Next Article in Journal
The Effect of Multiple Additional Sampling with Multi-Fidelity, Multi-Objective Efficient Global Optimization Applied to an Airfoil Design
Previous Article in Journal
Multistability, Chaos, and Synchronization in Novel Symmetric Difference Equation
Previous Article in Special Issue
The Symmetry Group of the Grand Antiprism
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The p-Frobenius Number for the Triple of the Generalized Star Numbers

1
Department of Mathematical Sciences, School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
2
Faculty of Education, Nagasaki University, Nagasaki 852-8521, Japan
*
Author to whom correspondence should be addressed.
Symmetry 2024, 16(8), 1090; https://doi.org/10.3390/sym16081090
Submission received: 26 July 2024 / Revised: 10 August 2024 / Accepted: 20 August 2024 / Published: 22 August 2024
(This article belongs to the Special Issue Symmetry in Combinatorial Structures)

Abstract

:
In this paper, we give closed-form expressions of the p-Frobenius number for the triple of the generalized star numbers a n ( n 1 ) + 1 for an integer a 4 . When a = 6 , it is reduced to the famous star number. For the set of given positive integers { a 1 , a 2 , , a k } , the p-Frobenius number is the largest integer N whose number of non-negative integer representations N = a 1 x 1 + a 2 x 2 + + a k x k is at most p. When p = 0 , the 0-Frobenius number is the classical Frobenius number, which is the central topic of the famous linear Diophantine problem of Frobenius.
MSC:
11D07; 05A15; 05A17; 05A19; 11B68; 11D04; 11P81

1. Introduction

For an integer a 4 , define the generalized star numbers S a , n by
S a , n = a n ( n 1 ) + 1 ( n = 0 , 1 , 2 , ) .
When a = 6 , S n : = S 6 , n represents the ordinary star numbers, which are also known as the centered 12-gonal numbers or centered dodecagonal numbers. A star number is a centered figurate number that represents a centered hexagram, similar to the pattern used in Chinese checkers. As can be seen in Figure 1, the star numbers show a nice symmetry. The star numbers are used for a new set of vector-valued Teichmüller modular forms, defined on the Teichmüller space, strictly related to the Mumford forms, which are holomorphic global sections of the vector bundle [1]. The first star numbers are given by the sequence
{ S n } n 0 = 1 , 13 , 37 , 73 , 121 , 181 , 253 , 337 , 433 , 541 , 661 , 793 , 937 , 1093 , 1261 , 1441 , 1633 , 1837 , 2053 ,
([2] (A.131), [3] (A003154)). Some well-known formulae include:
n = 1 1 S n = π tan ( π / 2 3 ) 2 3 , n = 0 S n n ! = 7 e and n = 0 S n 2 n = 26 .
Geometrically, the n-th generalized star number S a , n is made up of a central point and 2 a copies of the ( n 1 )-th triangular number, making it numerically equal to the n-th centered ( 2 a )-gonal number, but differently arranged. Therefore, S a , n are often called the centered 2 a -gonal numbers. The generalized star numbers satisfy the linear recurrence equation:
S a , n = S a , n 1 + 2 a ( n 1 ) .
When a = 4 , 5 , 7 , 8 , 9 , 10 , 11 , 12 , the centered 2 a -gonal numbers are listed in [3] (A016754, A062786, A069127, A069129, A069131, A069133, A069173, A069190), respectively.
The p-numerical semigroup S p ( A ) from the set of positive integers { a 1 , a 2 , , a k } ( k 2 ) is defined as the set of integers that can be expressed in more than p ways as non-negative integral linear combinations of the given positive integers a 1 , a 2 , , a k [4]. Namely,
S p ( A ) : = { n N 0 | d ( n ; a 1 , a 2 , , a k ) > p } ,
where d ( n ; a 1 , a 2 , , a k ) , which is called the denumerant, is the number of non-negative integer representations of n by a 1 , a 2 , , a k . The denumerant was investigated by Sylvester [5] and remarked upon by Caley [6]. For some backgrounds on the number of representations, see, for example, [7,8,9]. Recently, the concept of the denumerant has been extensively studied in [10,11,12,13,14]. For a set of non-negative integers, denoted by N 0 , the set N 0 S p is finite if and only if gcd ( a 1 , a 2 , , a κ ) = 1 . Then there exists the largest integer g p ( A ) : = g ( S p ) in N 0 S p , which is called the p-Frobenius number. The cardinality of N 0 S p is called the p-genus (or the p-Sylvester number) and is denoted by n p ( A ) : = n ( S p ) . This kind of concept is a generalization of the famous Diophantine problem of Frobenius ([15,16]) since p = 0 is the case when the original Frobenius number g ( A ) = g 0 ( A ) and the genus n ( A ) = n 0 ( A ) .
When k = 2 , there exists the explicit closed formula of the p-Frobenius number for any non-negative integer p. However, for k = 3 , the p-Frobenius number cannot be given by any set of closed formulae, which can be reduced to a finite set of certain polynomials ([17]). Since providing a closed explicit formula for any general sequence involving three or more variables is very difficult, many researchers have focused on finding the Frobenius number for special cases (see, for example, [18,19,20]). Though it is even more challenging when p > 0 (see, for instance, [21,22,23,24]), in [25], the p-Frobenius numbers of the consecutive three triangular numbers were studied.
In this paper, we present the closed-form expressions of the p-Frobenius numbers for the consecutive three star numbers { S a , n , S a , n + 1 , S a , n + 2 } (with a 4 and n 2 ). Additionally, we provide the explicit formula for their p-Sylvester number.

2. Basic Properties of the Generalized Star Numbers

In this section, we shall show some basic formulae for the generalized star numbers.
Proposition 1.
n = 1 1 S a , n = π tan ( π ( a 4 ) / a / 2 ) a ( a 4 ) ( a 5 ) , n = 0 S a , n n ! = ( a + 1 ) e , n = 0 ( 1 ) n S a , n n ! = a + 1 e , n = 0 S a , n b n = 2 a b ( b 1 ) 3 + b b 1 ( b > 1 ) .
Proof. 
The second and third identities are trivial from the definition in (1). For the first identity, by referring to [26] (Ch.25), put
g ( z ) : = 1 a z ( z 1 ) + 1 = 1 a ( z α ) ( z β ) ,
where
α = a + a 2 4 a 2 a and β = a a 2 4 a 2 a .
For h ( z ) = π g ( z ) cot π z ,
Res z = α h = lim z α ( z α ) π g ( z ) cot π z = lim z α π cot π z a ( z β ) = π cot π α a ( α β ) = π a 2 4 a cot a + a 2 4 a 2 a π = π a 2 4 a tan a 2 4 a 2 a π , Res z = β h = lim z β ( z β ) π g ( z ) cot π z = lim z β π cot π z a ( z α ) = π cot π β a ( β α ) = π a 2 4 a cot a a 2 4 a 2 a π = π a 2 4 a tan a 2 4 a 2 a π .
Hence, we get
n = 1 a n ( n 1 ) + 1 = n = g ( n ) = Res z = α h + Res z = β h = 2 π a 2 4 a tan a 2 4 a 2 a π .
Since
n = 1 a n ( n 1 ) + 1 = n = 1 1 a n ( n 1 ) + 1 + n = 0 1 a ( n ) ( n 1 ) + 1 = 2 n = 1 1 a n ( n 1 ) + 1 ,
we obtain the first identity.
For the fourth identity, consider the function
f b ( x ) : = n = 0 x b n = b b x ( b > 1 ) .
Since
f b ( x ) = n = 0 n ( n 1 ) b n x n 2 = 2 b ( b x ) 3 ,
we have
n = 0 S a , n b n = a n = 0 n ( n 1 ) b n + n = 0 1 b n = 2 a b ( b 1 ) 3 + b b 1

