Graceful Local Antimagic Labeling of Graphs: A Pattern Analysis Using Python
Abstract
:1. Introduction
- (i)
- for all pairs of distinct edges ;
- (ii)
- For all adjacent vertices u and v, , where , i.e., is a local antimagic labeling.
Algorithm 1 Graceful labeling of a graph |
|
Algorithm 2 Graceful antimagic labeling of a graph |
|
Algorithm 3 Graceful local antimagic labeling of a graph |
|
Algorithm 4 Minimum graceful local antimagic labeling of a graph |
|
2. Main Results
3. Summary of Trees:
4. Summary of Path Graph
5. Summary of Cycle Graph
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chartrand, G.; Zhang, P. Introduction to Graph Theory; McGraw-Hill: New York, NY, USA, 2005. [Google Scholar]
- Wallis, W.D. Magic Graphs; Birkhäuser: Boston, MA, USA; Basel, Switzerland; Berlin, Germany, 2001. [Google Scholar]
- Kotzig, A.; Rosa, A. Magic valuations of finite graphs. Canad. Math. Bull. 1970, 13, 451–461. [Google Scholar] [CrossRef]
- Golomb, S.W. Labeling of graphs. In Recent Progress in Combinatorics; Academic Press: Cambridge, MA, USA, 1973; pp. 155–166. [Google Scholar]
- Ringel, G. Problem 25, in Theory of graphs and its applications, Proc. Symposium Smolenice. Prague 1964, 1963, 162. [Google Scholar]
- Lee, S.M.; Shee, S.C. On Skolem graceful graphs. Discrete Math. 1991, 93, 195–200. [Google Scholar] [CrossRef]
- Maheo, M.; Thuillier, H. On d-graceful graphs. Ars Combin. 1982, 13, 181–192. [Google Scholar]
- Maheo, M. Strongly graceful graphs. Discrete Math. 1980, 29, 39–46. [Google Scholar] [CrossRef]
- Slater, P.J. On k-graceful graphs. In Proceedings of the 13th SEICCGTC 1982, Boca Raton, FL, USA, 15–17 February 1982; pp. 53–57. [Google Scholar]
- Truszczynski, M. Graceful unicyclic graphs. Demonstr. Math. 1984, 17, 377–387. [Google Scholar] [CrossRef]
- Gallian, J.A. A Dynamic Survey of Graph Labeling. Electron. J. Combin. 2011, 18, 1–623. [Google Scholar] [CrossRef] [PubMed]
- Buratti, M.; Traetta, T. 2-Starters, Graceful Labelings, and a Doubling Construction for the Oberwolfach Problem. J. Combin. Des. 2012, 20, 483–503. [Google Scholar] [CrossRef]
- Burgess, A.C.; Danziger, P.; Traetta, T. On the Oberwolfach problem for single-flip 2-factors via graceful labelings. J. Comb. Theory A 2022, 189, 105–611. [Google Scholar] [CrossRef]
- Hartsfield, N.; Ringel, G. Supermagic and antimagic graphs. J. Recreat. Math. 1989, 21, 107–115. [Google Scholar]
- Ahmed, M.A.; Semaničová-Feňovčíková, A.; Bača, M.; Babujee, B.J.; Shobana, L. On graceful antimagic graphs. Aequat. Math. 2023, 97, 13–30. [Google Scholar] [CrossRef]
- Hartsfield, N.; Ringel, G. Pearls in Graph Theory; Academic Press, Inc.: Boston, MA, USA, 1994. [Google Scholar]
- Cranston, D.W.; Liang, Y.C.; Zhu, X. Regular graphs of odd degree are antimagic. J. Graph Theory 2015, 80, 28–33. [Google Scholar] [CrossRef]
