The Neutron Lifetime Discrepancy and Its Implications for Cosmology and Dark Matter
Abstract
:1. Introduction
2. Theoretical Discussion
3. Neutron Lifetime Experiments
3.1. Beam Method
3.2. Ultracold Neutron Storage Method
3.3. The Discrepancy
4. The Neutron Lifetime in Cosmology and Astrophysics
5. The Neutron Lifetime and Dark Matter
6. Conclusions
Funding
Conflicts of Interest
References
- Feynman, R.P.; Gell-Mann, M. Theory of the Fermi Interaction. Phys. Rev. 1958, 109, 193. [Google Scholar] [CrossRef]
- Gell-Mann, M. Test of the Nature of the Vector Interaction in Beta Decay. Phys. Rev. 1958, 111, 362. [Google Scholar] [CrossRef]
- Particle Data Group; Workman, R.L.; Burkert, V.D.; Crede, V.; Klempt, E.; Thoma, U.; Tiator, L.; Agashe, K.; Aielli, G.; Allanach, B.C.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [Google Scholar]
- Czarnecki, A.; Marciano, W.J.; Sirlin, A. Radiative corrections to neutron and nuclear beta decays revisited. Phys. Rev. D 2019, 100, 073008. [Google Scholar] [CrossRef]
- Wietfeldt, F.E.; Greene, G.L. The neutron lifetime. Rev. Mod. Phys. 2011, 83, 1173. [Google Scholar] [CrossRef]
- Wietfeldt, F.E. Measurements of the Neutron Lifetime. Atoms 2018, 6, 70. [Google Scholar] [CrossRef]
- Robson, J.M. The Radioactive Decay of the Neutron. Phys. Rev. 1951, 83, 349. [Google Scholar] [CrossRef]
- Nico, J.S.; Dewey, M.S.; Gilliam, D.M.; Wietfeldt, F.E.; Fei, X.; Snow, W.M.; Greene, G.L.; Pauwels, J.; Eykens, R.; Lamberty, A.; et al. Measurement of the neutron lifetime by counting trapped protons in a cold neutron beam. Phys. Rev. C 2005, 71, 055502. [Google Scholar] [CrossRef]
- Yue, A.T.; Dewey, M.S.; Gilliam, D.M.; Greene, G.L.; Laptov, A.B.; Nico, J.S.; Snow, W.M.; Wietfeldt, F.E. Improved Determination of the Neutron Lifetime. Phys. Rev. Lett. 2013, 111, 222501. [Google Scholar] [CrossRef]
- Amaldi, E.; D’Agostino, O.; Fermi, E.; Pontecorvo, B.; Rasetti, F.; Segré, E. Artificial Radioactivity produced by Neutron Bombardment. Proc. R. Soc. Lond. 1935, 149, 522. [Google Scholar]
- Byrne, J.; Dawber, P.G.; Habeck, C.G.; Smidt, S.J.; Spain, J.A.; Williams, A.P. A revised value for the neutron lifetime measured using a Penning trap. Europhys. Lett. 1996, 33, 187. [Google Scholar] [CrossRef]
- Hirota, K.; Ichikawa, G.; Ieki, S.; Ino, T.; Iwashita, Y.; Kitaguchi, M.; Kitahara, R.; Koga, J.; Mishima, K.; Mogi, T.; et al. Neutron lifetime measurement with pulsed cold neutrons. Prog. Theor. Exp. Phys. 2020, 2020, 123C02. [Google Scholar] [CrossRef]
- Morris, C.L.; Adamek, E.R.; Broussard, L.J.; Callahan, N.B.; Clayton, S.M.; Cude-Woods, C.; Currie, S.A.; Ding, X.; Fox, W.; Hickerson, K.P.; et al. A new method for measuring the neutron lifetime using an in situ neutron detector. Rev. Sci. Instr. 2017, 88, 053598. [Google Scholar] [CrossRef] [PubMed]
- Pattie, R.W., Jr.; Callahan, N.B.; Cude-Woods, C.; Adamek, E.R.; Broussard, L.J.; Clayton, S.M.; Currie, S.A.; Dees, E.B.; Ding, X.; Engel, E.M.; et al. Measurement of the neutron lifetime using a magneto-gravitational trap and in situ detection. Science 2018, 360, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, F.M.; Fries, E.M.; Cude-Woods, C.; Bailey, T.; Blatnik, M.; Broussard, L.J.; Callahan, N.B.; Choi, J.H.; Clayton, S.M.; Currie, S.A.; et al. Improved Neutron Lifetime Measurement with UCNτ. Phys. Rev. Lett. 2021, 127, 162501. [Google Scholar] [CrossRef] [PubMed]
