Investigating Oscillations in Higher-Order Half-Linear Dynamic Equations on Time Scales
Abstract
:1. Introduction
- (H1)
- such that for all with .
- (H2)
- such that and for all .
- (H3)
- such that for all with .
- (H4)
- such that and for all , with and .
- for all large and small if .
- for all large if .
- for all large and small if .
- (i)
- for all and all ;
- (ii)
- for all and all .
2. Main Results
2.1. Super Half-Linear Case:
2.2. Half-Linear Case:
2.3. Sub Half-Linear Case:
3. Applications and Examples
- (i)
- .
- (ii)
- if .
- (iii)
- if .
- (iv)
- if .
- (i)
- .
- (ii)
- if .
- (iii)
- if .
- (iv)
- if .
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilger, S. Analysis on measure chains—A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Agarwal, R. Difference Equations and Inequalities: Theory, Methods, and Applications; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhauser: Boston, MA, USA, 2001. [Google Scholar]
- Gopalsamy, K. Stability and Oscillations in Delay Differential Equations of Population Dynamics; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Botros, M.; Ziada, E.; El-Kalla, I.L. Solutions of Fractional differential equations with some modifications of Adomian Decomposition method. Delta Univ. Sci. J. 2023, 6, 292–299. [Google Scholar]
- Agarwal, R.; O’Regan, D.; Saker, S. Oscillation criteria for second-order nonlinear neutral delay dynamic equations. J. Math. Anal. Appl. 2004, 300, 203–217. [Google Scholar] [CrossRef]
- Chen, D. Oscillation and asymptotic behavior for nth-order nonlinear neutral delay dynamic equations on time scales. Acta Appl. Math. 2010, 109, 703–719. [Google Scholar] [CrossRef]
- Moaaz, O.; Dassios, I.; Muhsin, W.; Muhib, A. Oscillation theory for non-linear neutral delay differential equations of third order. Appl. Sci. 2020, 10, 4855. [Google Scholar] [CrossRef]
- Moaaz, O.; Qaraad, B.; El-Nabulsi, R.; Bazighifan, O. New results for kneser solutions of third-order nonlinear neutral differential equations. Mathematics 2020, 8, 686. [Google Scholar] [CrossRef]
- Negi, S.S.; Abbas, S.; Malik, M.; Xia, Y.H. Oscillation Criteria of Special Type Second-Order Delayed Dynamic Equations on Time Scales. Math. Sci. 2018, 12, 25–39. [Google Scholar] [CrossRef]
- Saker, S.; O’Regan, D. New oscillation criteria for second-order neutral functional dynamic equations via the generalized Riccati substitution. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 423–434. [Google Scholar] [CrossRef]
- Moaaz, O.; Ramos, H.; Awrejcewicz, J. Second-order emden–fowler neutral differential equations: A new precise criterion for oscillation. Appl. Math. Lett. 2021, 118, 107172. [Google Scholar] [CrossRef]
- Grace, S. On the oscillation of higher order dynamic equations. J. Adv. Res. 2013, 4, 201–204. [Google Scholar] [CrossRef]
- Grace, S.; Chhatria, G. Oscillation of higher order nonlinear dynamic equations with a nonlinear neutral term. Math. Methods Appl. Sci. 2023, 46, 2373–2388. [Google Scholar] [CrossRef]
- Grace, S.; Agarwal, R.; Kaymakçalan, B.; Sae-Jie, W. Oscillation criteria for second-order nonlinear dynamic equations. Can. Appl. Math. Q. 2008, 16, 59–67. [Google Scholar]
- Yang, Q.; Xu, Z. Oscillation criteria for second order quasilinear neutral delay differential equations on time scales. Comput. Math. Appl. 2011, 62, 3682–3691. [Google Scholar] [CrossRef]
- Essam, A.; Moaaz, O.; Ramadan, M.; AlNemer, G.; Hanafy, I. Improved results for testing the oscillation of functional differential equations with multiple delays. AIMS Math. 2023, 8, 28051–28070. [Google Scholar] [CrossRef]
- Almarri, B.; Moaaz, O.; Abouelregal, A.; Essam, E. New Comparison Theorems to Investigate the Asymptotic Behavior of Even-Order Neutral Differential Equations. Symmetry 2023, 15, 1126. [Google Scholar] [CrossRef]
