New Numerical Quadrature Functional Inequalities on Hilbert Spaces in the Framework of Different Forms of Generalized Convex Mappings
Abstract
:1. Introduction
- Simpson’s rule, often known as the quadrature formula:
- Simpson’s rule, often known as the Simpson’s 2nd formula:
Significance of the Study
2. Preliminaries
- The collection of all vectors is a total subset of its closed linear span is equal to ;
- for . If is multiplication of and , it is common to write in place of . A tensor product of and a mapping of into holds
3. The Major Results
Several Novel Bounds for Simpson Type Inequalities Using Operator Convex Mappings in Hilbert Spaces
- If we choose in Lemma 5, then it refines Lemma 2.1 as presented by the authors using classical integral operator in [54].
- If we choose in Lemma 5, then it refines Lemma 2.3 as presented by the authors using classical integral operator in [47].
- If we choose in Lemma 5, then it refines Lemma 3 as presented by the authors using classical integral operator in [59].
- If we choose and tensorial arithmetic operations in Theorem 7 are degenerated, then Theorem 7 simplifies to Theorem 2.2 provided by the authors in [60].
- If tensorial arithmetic operations in Theorem 7 are degenerated, then Theorem 7 simplifies to Theorem 2.3 provided by the authors in [61].
- If we choose in Theorem 7, then it refines Theorem 2.3 as presented by the authors using classical integral operator in Ref. [54].
- If we choose in Theorem 7, then it refines Theorem 2.3 as presented by the authors using classical integral operator in Ref. [47].
- If we choose in Theorem 7, then it refines Theorem 9 as presented by the authors using classical integral operator in Ref. [59].
- If we choose in Theorem 9, then it refines Theorem 2.4 as presented by the authors using classical integral operator in Ref. [54].
- If we choose in Theorem 9, then it refines Theorem 2.4 as presented by the authors using classical integral operator in Ref. [47].
- If we choose in Theorem 9, then it refines Theorem 10 as presented by the authors using classical integral operator in Ref. [59].
4. Conclusions and Future Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmadini, A.A.H.; Afzal, W.; Abbas, M.; Aly, E.S. Weighted Fejér, Hermite–Hadamard, and Trapezium-Type Inequalities for (h1,h2)–Godunova–Levin Preinvex Function with Applications and Two Open Problems. Mathematics 2024, 12, 382. [Google Scholar] [CrossRef]
- Fahad, A.; Wang, Y.; Ali, Z.; Hussain, R.; Furuichi, S. Exploring Properties and Inequalities for Geometrically Arithmetically-Cr-Convex Functions with Cr-Order Relative Entropy. Inf. Sci. 2024, 662, 120219. [Google Scholar] [CrossRef]
- Meng, S.; Meng, F.; Zhang, F.; Li, Q.; Zhang, Y.; Zemouche, A. Observer Design Method for Nonlinear Generalized Systems with Nonlinear Algebraic Constraints with Applications. Automatica 2024, 162, 111512. [Google Scholar] [CrossRef]
- Ren, F.; Liu, X.; Charles, V.; Zhao, X.; Balsalobre-Lorente, D. Integrated Efficiency and Influencing Factors Analysis of ESG and Market Performance in Thermal Power Enterprises in China: A Hybrid Perspective Based on Parallel DEA and a Benchmark Model. Energy Econ. 2025, 141, 108138. [Google Scholar] [CrossRef]
- Li, W.; Xie, Z.; Zhao, J.; Wong, P.K.; Li, P. Fuzzy Finite-Frequency Output Feedback Control for Nonlinear Active Suspension Systems with Time Delay and Output Constraints. Mech. Syst. Signal Process. 2019, 132, 315–334. [Google Scholar] [CrossRef]
- Bao, W.; Liu, H.; Wang, F.; Du, J.; Wang, Y.; Li, H.; Ye, X. Keyhole Critical Failure Criteria and Variation Rule under Different Thicknesses and Multiple Materials in K-TIG Welding. J. Manuf. Process. 2024, 126, 48–59. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, Y.; Yan, L.; Li, Z.; Xin, H.; Wei, W. Scaling Graph Neural Networks for Large-Scale Power Systems Analysis: Empirical Laws for Emergent Abilities. IEEE Trans. Power Syst. 2024, 39, 7445–7448. [Google Scholar] [CrossRef]