3. Apéry Set

We introduce the Apéry set [27] to obtain the formulae in this paper.
Let p be a non-negative integer. For a set of positive integers A = { a 1 , a 2 , , a k } with gcd ( A ) = 1 and a 1 = min ( A ) , we denote the Apéry set by:
Ap p ( A ) = Ap ( a 1 , a 2 , , a k ) = { m 0 ( p ) , m 1 ( p ) , , m a 1 1 ( p ) } ,
where each positive integer m i ( p ) ( 0 i a 1 1 ) satisfies the conditions:
( i ) m i ( p ) i ( mod a 1 ) , ( ii ) m i ( p ) S p ( A ) , ( iii ) m i ( p ) a 1 S p ( A ) .
Note that m 0 is defined to be 0.
It follows that for each p,
Ap p ( A ) { 0 , 1 , , a 1 1 } ( mod a 1 ) .
One of the convenient formulae to obtain the p-Frobenius number is via the elements in the corresponding p-Apéry set ([28]).
Lemma 1.
Let gcd ( a 1 , , a k ) = 1 with a 1 = min { a 1 , , a k } . Then we have
g p ( a 1 , , a k ) = max 0 j a 1 1 m j ( p ) a 1 ,
n p ( a 1 , , a k ) = 1 a 1 j = 0 a 1 1 m j ( p ) a 1 1 2 .
Remark 1.
When p = 0 , the Formulae (2) and (3) are essentially due to Brauer and Shockley [29], and Selmer [30], respectively. More general formulae, including the p-power sum and the p-weighted sum, can be seen in [28,31].

4. Main Result

The p-Frobenius number for three consecutive generalized star numbers can be determined. The general result for a non-negative p is derived from the result for p = 0 , which is stated in the following theorem.
Theorem 1.
When a is even with a 4 and n 2 , we have
g 0 ( S a , n , S a , n + 1 , S a , n + 2 ) = ( 2 n ) S a , n + 1 + a 2 l n S a , n + 2 S a , n if 3 a 4 l l 3 2 l n 3 a 2 l + 2 2 ( 2 l 1 ) ( l 2 ) ; 2 l n 3 a 2 + l 3 S a , n + 1 + a 2 l + 1 n S a , n + 2 S a , n if 3 a 2 l + 3 2 ( 2 l 1 ) n 3 a 4 ( l 1 ) l 3 2 ( l 1 ) ( l 2 ) ; ( 2 n ) S a , n + 1 + a 2 1 n S a , n + 2 S a , n if 3 a 4 + 1 n 3 a 2 ; 2 n 3 a 2 2 S a , n + 1 + a 2 n S a , n + 2 S a , n if n 3 a 2 + 1 .
When a is odd with a 5 and n 2 , we have
g 0 ( S a , n , S a , n + 1 , S a , n + 2 ) = ( 2 n ) S a , n + 1 + a 2 l + 1 2 n S a , n + 2 S a , n if 3 a 2 l + 7 2 ( 2 l 1 ) n 3 a 2 l + 3 4 ( l 1 ) ( l 2 ) ; ( 2 l 1 ) n 3 a 2 l + 7 2 S a , n + 1 + a 2 l + 3 2 n S a , n + 2 S a , n if 3 a 2 l + 4 4 ( l 1 ) n 3 a 2 l + 7 2 ( 2 l 3 ) ( l 2 ) ; ( 2 n ) S a , n + 1 + a 1 2 n S a , n + 2 S a , n if n 3 a + 5 2 .
Remark 2.
It is clear that there is no integer between 3 a 4 l l 3 2 l and 3 a 4 l l 2 2 l (exclusive), and between 3 a 2 ( 2 l 1 ) l 1 2 l 1 and 3 a 2 ( 2 l 1 ) (exclusive).
More precisely, for example, when a = 8 and a = 9 , we have
g 0 ( S 8 , n , S 8 , n + 1 , S 8 , n + 2 ) = 4 S 8 , n + 1 + 2 S 8 , n + 2 S 8 , n if n = 2 ; 6 S 8 , n + 1 + 6 S 8 , n + 2 S 8 , n if n = 3 ; ( 4 n 13 ) S 8 , n + 1 + 3 n S 8 , n + 2 S 8 , n if 4 n 5 ; 2 n S 8 , n + 1 + 3 n S 8 , n + 2 S 8 , n if 7 n 12 ; ( 2 n 14 ) S 8 , n + 1 + 4 n S 8 , n + 2 S 8 , n if n 13
and
g 0 ( S 9 , n , S 9 , n + 1 , S 9 , n + 2 ) = S 9 , 3 + 4 S 9 , 4 S 9 , 2 if n = 2 ; 6 S 9 , 4 + 6 S 9 , 5 S 9 , 3 if n = 3 ; 6 S 9 , 5 + 12 S 9 , 6 S 9 , 4 if n = 4 ; 2 n S 9 , n + 1 + 3 n S 9 , n + 2 S 9 , n if 5 n 6 ; ( 3 n 15 ) S 9 , n + 1 + 4 n S 9 , n + 2 S 9 , n if 7 n 15 ; 2 n S 9 , n + 1 + 4 n S 9 , n + 2 S 9 , n if n 16 ,
respectively.