- Bača, M.; Miller, M.; Phanalasy, O.; Semaničová-Feňovčíková, A. Antimagic labelings of join graphs. Math. Comput. Sci. 2015, 9, 139–143. [Google Scholar] [CrossRef]
- Arumugam, S.; Premalatha, K.; Bača, M.; Semaničová-Feňovčíková, A. Local antimagic vertex coloring of a graph. Graphs Combin. 2017, 33, 275–285. [Google Scholar] [CrossRef]
- Haslegrave, J. Proof of a local antimagic conjecture. Discr. Math. Theor. Comp. Sci. 2018, 20, 1–14. [Google Scholar]
n | ||||
---|---|---|---|---|
3 | 1 | 1 | 1 | 1 |
4 | 2 | 2 | 1 | 2 |
5 | 3 | 3 | 3 | 3 |
6 | 6 | 6 | 4 | 6 |
7 | 11 | 11 | 11 | 11 |
8 | 23 | 23 | 23 | 23 |
9 | 47 | 47 | 47 | 47 |
10 | 106 | 106 | 106 | 106 |
n | ||||
---|---|---|---|---|
3 | 1 | 1 | 1 | 1 |
4 | 1 | 0 | 1 | 1 |
5 | 2 | 1 | 2 | 1 |
6 | 6 | 0 | 6 | 1 |
7 | 8 | 2 | 8 | 1 |
8 | 10 | 2 | 10 | 1 |
9 | 30 | 4 | 30 | 1 |
10 | 74 | 5 | 74 | 2 |
11 | 162 | 8 | 162 | 9 |
12 | 332 | 9 | 332 | 4 |
n | |
---|---|
3 | 0, 2, 1 |
4 | 0, 3, 1, 2 |
5 | 1, 2, 4, 0, 3 |
6 | 1, 4, 0, 5, 3, 2 |
7 | 1, 6, 0, 4, 3, 5, 2 |
8 | 1, 6, 0, 7, 3, 4, 2, 5 |
9 | 1, 7, 0, 8, 3, 4, 6, 2, 5 |
10 | 1, 8, 0, 9, 3, 6, 2, 7, 5, 4 |
2, 7, 1, 8, 0, 9, 5, 4, 6, 3 | |
11 | 1, 8, 2, 10, 0, 9, 4, 5, 7, 3, 6 |
1, 10, 0, 8, 3, 9, 2, 6, 5, 7, 4 | |
2, 8, 3, 10, 0, 9, 1, 5, 6, 4, 7 | |
2, 9, 1, 10, 0, 6, 5, 3, 8, 4, 7 | |
2, 9, 3, 8, 0, 10, 1, 5, 6, 4, 7 | |
3, 10, 0, 9, 1, 4, 8, 2, 7, 5, 6 | |
4, 1, 9, 0, 10, 3, 7, 2, 8, 6, 5 | |
4, 2, 8, 3, 6, 7, 0, 10, 1, 9, 5 | |
4, 6, 3, 7, 8, 2, 9, 1, 10, 0, 5 | |
12 | 1, 10, 0, 11, 3, 8, 2, 9, 5, 6, 4, 7 |
2, 9, 1, 10, 0, 11, 5, 6, 8, 3, 7, 4 | |
2, 9, 3, 8, 0, 11, 1, 10, 6, 5, 7, 4 | |
3, 11, 0, 10, 1, 5, 6, 8, 2, 9, 4, 7 | |
13 | 2, 11, 3, 10, 0, 12, 1, 7, 6, 4, 9, 5, 8 |
3, 8, 6, 9, 5, 4, 10, 2, 11, 1, 12, 0, 7 | |
14 | 2, 11, 3, 10, 0, 13, 1, 12, 6, 7, 9, 4, 8, 5 |
n | |
---|---|
3 | 0, 1, 3 |
4 | 0, 2, 1, 4 |
7 | 0, 5, 3, 6, 2, 1, 7 |
8 | 0, 5, 6, 2, 4, 7, 1, 8 |
11 | 0, 8, 3, 9, 2, 4, 7, 6, 10, 1, 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, L.; Semaničová-Feňovčíková, A.; Popa, I.-L. Graceful Local Antimagic Labeling of Graphs: A Pattern Analysis Using Python. Symmetry 2025, 17, 108. https://doi.org/10.3390/sym17010108
Alam L, Semaničová-Feňovčíková A, Popa I-L. Graceful Local Antimagic Labeling of Graphs: A Pattern Analysis Using Python. Symmetry. 2025; 17(1):108. https://doi.org/10.3390/sym17010108
Chicago/Turabian StyleAlam, Luqman, Andrea Semaničová-Feňovčíková, and Ioan-Lucian Popa. 2025. "Graceful Local Antimagic Labeling of Graphs: A Pattern Analysis Using Python" Symmetry 17, no. 1: 108. https://doi.org/10.3390/sym17010108
APA StyleAlam, L., Semaničová-Feňovčíková, A., & Popa, I.-L. (2025). Graceful Local Antimagic Labeling of Graphs: A Pattern Analysis Using Python. Symmetry, 17(1), 108. https://doi.org/10.3390/sym17010108