- Serebrov, A.P.; Kolomensky, E.A.; Fomin, A.K.; Krasnoshchekova, I.A.; Vassiljev, A.V.; Prudnikov, D.M.; Shoka, I.V.; Chechkin, A.V.; Chaikovskiy, M.E.; Varlamov, V.E.; et al. Neutron lifetime measurements with a large gravitational trap for ultracold neutrons. Phys. Rev. C 2018, 97, 055503. [Google Scholar] [CrossRef]
- Mampe, W.; Bondarenko, L.; Morozov, V.; Panin, Y. Fomin, Measuring neutron lifetime by storing ultracold neutrons and detecting inelastically scattered neutrons. J. Exp. Theor. Phys. Lett. 1993, 57, 82. [Google Scholar]
- Serebrov, A.; Varlamov, V.; Kharitonov, A.; Fomin, A.; Pokotilovski, Y.; Geltenbort, P.; Butterworth, J.; Krasnoschekova, I.; Lasakov, M.; Taldaev, R.; et al. Measurement of the neutron lifetime using a gravitational trap and a low-temperature Fomblin coating. Phys. Lett. B 2005, 605, 72. [Google Scholar] [CrossRef]
- Pichlmaier, A.; Varlamov, V.; Schreckenbach, K.; Geltenbort, P. Neutron lifetime measurement with the UCN trap-in-trap MAMBO II. Phys. Lett. B 2010, 693, 221. [Google Scholar] [CrossRef]
- Steyerl, A.; Pendlebury, J.; Kaufman, C.; Malik, S.; Desai, A. Quasielastic scattering in the interaction of ultracold neutrons with a liquid wall and application in a reanalysis of the Mambo I neutron-lifetime experiment. Phys. Rev. C 2012, 85, 065503. [Google Scholar] [CrossRef]
- Arzumanov, S.; Bondarenko, L.; Chernyavsky, S.; Geltenbort, P.; Morozov, V.; Nesvizhevsky, V.; Panin, Y.; Strepetov, A. A measurement of the neutron lifetime using the method of storage of ultracold neutrons and detection of inelastically up-scattered neutrons. Phys. Lett. B 2015, 745, 79. [Google Scholar] [CrossRef]
- Ezhov, V.F.; Andreev, A.; Ban, G.; Bazarov, B.; Geltenbort, P.; Glushkov, A.; Knyazkov, V.; Kovrizhnykh, N.; Krygin, G.; Naviliat-Cuncic, O.; et al. Measurement of the neutron lifetime with ultra-cold neutrons stored in a magneto-gravitational trap. J. Exp. Theor. Phys. Lett. 2018, 107, 707. [Google Scholar] [CrossRef]
- Byrne, J.; Worcester, D.L. The neutron lifetime anomaly and charge exchange collisions of trapped protons. J. Phys. G Nucl. Part. Phys. 2019, 46, 085001. [Google Scholar] [CrossRef]
- Byrne, J.; Worcester, D.L. The neutron lifetime anomaly: Analysis of charge exchange and molecular reactions in a proton trap. Eur. Phys. J. A 2022, 58, 151. [Google Scholar] [CrossRef]
- Serebrov, A.P.; Chaikovskii, M.E.; Klyushnikov, G.N.; Zherebtsov, O.M.; Chechkin, A.V. Search for explanation of the neutron lifetime anomaly. Phys. Rev. D 2021, 103, 074010. [Google Scholar] [CrossRef]
- Wietfeldt, F.E.; Biswas, R.; Caylor, J.; Crawford, B.; Dewey, M.S.; Fomin, N.; Greene, G.L.; Haddock, C.C.; Hoogerheide, S.F.; Mumm, H.P.; et al. Comment on “Search for explanation of the neutron lifetime anomaly”. Phys. Rev. D 2023, 107, 118501. [Google Scholar] [CrossRef]
- Spivak, P.E. Neutron lifetime obtained from Atomic-Energy-Institute experiment. J. Exp. Theor. Phys. 1988, 67, 1735. [Google Scholar]
- Weinberg, S.L. The First Three Minutes; Basic Books: New York, NY, USA, 1993. [Google Scholar]
- Cyburt, R.H.; Fields, B.D.; Olive, K.A.; Yeh, T.-H. Big Bang nucleosynthesis: Present status. Rev. Mod. Phys. 2016, 88, 15004. [Google Scholar] [CrossRef]
- Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar]
- Yeh, T.H.; Shelton, J.; Olive, K.A.; Fields, B. Probing physics beyond the standard model: Limits from BBN and the CMB independently and combined. JCAP 2022, 10, 46. [Google Scholar] [CrossRef]