4.1. Proof of Theorem 1

4.1.1. Even Case

Let a be even with a 4 . For a positive integer l, we shall prove that the elements of the 0-Apéry set can be arranged as in Table 1. Here, for simplicity, consider the representation
t y , z : = y S a , n + 1 + z S a , n + 2 ( y , z 0 ) .
First, from the length relationship in the horizontal direction (y value) in Table 1,
2 l n 3 2 a + l 3 0 and 2 l n 3 2 a + l 3 2 n ,
or
3 a 4 l l 3 2 l n 3 a 4 ( l 1 ) l 3 2 ( l 1 ) .
Since S a , 1 = 1 , we must assume that n 2 . Hence,
3 a 4 ( l 1 ) l 3 2 ( l 1 ) 2 or a 10 l 14 3 .
Since t 2 n + 1 , 0 t 0 , n = ( n + 1 ) S a , n ,
t 2 n + 1 , 0 t 0 , n ( mod S a , n ) and t 2 n + 1 , 0 > t 0 , n .
Since
t 2 l n 3 a 2 + l 2 , 0 + t 0 , ( a 2 l ) n + 1 = ( a + 2 l ) ( n + 1 ) 2 2 S a , n ,
we have
t 2 l n 3 a 2 + l 2 , 0 t 0 , ( a 2 l ) n + 1 ( mod S a , n ) .
We need to verify that the sequence { S a , n + 1 } = 0 S a , n 1 encompasses every element of the 0-Apéry set exactly once. After the long subsequence with length 2 n + 1
t 0 , j , t 1 , j , , t 2 n , j ( j = 0 , 1 , , ( a 2 l ) n ) ,
by (5), it is continued to the next subsequence by increasing by n rows:
t 0 , j + n , t 1 , j + n , .
After the short subsequence with length 2 l n 3 a 2 + l 2
t 0 , j , t 1 , j , , t 2 l n 3 a 2 + l 3 , j ( j = ( a 2 l ) n + 1 , ( a 2 l ) n + 2 , , ( a 2 l + 1 ) n ) ,
by (6), it is continued to the long subsequence by decreasing by ( ( a 2 l ) n + 1 ) rows:
t 0 , j ( a 2 l ) n 1 , t 1 , j ( a 2 l ) n 1 , , t 2 n , j ( a 2 l ) n 1 .
Since gcd ( n , ( a 2 l ) n + 1 ) = 1 , by this process, any element is not overlapped, and all the elements can be counted only once. Since gcd ( S a , n , S a , n + 1 ) = 1 , we have { S a , n + 1 } = 0 S a , n 1 = { } = 0 S a , n 1 .
In Table 1, there are two candidates to take the largest element of the 0-Apéry set: t 2 n , ( a 2 l ) n or t 2 l n 3 2 a + l 3 , ( a 2 l + 1 ) n . We see that
t 2 l n 3 2 a + l 3 , ( a 2 l + 1 ) n t 2 n , ( a 2 l ) n : = E ( a , n , l ) = ( 2 l 1 ) a n 3 3 a 2 2 ( 3 l 2 ) a n 2 3 a 2 2 ( l 1 ) a 2 l + 1 n 3 a 2 + l 3 .
Consider the largest root of E ( a , n , l ) = 0 on n. Since for l 2 and a 10 l 14 3 in (4)
E a , 3 a 2 l + 3 2 ( 2 l 1 ) , l = a ( 3 a + 2 l + 1 ) ( 3 a 2 l + 3 ) 8 ( 2 l 1 ) 2 3 2 480 l 3 1924 l 2 + 2439 l 1019 12 ( 2 l 1 ) 2 > 0 , E a , 3 a 2 l + 2 2 ( 2 l 1 ) , l = 2 < 0 ,
when n 3 a 2 l + 3 2 ( 2 l 1 ) , t 2 l n 3 2 a + l 3 , ( a 2 l + 1 ) n is the largest, and by Lemma 1 (2), we have
g 0 ( S a , n , S a , n + 1 , S a , n + 2 ) = 2 l n 3 2 a + l 3 S a , n + 1 + a 2 l + 1 n S a , n + 2 S a , n .
When n 3 a 2 l + 2 2 ( 2 l 1 ) , t 2 n , ( a 2 l ) n is the largest, and we have
g 0 ( S a , n , S a , n + 1 , S a , n + 2 ) = ( 2 n ) S a , n + 1 + a 2 l n S a , n + 2 S a , n .
Since for l = 1 and a 2
E a , 3 a 2 + 1 , 1 = 9 a 3 4 + 9 a 2 2 + 2 a 1 > 0 , E a , 3 a 2 , 1 = 2 < 0 ,
when n 3 a 2 + 1 , t 2 n 3 2 a 2 , a 2 n is the largest, and we have
g 0 ( S a , n , S a , n + 1 , S a , n + 2 ) = 2 n 3 2 a 2 S a , n + 1 + a 2 n S a , n + 2 S a , n .
When n 3 a 2 , t 2 n , ( a 2 1 ) n is the largest, and we have
g 0 ( S a , n , S a , n + 1 , S a , n + 2 ) = ( 2 n ) S a , n + 1 + a 2 1 n S a , n + 2 S a , n .

4.1.2. Odd Case

Let a be odd with a 5 . We shall prove that when n 3 ( a + 1 ) / 2 , the elements of the 0-Apéry set can be arranged as in Table 2. First, from the length relationship in the horizontal direction (y value) in Table 2,
( 2 l 1 ) n 3 a 2 l + 7 2 0 and ( 2 l 1 ) n 3 a 2 l + 7 2 2 n ,
or
3 a 2 l + 7 2 ( 2 l 1 ) n 3 a 2 l + 7 2 ( 2 l 3 ) .
Since the possible n 2 , we have
n 3 a 2 l + 7 2 ( 2 l 3 ) or a 10 l 19 3 .
Since
t ( 2 l 1 ) n 3 a 2 l + 5 2 , 0 + t 0 , a 2 l + 1 2 n + 1 = ( a + 2 l ) ( n + 1 ) n 3 2 S a , n ,
we have
t ( 2 l 1 ) n 3 a 2 l + 5 2 , 0 t 0 , a 2 l + 1 2 n + 1 ( mod S a , n ) .
Now, the sequence { S a , n + 1 } = 0 S a , n 1 runs over all elements of 0-Apéry set once. After the long subsequence with length 2 n + 1
t 0 , j , t 1 , j , , t 2 n , j ( j = 0 , 1 , , a 2 l + 1 2 n ) ,
by (5), it is continued to the next subsequence by increasing by n rows:
t 0 , j + n , t 1 , j + n , .
After the short subsequence with length ( 2 l 1 ) n 3 a 2 l + 5 2
t 0 , j , t 1 , j , , t ( 2 l 1 ) n 3 a 2 l + 5 2 , j ( j = a 2 l + 1 2 n + 1 , a 2 l + 1 2 n + 2 , , a 2 l + 3 2 n ) ,
by (8), it is continued to the long subsequence by decreasing by ( a 2 l + 1 2 n + 1 ) rows:
t 0 , j a 2 l + 1 2 n 1 , t 1 , j a 2 l + 1 2 n 1 , , t 2 n , j a 2 l + 1 2 n 1 .
Since gcd ( n , a 2 l + 1 2 n + 1 ) = 1 , by this process, any element is not overlapped, and all the elements can be counted only once. Since gcd ( S a , n , S a , n + 1 ) = 1 , we have { S a , n + 1 } = 0 S a , n 1 = { } = 0 S a , n 1 .
In Table 2, there are two candidates to take the largest values: t 2 n , a 2 l + 1 2 n and
t ( 2 l 1 ) n 3 a 2 l + 7 2 , a 2 l + 3 2 n . Notice that
t ( 2 l 1 ) n 3 a 2 l + 7 2 , a 2 l + 3 2 n t 2 n , a 2 l + 1 2 n : = O ( a , n , l ) = 2 ( l 1 ) a n 3 a ( 3 a 6 l + 7 ) 2 n 2 3 a 2 ( 2 l 3 ) a 4 ( l 1 ) 2 n 3 a 2 l + 7 2 .
Since for l 2 and a 10 l 19 3 in (7)
O a , 3 a 2 l + 4 4 ( l 1 ) , l = a ( 3 a + 2 l ) ( 3 a 2 l + 4 ) 32 ( l 1 ) 2 3 2 960 l 3 5288 l 2 + 9467 l 5559 96 ( l 1 ) 2 > 0 , O a , 3 a 2 l + 3 4 ( l 1 ) , l = 2 < 0 ,
when n 3 a 2 l + 3 4 ( l 1 ) , t 2 n , a 2 l + 1 2 n is the largest in the 0-Apéry set. Hence, by Lemma 1 (2), we have
g 0 ( S a , n , S a , n + 1 , S a , n + 2 ) = ( 2 n ) S a , n + 1 + a 2 l + 1 2 n S a , n + 2 S a , n .
When n 3 a 2 l + 4 4 ( l 1 ) , t ( 2 l 1 ) n 3 a 2 l + 7 2 , a 2 l + 3 2 n is the largest, and we have
g 0 ( S a , n , S a , n + 1 , S a , n + 2 ) = ( 2 l 1 ) n 3 a 2 l + 7 2 S a , n + 1 + a 2 l + 3 2 n S a , n + 2 S a , n .
For l = 1 , by
O ( a , n , 1 ) = n ( n + 1 ) a ( 3 a + 1 ) 2 3 a + 5 2 < 0 ,
we can find that t 2 n , a 1 2 n is the largest in the 0-Apéry set. Hence, by Lemma 1 (2), we have
g 0 ( S a , n , S a , n + 1 , S a , n + 2 ) = ( 2 n ) S a , n + 1 + a 1 2 n S a , n + 2 S a , n .