- Chatzarakis, G.; Elabbasy, E.; Bazighifan, O. An oscillation criterion in 4th-order neutral differential equations with a continuously distributed delay. Adv. Differ. Equ. 2019, 336. [Google Scholar]
- Moaaz, O.; Park, C.; Muhib, A.; Bazighifan, O. Oscillation criteria for a class of even-order neutral delay differential equations. Mathematics 2020, 63, 607–617. [Google Scholar] [CrossRef]
- Santra, S.; Sethi, A.; Moaaz, O.; Khedher, K.; Yao, S. New oscillation theorems for second-order differential equations with canonical and non-canonical operator via riccati transformation. Mathematics 2021, 9, 1111. [Google Scholar] [CrossRef]
- Zhang, C.; Agarwal, R.; Bohner, M.; Li, T. Oscillation of second-order nonlinear neutral dynamic equations with noncanonical operators. Bull. Malays. Math. Sci. Soc. 2015, 38, 761–778. [Google Scholar] [CrossRef]
- Alzabut, J.; Agarwal, R.; Grace, S.; Jonnalagadda, J. Oscillation results for solutions of fractional-order differential equations. Fractal Fract. 2022, 6, 466. [Google Scholar] [CrossRef]
- Chatzarakis, G.; Logaarasi, K. Forced oscillation of impulsive fractional partial differential equations. Partial Differ. Equ. Appl. Math. 2023, 7, 100478. [Google Scholar] [CrossRef]
- Yoshida, N. Oscillation Theory of Partial Differential Equations; World Scientific: Singapore, 2008. [Google Scholar]
- Baculíková, B.; Džurina, J. Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 2011, 62, 4472–4478. [Google Scholar] [CrossRef]
- Baculíková, B.; Džurina, J.; Graef, J. On the oscillation of higher-order delay differential equations. J. Math. Sci. 2012, 187, 387–400. [Google Scholar] [CrossRef]
- Džurina, J. Oscillation theorems for second order advanced neutral differential equations. Tatra Mt. Math. Publ. 2011, 48, 61–79. [Google Scholar] [CrossRef]
- Saker, S. Oscillation criteria of second-order half-linear dynamic equations on time scales. J. Comput. Appl. Math. 2005, 177, 375–387. [Google Scholar] [CrossRef]
- Xu, R.; Meng, F. Oscillation criteria for second order quasi-linear neutral delay differential equations. Appl. Math. Comput. 2007, 192, 216–222. [Google Scholar] [CrossRef]
- Agarwal, R.; Bohner, M. Basic calculus on time scales and some of its applications. Results Math. 1999, 35, 3–22. [Google Scholar] [CrossRef]
- Erbe, L.; Karpuz, B.; Peterson, A. Kamenev-type oscillation criteria for higher-order neutral delay dynamic equations. Int. J. Differ. Equ. 2011, 6, 1–16. [Google Scholar]
- Karpuz, B. Comparison tests for the asymptotic behaviour of higher-order dynamic equations of neutral type. Forum Math. 2015, 27, 2759–2773. [Google Scholar] [CrossRef]
- Grace, S.; Džurina, J.; Jadlovská, I.; Li, T. An improved approach for studying oscillation of second-order neutral delay differential equations. J. Inequalities Appl. 2018, 2013, 1–13. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, A.M.; Askar, S.S.; Alshamrani, A.M.; Botros, M. Investigating Oscillations in Higher-Order Half-Linear Dynamic Equations on Time Scales. Symmetry 2025, 17, 116. https://doi.org/10.3390/sym17010116
Hassan AM, Askar SS, Alshamrani AM, Botros M. Investigating Oscillations in Higher-Order Half-Linear Dynamic Equations on Time Scales. Symmetry. 2025; 17(1):116. https://doi.org/10.3390/sym17010116
Chicago/Turabian StyleHassan, Ahmed M., Sameh S. Askar, Ahmad M. Alshamrani, and Monica Botros. 2025. "Investigating Oscillations in Higher-Order Half-Linear Dynamic Equations on Time Scales" Symmetry 17, no. 1: 116. https://doi.org/10.3390/sym17010116
APA StyleHassan, A. M., Askar, S. S., Alshamrani, A. M., & Botros, M. (2025). Investigating Oscillations in Higher-Order Half-Linear Dynamic Equations on Time Scales. Symmetry, 17(1), 116. https://doi.org/10.3390/sym17010116