- Cai, Y.; Sui, X.; Gu, G.; Chen, Q. Multi-Modal Interaction with Token Division Strategy for RGB-T Tracking. Pattern Recognit. 2024, 155, 110626. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, K.; Wu, Y. On Congestion Games with Player-Specific Costs and Resource Failures. Automatica 2022, 142, 110367. [Google Scholar] [CrossRef]
- Zhang, X.; Shabbir, K.; Afzal, W.; Xiao, H.; Lin, D. Hermite–Hadamard and Jensen-Type Inequalities via Riemann Integral Operator for a Generalized Class of Godunova–Levin Functions. J. Math. 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- Khan, Z.A.; Afzal, W.; Abbas, M.; Ro, J.; Aloraini, N.M. A Novel Fractional Approach to Finding the Upper Bounds of Simpson and Hermite-Hadamard-Type Inequalities in Tensorial Hilbert Spaces by Using Differentiable Convex Mappings. AIMS Math. 2024, 9, 35151–35180. [Google Scholar] [CrossRef]
- Budak, H.; Kashuri, A.; Butt, S. Fractional Ostrowski Type Inequalities for Interval Valued Functions. Filomat 2022, 36, 2531–2540. [Google Scholar] [CrossRef]
- Abbas, M.; Afzal, W.; Botmart, T.; Galal, A.M. Jensen, Ostrowski and Hermite-Hadamard Type Inequalities for h-Convex Stochastic Processes by Means of Center-Radius Order Relation. Aims Math. 2023, 8, 16013–16030. [Google Scholar] [CrossRef]
- Nonlaopon, K.; Awan, M.U.; Javed, M.Z.; Budak, H.; Noor, M.A. Some q-Fractional Estimates of Trapezoid like Inequalities Involving Raina’s Function. Fractal Fract. 2022, 6, 185. [Google Scholar] [CrossRef]
- Kara, H.; Budak, H.; Ali, M.A.; Sarikaya, M.Z.; Chu, Y.-M. Weighted Hermite–Hadamard Type Inclusions for Products of Co-Ordinated Convex Interval-Valued Functions. Adv. Differ. Equ. 2021, 2021, 104. [Google Scholar] [CrossRef]
- Sitthiwirattham, T.; Nonlaopon, K.; Ali, M.A.; Budak, H. Riemann–Liouville Fractional Newton’s Type Inequalities for Differentiable Convex Functions. Fractal Fract. 2022, 6, 175. [Google Scholar] [CrossRef]
- Du, T.; Li, Y.; Yang, Z. A Generalization of Simpson’s Inequality via Differentiable Mapping Using Extended (s, m)-Convex Functions. Appl. Math. Comput. 2017, 293, 358–369. [Google Scholar] [CrossRef]
- Du, T.; Luo, C.; Cao, Z. On the Bullen-type inequalities via generalized fractional integrals and their applications. Fractals 2021, 29, 2150188. [Google Scholar] [CrossRef]
- Boas, R.P.; Marcus, M.B. Generalizations of Young’s Inequality. J. Math. Anal. Appl. 1974, 46, 36–40. [Google Scholar] [CrossRef]
- Hu, Y.; Sugiyama, Y. Well-Posedness of the Initial-Boundary Value Problem for 1D Degenerate Quasilinear Wave Equations. Adv. Differ. Equ. 2025, 30. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M.; Dragomir, S.S.; Cerone, P. Ostrowski Type Inequalities for Functions Whose Derivatives Are S-Convex in the Second Sense. Appl. Math. Lett. 2010, 23, 1071–1076. [Google Scholar] [CrossRef]
- Sitho, S.; Ali, M.A.; Budak, H.; Ntouyas, S.K.; Tariboon, J. Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus. Mathematics 2021, 9, 1666. [Google Scholar] [CrossRef]
- Kara, H.; Budak, H.; Ali, M.A.; Hezenci, F. On Inequalities of Simpson’s Type for Convex Functions via Generalized Fractional Integrals. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022, 71, 806–825. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Zhang, Z.; Yildirim, H. Some New Simpson’s Type Inequalities for Coordinated Convex Functions in Quantum Calculus. Math. Methods Appl. Sci. 2021, 44, 4515–4540. [Google Scholar] [CrossRef]
- Budak, H.; Hezenci, F.; Kara, H.; Sarikaya, M.Z. Bounds for the Error in Approximating a Fractional Integral by Simpson’s Rule. Mathematics 2023, 11, 2282. [Google Scholar] [CrossRef]
- Almoneef, A.A.; Hyder, A.-A.; Hezenci, F.; Budak, H. Simpson-Type Inequalities by Means of Tempered Fractional Integrals. Aims Math 2023, 8, 29411–29423. [Google Scholar] [CrossRef]