5. p = 1

The arrangement of the elements of the 1-Apéry set can be determined from those of the 0-Apéry set. As seen in the case where p = 0 , there are four different patterns about the arrangement of the elements of the 0-Apéry set.
Consider the case where a is even with a 4 . Otherwise, the following argument is not valid. By (5), (6) and t 3 a 2 + 2 n 1 , ( a 2 1 ) n + 1 = ( a + 2 ) n + a 2 S a , n , we have the correspondences between the elements of the 0-Apéry set and those of the 1-Apéry set:
t y , z t y + 2 n + 1 , z n ( mod S a , n ) ( 0 y 2 n , n z ( a 2 l ) n ; 0 y 2 l n 3 a 2 + l 3 , ( a 2 l ) n + 1 z ( a 2 l + 1 ) n ) , t y , z t y + 2 l n 3 a 2 + l 2 , z + ( a 2 l ) n + 1 ( mod S a , n ) 0 y 3 a 2 2 ( l 1 ) n l + 2 , 0 z n 1 , t y , z t y 3 a 2 + 2 ( l 1 ) n + l 3 , z + ( a 2 l + 1 ) n + 1 ( mod S n ) 3 a 2 2 ( l 1 ) n l + 3 y 2 n , 0 z n 1 ,
respectively. Namely, in Table 3, the elements in the first n rows are simply moved below the 0-Apéry set to fill in the gap. However, the remaining portion is moved to the lower left. Elements other than the first n rows are shifted to the right side of the 0-Apéry set by shifting up n rows.
Set τ x , y , x : = x S a , n + y S a , n + 1 + z S a , n + 2 . We can show that all the elements of the 1-Apéry set have at least two different representations:
τ n + 1 , y , z = τ 0 , y + 2 n + 1 , z n ( 0 y 2 n , n z ( a 2 l ) n ; 0 y 2 l n 3 a 2 + l 3 , ( a 2 l ) n + 1 z ( a 2 l + 1 ) n ) , τ ( a + 2 l ) ( n + 1 ) 2 2 , y , z = τ 0 , y + 2 l n 3 a 2 + l 2 , z + ( a 2 l ) n + 1 0 y 3 a 2 2 ( l 1 ) n l + 2 , 0 z n 1 , τ ( a + 2 l 2 ) n + a + 2 l 4 2 , y , z = τ 0 , y 3 a 2 + 2 ( l 1 ) n + l 3 , z + ( a 2 l + 1 ) n + 1 3 a 2 2 ( l 1 ) n l + 3 y 2 n , 0 z n 1 .
From Table 3, there are four candidates to take the largest value of Ap 1 ( S a , n , S a , n + 1 , S a , n + 2 ) :
t 2 l n 3 a 2 + l 3 , ( a 2 l + 2 ) n t 2 n , ( a 2 l + 1 ) n , t 2 ( l + 1 ) n 3 a 2 + l 2 , ( a 2 l ) n , t 4 n + 1 , ( a 2 l 1 ) n .
Since
t 2 l n 3 a 2 + l 3 , ( a 2 l + 2 ) n t 2 ( l + 1 ) n 3 a 2 + l 2 , ( a 2 l ) n = t 2 n , ( a 2 l + 1 ) n t 4 n + 1 , ( a 2 l 1 ) n = 3 a n ( n + 1 ) 1 > 0 ,
similarly to the case where p = 0 , there are only two possibilities. Namely, when 3 a 4 l l 3 2 l n 3 a 2 l + 2 2 ( 2 l 1 ) ( l 2 ) or 3 a 4 + 1 n 3 a 2 ( l = 1 ), t 2 n , ( a 2 l + 1 ) n is the largest, so by Lemma 1 (2) we have
g 1 ( S a , n , S a , n + 1 , S a , n + 2 ) = ( 2 n ) S a , n + 1 + a 2 l + 1 n S a , n + 2 S a , n .
When 3 a 2 l + 3 2 ( 2 l 1 ) n 3 a 4 ( l 1 ) l 3 2 ( l 1 ) ( l 2 ) or n 3 a 2 + 1 ( l = 1 ), t 2 l n 3 a 2 + l 3 , ( a 2 l + 2 ) n is the largest, and we have
g 1 ( S a , n , S a , n + 1 , S a , n + 2 ) = 2 l n 3 a 2 + l 3 S a , n + 1 + a 2 l + 2 n S a , n + 2 S a , n .
The case where a is odd is not so similar, but analogous patterns and corresponding congruences and inequalities give the following results. When a is odd with a 5 and n 2 , we have
g 1 ( S a , n , S a , n + 1 , S a , n + 2 ) = ( 2 n ) S a , n + 1 + a 2 l + 3 2 n S a , n + 2 S a , n if 3 a 2 l + 7 2 ( 2 l 1 ) n 3 a 2 l + 3 4 ( l 1 ) ( l 2 ) ; ( 2 l 1 ) n 3 a 2 l + 7 2 S a , n + 1 + a 2 l + 5 2 n S a , n + 2 S a , n if 3 a 2 + 4 4 ( l 1 ) n 3 a 2 l + 7 2 ( 2 l 3 ) ( l 2 ) ; ( 2 n ) S a , n + 1 + a + 1 2 n S a , n + 2 S a , n if n 3 a + 5 2 .

