. Define a mapping U : X × X [ 0 , ) by
    U ( x , y ) = max 1 i 10 f i ( x , y )
    where
    f 1 ( x , y ) = d ( x , y ) ,
    f 2 ( x , y ) = d ( x , A x ) + d ( y , A y ) 2 ,
    f 3 ( x , y ) = d ( x , A y ) + d ( y , A x ) 2 ,
    f 4 ( x , y ) = 2 d ( x , A x ) + d ( y , A x ) 3 ,
    f 5 ( x , y ) = 2 d ( x , A x ) + d ( y , A y ) 3 ,
    f 6 ( x , y ) = d ( x , y ) + 2 d ( y , A y ) 3 ,
    f 7 ( x , y ) = 2 d ( x , A x ) + d ( y , A x ) + d ( y , A y ) 4 ,
    f 8 ( x , y ) = 2 d ( x , y ) + d ( x , A x ) + d ( y , A x ) 4 ,
    f 9 ( x , y ) = d ( x , A x ) + d ( x , A y ) + 2 d ( y , A x ) 4 ,
    and
    f 10 ( x , y ) = 2 d ( x , y ) + d ( x , A x ) + d ( y , A x ) + d ( y , A y ) 5 ,
    for x , y X . Suppose that
    (DH) for each β > 0 , there exists ϰ = ϰ ( β ) > 0 such that for x , y X ,
    U ( x , y ) [ β , β + ϰ ) implies d ( A x , A y ) < β .
Then A admits a unique fixed point in X.
As applications, some new fixed point theorems are presented in Section 3. Our new results will assist us in obtaining novel fixed point theorems for other generalized types of Meir–Keeler type nonlinear mappings as well as their proof techniques in future research.

Author Contributions

Writing—original draft, S.-Y.H. and W.-S.D.; writing—review and editing, S.-Y.H. and W.-S.D. All authors contributed equally to the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

Wei-Shih Du is partially supported by Grant No. NSTC 113-2115-M-017-004 of the National Science and Technology Council of the Republic of China.

Data Availability Statement

Data are contained within the article.

Acknowledgments

The authors wish to express their sincere thanks to the anonymous referees for their valuable suggestions and comments.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Banach, S. Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  2. Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
  3. Hyers, D.H.; Isac, G.; Rassias, T.M. Topics in Nonlinear Analysis and Applications; World Scientific Publishing Co.: Singapore, 1997. [Google Scholar]
  4. Khamsi, M.A.; Kirk, W.A. An Introduction to Metric Spaces and Fixed Point Theory; Pure and Applied Mathematics; Wiley-Interscience: New York, NY, USA, 2001. [Google Scholar]
  5. Reich, R.; Zaslavski, A.J. Genericity in Nonlinear Analysis; Springer: New York, NY, USA, 2014. [Google Scholar]
  6. Aydi, H.; Karapinar, E. A Meir–Keeler common type fixed point theorem on partial metric spaces. Fixed Point Theory Appl. 2012, 2012, 26. [Google Scholar] [CrossRef]
  7. Du, W.-S. Some new results and generalizations in metric fixed point theory. Nonlinear Anal. 2010, 73, 1439–1446. [Google Scholar] [CrossRef]
  8. Chen, C.M.; Karapinar, E. Fixed point results for the α-Meir–Keeler contraction on partial Hausdorff metric spaces. J. Inequalities Appl. 2013, 2013, 410. [Google Scholar] [CrossRef]
  9. Choban, M.; Verinde, B. Multiple fixed point theorems for contractive and Meir–Keeler type mappings defined on partially ordered spaces with a distance. Appl. Gen. Topol. 2017, 18, 317–330. [Google Scholar] [CrossRef]
  10. Di Bari, C.; Suzuki, T.; Vetro, C. Best proximity points for cyclic Meir–Keeler contractions. Nonlinear Anal. 2008, 69, 3790–3794. [Google Scholar] [CrossRef]
  11. Du, W.-S. On coincidence point and fixed point theorems for nonlinear multivalued maps. Topol. Its Appl. 2012, 159, 49–56. [Google Scholar] [CrossRef]
  12. Du, W.-S.; Karapinar, E.; He, Z. Some simultaneous generalizations of well-known fixed point theorems and their applications to fixed point theory. Mathematics 2018, 6, 117. [Google Scholar] [CrossRef]
  13. Du, W.-S.; Rassias, T.M. Simultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications. Int. J. Nonlinear Anal. Appl. 2020, 11, 55–66. [Google Scholar]
  14. Kirk, W.A.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer: Cham, Switzerland, 2014. [Google Scholar]
  15. Lim, T.C. On characterizations of Meir–Keeler contractive maps. Nonlinear Anal. 2001, 46, 113–120. [Google Scholar] [CrossRef]
  16. Park, S.; Bae, J.S. Extensions of a fixed point theorem of Meir and Keeler. Ark. Mat. 1981, 19, 223–228. [Google Scholar] [CrossRef]
  17. Piatek, B. On cyclic Meir–Keeler contractions in metric spaces. Nonlinear Anal. 2011, 74, 35–40. [Google Scholar] [CrossRef]
  18. Rhoades, B.E.; Park, S.; Moon, K.B. On generalizations of the Meir–Keeler type contraction maps. J. Math. Anal. Appl. 1990, 146, 482–494. [Google Scholar] [CrossRef]
  19. Romaguera, S.; Tirado, P. The Meir–Keeler Fixed Point Theorem for Quasi-Metric Spaces and Some Consequences. Symmetry 2019, 11, 741. [Google Scholar] [CrossRef]
  20. Suzuki, T. Fixed-point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces. Nonlinear Anal. 2006, 64, 971–978. [Google Scholar] [CrossRef]
  21. Meir, A.; Keeler, E. A theorem on contraction mappings. J. Math. Anal. Appl. 1969, 28, 326–329. [Google Scholar] [CrossRef]
  22. Jachymski, J. Equivalent conditions and the Meir–Keeler type theorems. J. Math. Anal. Appl. 1995, 194, 293–303. [Google Scholar] [CrossRef]
  23. Kannan, R. Some results on fixed point-II. Am. Math. Mon. 1969, 76, 405–408. [Google Scholar]
  24. Chatterjea, S.K. Fixed-point theorems. C. R. Acad. Bulg. Sci. 1972, 25, 727–730. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Huang, S.-Y.; Du, W.-S. New Fixed Point Theorems for Generalized Meir–Keeler Type Nonlinear Mappings with Applications to Fixed Point Theory. Symmetry 2024, 16, 1088. https://doi.org/10.3390/sym16081088

AMA Style

Huang S-Y, Du W-S. New Fixed Point Theorems for Generalized Meir–Keeler Type Nonlinear Mappings with Applications to Fixed Point Theory. Symmetry. 2024; 16(8):1088. https://doi.org/10.3390/sym16081088

Chicago/Turabian Style

Huang, Shin-Yi, and Wei-Shih Du. 2024. "New Fixed Point Theorems for Generalized Meir–Keeler Type Nonlinear Mappings with Applications to Fixed Point Theory" Symmetry 16, no. 8: 1088. https://doi.org/10.3390/sym16081088

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Article metric data becomes available approximately 24 hours after publication online.
Back to TopTop