- Ali, M.A.; Abbas, M.; Budak, H.; Agarwal, P.; Murtaza, G.; Chu, Y.-M. New Quantum Boundaries for Quantum Simpson’s and Quantum Newton’s Type Inequalities for Preinvex Functions. Adv. Differ. Equ. 2021, 2021, 64. [Google Scholar] [CrossRef]
- Moumen, A.; Boulares, H.; Meftah, B.; Shafqat, R.; Alraqad, T.; Ali, E.E.; Khaled, Z. Multiplicatively Simpson Type Inequalities via Fractional Integral. Symmetry 2023, 15, 460. [Google Scholar] [CrossRef]
- Şanlı, Z. Simpson Type Conformable Fractional Inequalities. J. Funct. Spaces 2022, 2022, 1–7. [Google Scholar] [CrossRef]
- Hezenci, F. A Note on Fractional Simpson Type Inequalities for Twice Differentiable Functions. Math. Slovaca 2023, 73, 675–686. [Google Scholar] [CrossRef]
- Afzal, W.; Abbas, M.; Macías-Díaz, J.E.; Treanţă, S. Some H-Godunova–Levin Function Inequalities Using Center Radius (Cr) Order Relation. Fractal. Fract. 2022, 6, 518. [Google Scholar] [CrossRef]
- Saeed, T.; Afzal, W.; Shabbir, K.; Treanţă, S.; De La Sen, M. Some Novel Estimates of Hermite–Hadamard and Jensen Type Inequalities for (h1,h2)-Convex Functions Pertaining to Total Order Relation. Mathematics 2022, 10, 4777. [Google Scholar] [CrossRef]
- Rashid, M.H.M.; Bani-Ahmad, F.; Rashid, M.H.M.; Bani-Ahmad, F. An Estimate for the Numerical Radius of the Hilbert Space Operators and a Numerical Radius Inequality. Aims Math. 2023, 8, 26384–26405. [Google Scholar] [CrossRef]
- Liang, J.; Shi, G. Some Means Inequalities for Positive Operators in Hilbert Spaces. J. Inequal. Appl. 2017, 2017, 14. [Google Scholar] [CrossRef] [PubMed]
- Altwaijry, N.; Dragomir, S.S.; Feki, K. Hölder-Type Inequalities for Power Series of Operators in Hilbert Spaces. Axioms 2024, 13, 172. [Google Scholar] [CrossRef]
- Kangtunyakarn, A. The Variational Inequality Problem in Hilbert Spaces Endowed with Graphs. J. Fixed Point Theory Appl. 2019, 22, 4. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Z.-H.; Qi, L. Global Uniqueness and Solvability of Tensor Variational Inequalities. J. Optim. Theory. Appl. 2018, 177, 137–152. [Google Scholar] [CrossRef]
- Almalki, Y.; Afzal, W. Some New Estimates of Hermite–Hadamard Inequalities for Harmonical Cr-h-Convex Functions via Generalized Fractional Integral Operator on Set-Valued Mappings. Mathematics 2023, 11, 4041. [Google Scholar] [CrossRef]
- Barbagallo, A.; Guarino Lo Bianco, S. On Ill-Posedness and Stability of Tensor Variational Inequalities: Application to an Economic Equilibrium. J. Glob. Optim. 2020, 77, 125–141. [Google Scholar] [CrossRef]
- Afzal, W.; Abbas, M.; Alsalami, O.M. Bounds of Different Integral Operators in Tensorial Hilbert and Variable Exponent Function Spaces. Mathematics 2024, 12, 2464. [Google Scholar] [CrossRef]
- Bondar, J.V. Schur Majorization Inequalities for Symmetrized Sums with Applications to Tensor Products. Linear Algebra Its Appl. 2003, 360, 1–13. [Google Scholar] [CrossRef]
- Afzal, W.; Abbas, M.; Breaz, D.; Cotîllă, L.-I. Fractional Hermite-Hadamard, Newton-Milne, and Convexity Involving Arithmetic-Geometric Mean-Type Inequalities in Hilbert and Mixed-Norm Morrey Spaces ℓq(·)(Mp(·),v(·)) with Variable Exponents. Fractal Fract. 2024, 8, 518. [Google Scholar] [CrossRef]
- Araki, H.; Hansen, F. Jensen’s operator inequality for functions of several variables. Proc. Am. Math. Soc. 2000, 7, 2075–2084. [Google Scholar] [CrossRef]
- Dragomir, S. Tensorial and Hadamard Product Inequalities for Synchronous Functions. Commun. Adv. Math. Sci. 2023, 6, 177–187. [Google Scholar] [CrossRef]
- Dragomir, S. Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young’s Result. Commun. Adv. Math. Sci. 2024, 7, 56–70. [Google Scholar] [CrossRef]
- Stojiljkovic, V. Twice Differentiable Ostrowski Type Tensorial Norm Inequality for Continuous Functions of Selfadjoint Operators in Hilbert Spaces. Eur. J. Pure Appl. Math. 2023, 16, 1421–1433. [Google Scholar] [CrossRef]