6. p 2

The elements of the 2-Apéry set can be determined from those of the 1-Apéry set as follows. See Table 4.
Similarly to the case where p = 1 , the elements in the first n rows of the main part of the 1-Apéry set are simply moved below the 0-Apéry set to fill the gap. However, the remaining portion is moved to the lower left of the 0-Apéry. Elements beyond the first n rows of the main part are shifted to the right side of the 0-Apéry set by moving them up n rows. The remaining staircase parts are shifted left by 2 n + 1 units and up by n units.
In Table 4, by comparing the six candidates
t 2 l n 3 a 2 + l 3 , ( a 2 l + 3 ) n , t 2 n , ( a 2 l + 2 ) n , t 2 ( l + 1 ) n 3 a 2 + l 2 , ( a 2 l + 1 ) n , t 4 n + 1 , ( a 2 l ) n , t 2 ( l + 2 ) n 3 a 2 + l 1 , ( a 2 l 1 ) n , t 6 n + 2 , ( a 2 l 2 ) n ,
we find that t 2 n , ( a 2 l + 2 ) n is the largest element of the 2-Apéry set when 3 a 4 l l 3 2 l n 3 a 2 l + 2 2 ( 2 l 1 ) ( l 2 ) or 3 a 4 + 1 n 3 a 2 ( l = 1 ); t 2 l n 3 a 2 + l 3 , ( a 2 l + 3 ) n is the largest element of the 2-Apéry set when 3 a 2 l + 3 2 ( 2 l 1 ) n 3 a 4 ( l 1 ) l 3 2 ( l 1 ) ( l 2 ) or n 3 a 2 + 1 ( l = 1 ). Therefore, by Lemma 1 (2) we have
g 2 ( S a , n , S a , n + 1 , S a , n + 2 ) = ( 2 n ) S a , n + 1 + a 2 l + 2 n S a , n + 2 S a , n if 3 a 4 l l 3 2 l n 3 a 2 l + 2 2 ( 2 l 1 ) ( l 2 ) ; 2 l n 3 a 2 + l 3 S a , n + 1 + a 2 l + 3 n S a , n + 2 S a , n if 3 a 2 l + 3 2 ( 2 l 1 ) n 3 a 4 ( l 1 ) l 3 2 ( l 1 ) ( l 2 ) , ( 2 n ) S a , n + 1 + a 2 + 1 n S a , n + 2 S a , n if 3 a 4 + 1 n 3 a 2 ; 2 n 3 a 2 2 S a , n + 1 + a 2 + 2 n S a , n + 2 S a , n if n 3 a 2 + 1 .
Similarly, for p = 3 , 4 , , the elements of the p-Apéry set can also be determined from those of the ( p 1 )-Apéry set. However, the same pattern cannot be continued. As seen in Table 5, the situation is changed. 0 a , 1 a and 2 a indicate the position of the largest elements of the 0-, 1- and 2-Apéry sets, respectively, when 3 a 2 l + 3 2 ( 2 l 1 ) n 3 a 4 ( l 1 ) l 3 2 ( l 1 ) ( l 2 ) or n 3 a 2 + 1 ( l = 1 ); and 0 b , 1 b and 2 b when 3 a 4 l l 3 2 l n 3 a 2 l + 2 2 ( 2 l 1 ) ( l 2 ) or 3 a 4 + 1 n 3 a 2 ( l = 1 ). We can see that no element of the Apéry set can exist at the expected location for the largest value. As can be seen in Table 5, the actual elements of the 3-Apéry set (in this example) are located in the gray area and do not fall in the expected dotted area. Then, in general, for p a 2 l + 1 , the same formula cannot be applied, and the situation becomes more and more complicated, though the p-Frobenius numbers should exist.
Therefore, for a general integer p with 0 p a 2 l , we have the following theorem. Note that while the case where a is odd is not exactly the same, analogous arguments can still be applied.
Theorem 2.
When a is even with a 6 and n 2 , for integers 0 p a 2 l and l 2
g p ( S a , n , S a , n + 1 , S a , n + 2 ) = ( 2 n ) S a , n + 1 + p + a 2 l n S a , n + 2 S a , n if 3 a 4 l l 3 2 l n 3 a 2 l + 2 2 ( 2 l 1 ) ; 2 l n 3 a 2 1 S a , n + 1 + p + a 2 l + 1 n S a , n + 2 S a , n if 3 a 2 l + 3 2 ( 2 l 1 ) n 3 a 4 ( l 1 ) l 3 2 ( l 1 ) ,
for integers n 2 and 0 p a 2 1
g p ( S a , n , S a , n + 1 , S a , n + 2 ) = ( 2 n ) S a , n + 1 + p + a 2 1 n S a , n + 2 S a , n if 3 a 4 + 1 n 3 a 2 ; 2 n 3 a 2 2 S a , n + 1 + p + a 2 n S a , n + 2 S a , n if n 3 a 2 + 1 .
When a is odd with a 5 and n 2 , for 0 p a 2 l + 1 2 with l 2
g p ( S a , n , S a , n + 1 , S a , n + 2 ) = ( 2 n ) S a , n + 1 + p + a 2 l + 1 2 n S a , n + 2 S a , n if 3 a 2 l + 7 2 ( 2 l 1 ) n 3 a 2 l + 3 4 ( l 1 ) ; ( 2 l 1 ) n 3 a 2 l + 7 2 S a , n + 1 + p + a 2 l + 3 2 n S a , n + 2 S a , n if 3 a 2 l + 4 4 ( l 1 ) n 3 a 2 l + 7 2 ( 2 l 3 ) ,
for integers n 2 and 0 p a 1 2
g p ( S a , n , S a , n + 1 , S a , n + 2 ) = ( 2 n ) S a , n + 1 + p + a 1 2 n S a , n + 2 S a , n if n 3 a + 5 2 .
Remark 3.
When a is even, the first and second conditions in the first identity are equivalent to
3 a + 6 4 n + 2 l 3 a + 2 n + 2 4 n + 2 and 3 a + 2 n + 3 4 n + 2 l 3 a + 4 n + 6 4 n + 2 ,
respectively. When a is odd, the first and second conditions in the third identity are equivalent to
3 a + 2 n + 7 4 n + 2 l 3 a + 4 n + 3 4 n + 2 and 3 a + 4 n + 4 4 n + 2 l 3 a + 6 n + 7 4 n + 2 ,
respectively.