- Fields, B.D.; Olive, K.A.; Yeh, T.H.; Young, C. Big-Bang Nucleosynthesis after Planck. JCAP 2020, 3, 10. [Google Scholar] [CrossRef]
- Bahcall, J.N.; Davis, R., Jr. Solar Neutrinos: A Scientific Puzzle. Science 1976, 191, 264. [Google Scholar] [CrossRef]
- Fornal, B.; Grinstein, B. Dark Matter Interpretation of the Neutron Decay Anomaly. Phys. Rev. Lett. 2018, 120, 191801. [Google Scholar] [CrossRef] [PubMed]
- Cline, J.M.; Cornell, J.M. Dark decay of the neutron. J. High Energy Phys. 2018, 2018, 81. [Google Scholar] [CrossRef]
- Motta, T.F.; Guichon, P.A.; Thomas, A.W. Implications of neutron star properties for the existence of light dark matter. J. Phys. G 2018, 45, 05LT01. [Google Scholar] [CrossRef]
- Baym, G.; Heck, D.H.; Geltenbort, P.; Shelton, J. Testing Dark Decays of Baryons in Neutron Stars. Phys. Rev. Lett. 2018, 121, 061801. [Google Scholar] [CrossRef]
- McKeen, D.; Nelson, A.E.; Reddy, S.; Zhou, D. Neutron Stars Exclude Light Dark Baryons. Phys. Rev. Lett. 2018, 121, 061802. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Blatnik, M.; Broussard, L.J.; Choi, J.H.; Clayton, S.M.; Cude-Woods, C.; Currie, S.; Fellers, D.E.; Fries, E.M.; Geltenbort, P.; et al. Search for the Neutron Decay n→X+γ, Where X is a Dark Matter Particle. Phys. Rev. Lett. 2018, 121, 022505. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Adamek, E.; Allgeier, B.; Blatnik, M.; Bowles, T.J.; Broussard, L.J.; Brown, M.A.-P.; Carr, R.; Clayton, S.; Cude-Woods, C.; et al. Search for dark matter decay of the free neutron from the UCNA experiment: n→χ+e+e−. Phys. Rev. C 2018, 97, 052501R. [Google Scholar] [CrossRef]
- Klopf, M.; Jericha, E.; Märkisch, B.; Saul, H.; Soldner, T.; Abele, H. Constraints on the Dark Matter Interpretation n→χ+e+e− of the Neutron Decay Anomaly with the PERKEO II Experiment. Phys. Rev. Lett. 2019, 122, 222503. [Google Scholar] [CrossRef]
- Dawid, M. APS April Meeting 2022, session T12. Neutron-Axion Scattering and the Neutron Lifetime Puzzle. Bull. Am. Phys. Soc. 2022, 67, 6. [Google Scholar]
- Berezhiani, Z.; Comelli, D.; Villante, F.L. The early mirror universe: Inflation, baryogenesis, nucleosynthesis and dark matter. Phys. Lett. B 2001, 503, 362. [Google Scholar] [CrossRef]
- Broussard, L.J.; Barrow, J.L.; DeBeer-Schmitt, L.; Dennis, T.; Fitzsimmons, M.R.; Frost, M.J.; Gilbert, C.E.; Gonzalez, F.M.; Heilbronn, L.; Iverson, E.B.; et al. Experimental Search for Neutron to Mirror Neutron Oscillations as an Explanation of the Neutron Lifetime Anomaly. Phys. Rev. Lett. 2022, 128, 212503. [Google Scholar] [CrossRef] [PubMed]
Isotope Ratio | SBBN Prediction | Observed |
---|---|---|
= He/H | ||
D/H | ||
He/H | no data | |
Li/H |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wietfeldt, F.E. The Neutron Lifetime Discrepancy and Its Implications for Cosmology and Dark Matter. Symmetry 2024, 16, 956. https://doi.org/10.3390/sym16080956
Wietfeldt FE. The Neutron Lifetime Discrepancy and Its Implications for Cosmology and Dark Matter. Symmetry. 2024; 16(8):956. https://doi.org/10.3390/sym16080956
Chicago/Turabian StyleWietfeldt, Fred E. 2024. "The Neutron Lifetime Discrepancy and Its Implications for Cosmology and Dark Matter" Symmetry 16, no. 8: 956. https://doi.org/10.3390/sym16080956
APA StyleWietfeldt, F. E. (2024). The Neutron Lifetime Discrepancy and Its Implications for Cosmology and Dark Matter. Symmetry, 16(8), 956. https://doi.org/10.3390/sym16080956