- Stojiljković, V. Simpson Type Tensorial Norm Inequalities for Continuous Functions of Selfadjoint Operators in Hilbert Spaces. Creat. Math. Inform. 2024, 33, 105–117. [Google Scholar] [CrossRef]
- Wada, S. On Some Refinement of the Cauchy–Schwarz Inequality. Linear Algebra Its Appl. 2007, 420, 433–440. [Google Scholar] [CrossRef]
- Wang, M.; Dao Duc, K.; Fischer, J.; Song, Y.S. Operator Norm Inequalities between Tensor Unfoldings on the Partition Lattice. Linear Algebra Its Appl. 2017, 520, 44–66. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.Y.; Wu, H.-C. Tensor Multivariate Trace Inequalities and Their Applications. Math. Stat. 2021, 9, 394–410. [Google Scholar] [CrossRef]
- Hu, S.; Huang, Z.-H.; Ling, C.; Qi, L. On Determinants and Eigenvalue Theory of Tensors. J. Symb. Comput. 2013, 50, 508–531. [Google Scholar] [CrossRef]
- Budak, H.; Kara, H.; Hezenci, F. Fractional Simpson-Type Inequalities for Twice Differentiable Functions. Sahand Commun. Math. Anal. 2023, 20, 97–108. [Google Scholar] [CrossRef]
- Koranyi, A. On Some Classes of Analytic Functions of Several Variables. Trans. Am. Math. Soc. 1961, 101, 520. [Google Scholar] [CrossRef]
- Stojiljkovic, V. Generalized Tensorial Simpson Type Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Space. Maltepe J. Math. 2024, 6, 78–89. [Google Scholar] [CrossRef]
- Ryan, R.A. Introduction to Tensor Products of Banach Spaces; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; ISBN 9781447139034. [Google Scholar]
- Stojiljković, V.; Mirkov, N.; Radenović, S. Variations in the Tensorial Trapezoid Type Inequalities for Convex Functions of Self-Adjoint Operators in Hilbert Spaces. Symmetry 2024, 16, 121. [Google Scholar] [CrossRef]
- Asgarova, A.K. On a Generalization of the Stone–Weierstrass Theorem. Ann. Math. Québec 2018, 42, 1–6. [Google Scholar] [CrossRef]
- Salazar, J. Fubini’s Theorem for Plane Stochastic Integrals. In Proceedings of the Stochastic Analysis and Related Topics VI; Decreusefond, L., Øksendal, B., Gjerde, J., Üstünel, A.S., Eds.; Birkhäuser: Boston, MA, USA, 1998; pp. 373–378. [Google Scholar]
- Stojiljković, V.; Dragomir, S.S. Tensorial Simpson 1/8 Type Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Space. Eur. J. Math. Anal. 2024, 4, 17. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Erhan, S.; Ozdemir, M.E. On New Inequalities of Simpson’s Type for Functions Whose Second Derivatives Absolute Values Are Convex. J. Appl. Math. Stat. Inform. 2013, 9, 37–45. [Google Scholar] [CrossRef]
- Iftikhar, S.; Awan, M.U.; Budak, H. Exploring Quantum Simpson-Type Inequalities for Convex Functions: A Novel Investigation. Symmetry 2023, 15, 1312. [Google Scholar] [CrossRef]
- Iftikhar, S.; Erden, S.; Ali, M.A.; Baili, J.; Ahmad, H. Simpson’s Second-Type Inequalities for Co-Ordinated Convex Functions and Applications for Cubature Formulas. Fractal Fract. 2022, 6, 33. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afzal, W.; Cotîrlă, L.-I. New Numerical Quadrature Functional Inequalities on Hilbert Spaces in the Framework of Different Forms of Generalized Convex Mappings. Symmetry 2025, 17, 146. https://doi.org/10.3390/sym17010146
Afzal W, Cotîrlă L-I. New Numerical Quadrature Functional Inequalities on Hilbert Spaces in the Framework of Different Forms of Generalized Convex Mappings. Symmetry. 2025; 17(1):146. https://doi.org/10.3390/sym17010146
Chicago/Turabian StyleAfzal, Waqar, and Luminita-Ioana Cotîrlă. 2025. "New Numerical Quadrature Functional Inequalities on Hilbert Spaces in the Framework of Different Forms of Generalized Convex Mappings" Symmetry 17, no. 1: 146. https://doi.org/10.3390/sym17010146
APA StyleAfzal, W., & Cotîrlă, L.-I. (2025). New Numerical Quadrature Functional Inequalities on Hilbert Spaces in the Framework of Different Forms of Generalized Convex Mappings. Symmetry, 17(1), 146. https://doi.org/10.3390/sym17010146