7. p -Genus

Let a be even with a 4 . Observing Table 1, Table 3 and Table 4, the sum of the elements of the p-Apéry set is made by dividing into three parts: all the left sides of the staircase, all the right sides of the staircase, and the main part. For 0 p a 2 l with l 1 we have
j = 0 S a , n 1 m j ( p ) = κ = 0 p 1 y = ( 2 n + 1 ) κ ( 2 n + 1 ) κ + 2 l n 3 a 2 + l 3 z = ( p + a 2 2 κ l ) n + 1 ( p + a 2 2 κ l + 1 ) n t y , z + κ = 0 p 1 y = ( 2 n + 1 ) κ + 2 l n 3 a 2 + l 2 ( 2 n + 1 ) ( κ + 1 ) 1 z = ( p + a 2 2 κ l 1 ) n + 1 ( p + a 2 2 κ l ) n t y , z + y = p ( 2 n + 1 ) p ( 2 n + 1 ) + 2 n z = 0 ( a 2 p l ) n t y , z + y = p ( 2 n + 1 ) p ( 2 n + 1 ) + 2 l n 3 a 2 + l 3 z = ( a 2 p l ) n + 1 ( a 2 p l + 1 ) n t y , z = S a , n 8 ( n ( 2 ( a 2 + 4 a + 4 l ( l 1 ) ) n 2 + ( 3 a 2 2 ( 6 l 5 ) a + 4 ( 3 l 1 ) ( l 2 ) ) n + a 2 2 ( 6 l 5 ) a + 4 ( l 2 ) ( l 3 ) ) + 4 ( 2 n + 1 ) 2 S a , n + 1 n ( n + 1 ) p 4 n ( n + 1 ) ( 2 n + 1 ) p 2 ) .
By Lemma 1 (3), we have
n p ( S a , n , S a , n + 1 , S a , n + 2 ) = 1 S a , n j = 0 S a , n 1 m j ( p ) S a , n 1 2 = 1 8 ( n ( 2 ( a 2 + 4 a + 4 l ( l 1 ) ) n 2 + ( 3 a 2 6 ( 2 l 1 ) a + 4 ( 3 l 1 ) ( l 2 ) ) n + a 2 2 ( 6 l 7 ) a + 4 ( l 2 ) ( l 3 ) ) + 4 ( 2 n + 1 ) 2 S a , n + 1 n ( n + 1 ) p 4 n ( n + 1 ) ( 2 n + 1 ) p 2 ) .
When a is odd with a 5 , for 0 p a 2 l + 1 2 with l 1 we have
j = 0 S a , n 1 m j ( p ) = κ = 0 p 1 y = ( 2 n + 1 ) κ ( 2 n + 1 ) κ + ( 2 l 1 ) n 3 a 2 l + 7 2 z = ( p + a 2 l + 1 2 2 κ ) n + 1 ( p + a 2 l + 3 2 2 κ ) n t y , z + κ = 0 p 1 y = ( 2 n + 1 ) κ + ( 2 l 1 ) n 3 a 2 l + 5 2 ( 2 n + 1 ) ( κ + 1 ) 1 z = ( p + a 2 l 1 2 2 κ ) n + 1 ( p + a 2 l + 1 2 2 κ ) n t y , z + y = p ( 2 n + 1 ) p ( 2 n + 1 ) + 2 n z = 0 ( a 2 l + 1 2 p ) n t y , z + y = p ( 2 n + 1 ) p ( 2 n + 1 ) + ( 2 l 1 ) n 3 a 2 l + 7 2 z = ( a 2 l + 1 2 p ) n + 1 ( a 2 l + 3 2 p ) n t y , z = S a , n 8 ( n ( 2 ( ( a + 1 ) ( a + 3 ) + 4 l ( l 2 ) ) n 2 + ( 3 a 2 4 ( 3 l 4 ) a + ( 2 l 5 ) ( 6 l 5 ) ) n + a 2 4 ( 3 l 4 ) a + ( 2 l 5 ) ( 2 l 7 ) ) + 4 ( 2 n + 1 ) 2 S a , n + 1 n ( n + 1 ) p 4 n ( n + 1 ) ( 2 n + 1 ) p 2 ) .
By Lemma 1 (3), we have
n p ( S a , n , S a , n + 1 , S a , n + 2 ) = 1 8 ( n ( 2 ( ( a + 1 ) ( a + 3 ) + 4 l ( l 2 ) ) n 2 + ( 3 a 2 12 ( l 1 ) a + ( 2 l 5 ) ( 6 l 5 ) ) n + a 2 4 ( 3 l 5 ) a + ( 2 l 5 ) ( 2 l 7 ) ) + 4 ( 2 n + 1 ) 2 S a , n + 1 n ( n + 1 ) p 4 n ( n + 1 ) ( 2 n + 1 ) p 2 ) .
Theorem 3.
When a is even with a 4 and n 2 , for 0 p a 2 l with l 1 ,
n p ( S a , n , S a , n + 1 , S a , n + 2 ) = 1 8 ( n ( 2 ( a 2 + 4 a + 4 l ( l 1 ) ) n 2 + ( 3 a 2 6 ( 2 l 1 ) a + 4 ( 3 l 1 ) ( l 2 ) ) n + a 2 2 ( 6 l 7 ) a + 4 ( l 2 ) ( l 3 ) ) + 4 ( 2 n + 1 ) 2 S a , n + 1 n ( n + 1 ) p 4 n ( n + 1 ) ( 2 n + 1 ) p 2 ) .
When a is odd with a 5 and n 2 , for 0 p a 2 l + 1 2 with l 1 ,
n p ( S a , n , S a , n + 1 , S a , n + 2 ) = 1 8 ( n ( 2 ( ( a + 1 ) ( a + 3 ) + 4 l ( l 2 ) ) n 2 + ( 3 a 2 12 ( l 1 ) a + ( 2 l 5 ) ( 6 l 5 ) ) n + a 2 4 ( 3 l 5 ) a + ( 2 l 5 ) ( 2 l 7 ) ) + 4 ( 2 n + 1 ) 2 S a , n + 1 n ( n + 1 ) p 4 n ( n + 1 ) ( 2 n + 1 ) p 2 ) .

8. Examples

When ( a , n ) = ( 22 , 9 ) , by our remark of Theorem 2, we see that
2 36 19 , 43 19
and there is no integer in the interval 87 38 , 54 19 , the first identity of the even case in Theorem 2 is applied with l = 2 . Then, for 0 p 9 = 22 2 2
g p ( S 22 , 9 , S 22 , 10 , S 22 , 11 ) = g p ( 1585 , 1981 , 2421 ) = 18 S 22 , 10 + 22 ( p + 9 ) S 22 , 11 S 22 , 10 .
The first several terms are
{ g p ( S 22 , 9 , S 22 , 10 , S 22 , 11 ) } p = 0 9 = 230174 , 251963 , 273752 , 295541 , 317330 , 339119 , 360908 , 382697 , 404486 , 426275 .
However, when p = 10 , the identity does not give the correct value of 442125 but the wrong value of 448064.
Concerning the p-genus, by the first identity of Theorem 3, we have
{ n p ( S 22 , 9 , S 22 , 10 , S 22 , 11 ) } p = 0 9 = 116694 , 152623 , 186842 , 219351 , 250150 , 279239 , 306618 , 332287 , 356246 , 378495 .
When ( a , n ) = ( 13 , 11 ) , by our remark of Theorem 2, we see that there is no integer in the interval 34 23 , 43 23 and
2 87 46 , 56 23 ,
the second identity of the odd case in Theorem 2 is applied with l = 2 . Then, for 0 p 5 = 13 3 2 we have
{ g p ( S 13 , 11 , S 13 , 12 , S 13 , 13 ) } p = 0 5 = 153087 , 175406 , 197725 , 220044 , 242363 , 264682 .
Concerning the p-genus, by the third identity of Theorem 3, we have
{ n p ( S 13 , 11 , S 13 , 12 , S 13 , 13 ) } p = 0 5 = 79904 , 116359 , 149778 , 180161 , 207508 , 231819 .

9. Final Comments

One should not assume that the results in this paper are quite similar to previous works. Generally, finding explicit formulae for the Frobenius number for sequences or tuples with three or more variables is quite challenging. When p > 0 , the situation becomes even more difficult. For example, triangular numbers are represented by similar quadratic polynomials. Explicit formulae for the p-Frobenius number of consecutive triangular numbers have been successfully provided in [20,25], and the case for squares has also been addressed [32]. However, no explicit formulae have been established for pentagonal, hexagonal, heptagonal, and octagonal numbers, which are given by n ( k n k + 2 ) / 2 for k = 5 , 6 , 7 and 8, respectively.
For example, triangular numbers are given as a polynomial of similar quadratic polynomials too. The explicit formulae of the p-Frobenius number of consecutive triangular numbers have been successful in being given in [20,25] and the case of squares is also possible [32]. But nothing has been known for pentagonal, hexagonal, heptagonal, octagonal numbers given by n ( k n k + 2 ) / 2 for k = 5 , 6 , 7 , 8 , respectively.
It would also be interesting to see whether we can derive general explicit formulae for the Frobenius numbers of other well-known polynomials, such as Hermite polynomials, Frobenius–Euler polynomials or Bernoulli–Gegenbauer polynomials (see, for instance, [33,34]).

Author Contributions

Writing—original draft preparation, T.K.; writing—review and editing, R.Y. and J.M. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Data are contained within the article.

Acknowledgments

The authors thank the referees for carefully reading the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Matone, M.; Volpato, R. Vector-valued modular forms from the Mumford forms, Schottky-Igusa form, product of Thetanullwerte and the amazing Klein formula. Proc. Am. Math. Soc. 2013, 141, 2575–2587. [Google Scholar] [CrossRef]
  2. Plouffe, S. Approximations of Generating Functions and a Few Conjectures. Master’s Thesis, Universit’e du Québec à Montréal, Montréal, QC, Canada, 1992. [Google Scholar]
  3. Sloane, N.J.A. The On-Line Encyclopedia of Integer Sequences. Available online: https://oeis.org/ (accessed on 15 May 2024).
  4. Komatsu, T.; Ying, H. p-numerical semigroups with p-symmetric properties. J. Algebra Appl. 2024, 2450216. [Google Scholar] [CrossRef]
  5. Sylvester, J.J. On the partition of numbers. Quart. J. Pure Appl. Math. 1857, 1, 141–152. [Google Scholar]
  6. Cayley, A. On a problem of double partitions. Philos. Mag. 1860, 20, 337–341. [Google Scholar] [CrossRef]
  7. Binner, D.S. Generalization of a result of Sylvester related to the Frobenius coin problem. J. Integer Seq. 2021, 24, 14. [Google Scholar]
  8. Komatsu, T. On the number of solutions of the Diophantine equation of Frobenius–General case. Math. Commun. 2003, 8, 195–206. [Google Scholar]
  9. Tripathi, A. The number of solutions to ax + by = n. Fibonacci Quart. 2000, 38, 290–293. [Google Scholar]
  10. Liu, F.; Xin, G. A combinatorial approach to Frobenius numbers of some special sequences. Adv. Appl. Math. 2024, 158, 102719. [Google Scholar] [CrossRef]
  11. Liu, F.; Xin, G.; Ye, S.; Yin, J. The Frobenius formula for A = (a,ha + d,ha + b2d,…,ha + bkd). Ramanujan J. 2024, 64, 489–504. [Google Scholar] [CrossRef]
  12. Liu, F.; Xin, G.; Zhang, C. Three Simple Reduction Formulas for the Denumerant Functions. arXiv 2024, arXiv:2404.13989. [Google Scholar]
  13. Liu, F.; Xin, G. A Fast Algorithm for Denumerants with Three Variables. arXiv 2024, arXiv:2406.18955. [Google Scholar]
  14. Liu, F. Generating functions for the quotients of numerical semigroups. Bull. Aust. Math. Soc. 2024, 1–12. [Google Scholar] [CrossRef]
  15. Assi, A.; D’Anna, M.; Garcia-Sanchez, P.A. Numerical Semigroups and Applications, 2nd extended and revised ed.; RSME Springer Series 3; Springer: Cham, Switzerland, 2020. [Google Scholar]
  16. Rosales, J.C.; Garcia-Sanchez, P.A. Numerical semigroups. In Developments in Mathematics, 20; Springer: New York, NY, USA, 2009. [Google Scholar]
  17. Curtis, F. On formulas for the Frobenius number of a numerical semigroup. Math. Scand. 1990, 67, 190–192. [Google Scholar] [CrossRef]
  18. Rosales, J.C.; Branco, M.B.; Torrão, D. The Frobenius problem for repunit numerical semigroups. Ramanujan J. 2016, 40, 323–334. [Google Scholar] [CrossRef]
  19. Rosales, J.C.; Branco, M.B.; Torrão, D. The Frobenius problem for Mersenne numerical semigroups. Math. Z. 2017, 286, 741–749. [Google Scholar] [CrossRef]
  20. Robles-Perez, A.M.; Rosales, J.C. The Frobenius number for sequences of triangular and tetrahedral numbers. J. Number Theory 2018, 186, 473–492. [Google Scholar] [CrossRef]
  21. Komatsu, T. The Frobenius number associated with the number of representations for sequences of repunits. C. R. Math. Acad. Sci. Paris 2023, 361, 73–89. [Google Scholar] [CrossRef]
  22. Komatsu, T.; Ying, H. The p-Frobenius and p-Sylvester numbers for Fibonacci and Lucas triplets. Math. Biosci. Eng. 2023, 20, 3455–3481. [Google Scholar] [CrossRef]
  23. Komatsu, T.; Mu, J. p-numerical semigroups of Pell triples. J. Ramanujan Math. Soc. 2024, in press.
  24. Komatsu, T.; Pita-Ruiz, C. The Frobenius number for Jacobsthal triples associated with number of solutions. Axioms 2023, 12, 98. [Google Scholar] [CrossRef]
  25. Komatsu, T. The Frobenius number for sequences of triangular numbers associated with number of solutions. Ann. Comb. 2022, 26, 757–779. [Google Scholar] [CrossRef]
  26. Aigner, M.; Ziegler, G.M. Proofs from the Book, 5th ed.; Including Illustrations by Karl H. Hofmann; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-662-44204-3/978-3-662-44205-0. [Google Scholar]
  27. Apéry, R. Sur les branches superlinéaires des courbes algébriques. C. R. Acad. Sci. Paris 1946, 222, 1198–1200. [Google Scholar]
  28. Komatsu, T. On the determination of p-Frobenius and related numbers using the p-Apéry set. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2024, 118, 58. [Google Scholar] [CrossRef]
  29. Brauer, A.; Shockley, B.M. On a problem of Frobenius. J. Reine. Angew. Math. 1962, 211, 215–220. [Google Scholar]
  30. Selmer, E.S. On the linear diophantine problem of Frobenius. J. Reine Angew. Math. 1977, 293–294, 1–17. [Google Scholar]
  31. Komatsu, T. Sylvester power and weighted sums on the Frobenius set in arithmetic progression. Discret. Appl. Math. 2022, 315, 110–126. [Google Scholar] [CrossRef]
  32. Lepilov, M.; O’Rourke, J.; Swanson, I. Frobenius numbers of numerical semigroups generated by three consecutive squares or cubes. Semigroup Forum 2015, 91, 238–259. [Google Scholar] [CrossRef]
  33. Zayed, M.; Wani, S.A.; Quintana, Y. Properties of multivariate Hermite polynomials in correlation with Frobenius-Euler polynomials. Mathematics 2023, 11, 3439. [Google Scholar] [CrossRef]
  34. Peralta, D.; Quintana, Y.; Wani, S.A. Mixed-type Hypergeometric Bernoulli-Gegenbauer polynomials. Mathematics 2023, 11, 3920. [Google Scholar] [CrossRef]
Figure 1. Chinese checkers board.
Figure 1. Chinese checkers board.
Symmetry 16 01090 g001
Table 1. Ap 0 ( S a , n , S a , n + 1 , S a , n + 2 ) when a is even.
Table 1. Ap 0 ( S a , n , S a , n + 1 , S a , n + 2 ) when a is even.
t 0 , 0 t 2 l n 3 2 a + l 3 , 0 t 2 l n 3 2 a + l 2 , 0 t 2 n , 0
t 0 , ( a 2 l ) n t 2 l n 3 2 a + l 3 , ( a 2 l ) n t 2 l n 3 2 a + l 2 , ( a 2 l ) n t 2 n , ( a 2 l ) n
t 0 , ( a 2 l ) n + 1 t 2 l n 3 2 a + l 3 , ( a 2 l ) n + 1
t 0 , ( a 2 l + 1 ) n t 2 l n 3 2 a + l 3 , ( a 2 l + 1 ) n
Table 2. Ap 0 ( S a , n , S a , n + 1 , S a , n + 2 ) when a is odd.
Table 2. Ap 0 ( S a , n , S a , n + 1 , S a , n + 2 ) when a is odd.
t 0 , 0 t ( 2 l 1 ) n 3 a 2 l + 7 2 ) , 0 t ( 2 l 1 ) n 3 a 2 l + 5 2 , 0 t 2 n , 0
t 0 , a 2 l + 1 2 n t ( 2 l 1 ) n 3 a 2 l + 7 2 , a 2 l + 1 2 n t ( 2 l 1 ) n 3 a 2 l + 5 2 , a 2 l + 1 2 n t 2 n , a 2 l + 1 2 n
t 0 , a 2 l + 1 2 n + 1 t ( 2 l 1 ) n 3 a 2 l + 7 2 , a 2 l + 1 2 n + 1
t 0 , a 2 l + 3 2 n t ( 2 l 1 ) n 3 a 2 l + 7 2 , a 2 l + 3 2 n
Table 3. Ap 1 ( S a , n , S a , n + 1 , S a , n + 2 ) when a is even.
Table 3. Ap 1 ( S a , n , S a , n + 1 , S a , n + 2 ) when a is even.
t 2 n + 1 , 0 t 4 n + 1 , 0
t 2 n + 1 , ( a 2 l 1 ) n t 4 n + 1 , ( a 2 l 1 ) n
t 2 n + 1 , ( a 2 l 1 ) n + 1 t 2 ( l + 1 ) n 3 a 2 + l 2 , ( a 2 l 1 ) n + 1
t 2 n + 1 , ( a 2 l ) n t 2 ( l + 1 ) n 3 a 2 + l 2 , ( a 2 l ) n
t 2 l n 3 a 2 + l 2 , ( a 2 l ) n + 1 t 2 n , ( a 2 l ) n + 1
t 2 l n 3 a 2 + l 2 , ( a 2 l + 1 ) n t 2 n , ( a 2 1 ) n
t 0 , ( a 2 1 ) n + 1 t 2 l n 3 a 2 + l 3 , ( a 2 l + 1 ) n + 1
t 0 , ( a 2 l + 2 ) n t 2 l n 3 a 2 + l 3 , ( a 2 l + 2 ) n
Table 4. Ap 2 ( S a , n , S a , n + 1 , S a , n + 2 ) .
Table 4. Ap 2 ( S a , n , S a , n + 1 , S a , n + 2 ) .
t 4 n + 2 , 0 t ( 2 l + 4 ) n 3 a 2 + l 1 , 0 t ( 2 l + 4 ) n 3 a 2 + l , 0 t 6 n + 2 , 0
t 4 n + 2 , ( a 2 l 2 ) n t ( 2 l + 4 ) n 3 a 2 + l 1 , ( a 2 l 2 ) n t ( 2 l + 4 ) n 3 a 2 + l , ( a 2 l 2 ) n t 6 n + 2 , ( a 2 l 2 ) n
t 4 n + 2 , ( a 2 l 2 ) n + 1 t ( 2 l + 4 ) n 3 a 2 + l 1 , ( a 2 l 2 ) n + 1
t 4 n + 2 , ( a 2 l 1 ) n t ( 2 l + 4 ) n 3 a 2 + l 1 , ( a 2 l 1 ) n
t ( 2 l + 2 ) n 3 a 2 + l 1 , ( a 2 l 1 ) n + 1 t 4 n + 1 , ( a 2 l 1 ) n + 1
t ( 2 l + 2 ) n 3 a 2 + l 1 , ( a 2 l ) n t 4 n + 1 , ( a 2 l ) n
t 2 n + 1 , ( a 2 l ) n + 1 t ( 2 l + 2 ) n 3 a 2 + l 2 , ( a 2 l ) n + 1
t 2 n + 1 , ( a 2 l + 1 ) n t ( 2 l + 2 ) n 3 a 2 + l 2 , ( a 2 l + 1 ) n
t 2 l n 3 a 2 + l 2 , ( a 2 l + 1 ) n + 1 t 2 n , ( a 2 l + 1 ) n + 1
t 2 l n 3 a 2 + l 2 , ( a 2 l + 2 ) n t 2 n , ( a 2 l + 2 ) n
t 0 , ( a 2 l + 2 ) n + 1 t 2 l n 3 a 2 + l 3 , ( a 2 l + 2 ) n + 1
t 0 , ( a 2 l + 3 ) n t 2 l n 3 a 2 + l 3 , ( a 2 l + 3 ) n
Table 5. Ap 3 ( S n , a , S n + 1 , a , S n + 2 , a ) .
Table 5. Ap 3 ( S n , a , S n + 1 , a , S n + 2 , a ) .
Symmetry 16 01090 i001
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Yin, R.; Mu, J.; Komatsu, T. The p-Frobenius Number for the Triple of the Generalized Star Numbers. Symmetry 2024, 16, 1090. https://doi.org/10.3390/sym16081090

AMA Style

Yin R, Mu J, Komatsu T. The p-Frobenius Number for the Triple of the Generalized Star Numbers. Symmetry. 2024; 16(8):1090. https://doi.org/10.3390/sym16081090

Chicago/Turabian Style

Yin, Ruze, Jiaxin Mu, and Takao Komatsu. 2024. "The p-Frobenius Number for the Triple of the Generalized Star Numbers" Symmetry 16, no. 8: 1090. https://doi.org/10.3390/sym16081090

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop