Research on Si/SiO2 Interfaces Characteristics Under Service Conditions
Abstract
:1. Introduction
2. Interface Modeling and Characterization
2.1. Interface Modeling
2.1.1. Modeling Based on the First Principle
2.1.2. Modeling Based on Molecular Dynamics
2.2. Interfaces’ Characterization Method
2.2.1. EPR
2.2.2. XPS
2.2.3. C-V Test
2.2.4. DLTS
2.2.5. AFM
2.2.6. TEM
2.3. Summary and Discussion
3. Interfaces Under Single Load Conditions
3.1. Interfaces Under Irradiation
3.1.1. Defects Related to H Atoms
3.1.2. Interfaces Under High Energy Irradiation
3.1.3. Effect of Irradiation on Interfacial Electrical Properties
3.1.4. Summary and Discussion
3.2. Interfaces Under Electrical Stress
3.2.1. Interfaces Breakdown
3.2.2. Defects Introduced by Electrical Stress
3.2.3. Summary and Discussion
3.3. Interfaces Under Other Loads
3.3.1. Effect of Mechanical Stress
3.3.2. Effect of Temperature
3.3.3. Summary and Discussion
4. Interface Characteristics Under Multiple Loads
4.1. Effect of Multiple Loads
4.2. Summary and Discussion
5. Conclusions
5.1. More Attention Should Be Paid to the Study of Si/SiO2 Interfaces Under Multi-Load Conditions
5.2. The Influence Mechanism of Electric Field on Interfaces Should Be Further Analyzed
5.3. Improving the Preparation Process to Enhance the Load Resistance of the Si/SiO2 Interfaces
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guan, C.; He, X. Laterally Excited Resonators Based on Single-Crystalline LiTaO3 Thin Film for High-Frequency Applications. Micromachines 2024, 15, 1416. [Google Scholar] [CrossRef]
- Patel, R.; Adhikari, M.S.; Tripathi, S.K.; Sahu, S. Design, Optimization and Performance Assessment of Single Port Film Bulk Acoustic Resonator through Finite Element Simulation. Sensors 2023, 23, 8920. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Zheng, Y.; Li, H.; Ren, Y.; Gu, X.; Huang, X.; Wang, Y.; Qu, Y.; Liu, Y.; Cai, Y.; et al. Design and Fabrication of a Film Bulk Acoustic Wave Filter for 3.0 GHz–3.2 GHz S-Band. Sensors 2024, 24, 2939. [Google Scholar] [CrossRef]
- Patel, R.; Adhikari, M.S.; Bansal, D.; Johar, A. Hybrid Film Bulk Acoustic Resonator Fabricated Using a Single Bragg Reflector. J. Electron. Mater. 2024, 53, 2910–2920. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, G.; Cai, X.; Dou, B.; Wang, Z.; Liu, Y.; Zhou, H.; Zhong, L.; Dai, G.; Zuo, X. General Model for Defect Dynamics in Ionizing-Irradiated SiO2-Si Structures. Small 2022, 18, 2107516. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Fukuda, K.; Semboshi, S.; Saitoh, Y.; Amekura, H.; Iwase, A.; Hori, F. Control of optical absorption of silica glass by Ag ion implantation and subsequent heavy ion irradiation. Nanotechnology 2020, 31, 455706. [Google Scholar] [CrossRef] [PubMed]
- Grasser, T.; Gös, W.; Wimmer, Y.; Schanovsky, F.; Shluger, A.L. On the microscopic structure of hole traps in pMOSFETs. In Proceedings of the International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 15–17 December 2014. [Google Scholar]
- Gurbán, S.; Petrik, P.; Serényi, M.; Sulyok, A.; Menyhárd, M.; Baradács, E.; Parditka, B.; Cserháti, C.; Langer, G.A.; Erdélyi, Z. Electron irradiation induced amorphous SiO2 formation at metal oxide/Si interface at room temperature; electron beam writing on interfaces. Sci. Rep. 2018, 8, 2124. [Google Scholar] [CrossRef]
- Kumar, M.K.; Krishnamoorthy, S.; Tan, L.K.; Chiam, S.Y.; Tripathy, S.; Gao, H. Field Effects in Plasmonic Photocatalyst by Precise SiO2 Thickness Control Using Atomic Layer Deposition. ACS Catal. 2012, 1, 300. [Google Scholar] [CrossRef]
- Sheikholeslam, S.A.; Manzano, H.; Grecu, C.; Ivanov, A. Hydrogen dissociation and diffusion near the Si/a-SiO2 interface: Understanding degradation in MOSFETs. Superlattices Microstruct. 2018, 120, 561. [Google Scholar] [CrossRef]
- Kissinger, G.; Schubert, M.A.; Kot, D.; Grabolla, T. Investigation of the Composition of the Si/SiO2 Interface in Oxide Precipitates and Oxide Layers on Silicon by STEM/EELS ECS. J. Solid State Sci. Technol. 2017, 6, N54. [Google Scholar] [CrossRef]
- Sapkota, P.; Aprahamian, A.; Chan, K.Y.; Frentz, B.; Manukyan, K. Irradiation-induced reactions at the CeO2/SiO2/Si interface. J. Chem. Phys. 2020, 152, 104704. [Google Scholar] [CrossRef] [PubMed]
- Usui, T.; Donnelly, C.A.; Logar, M.; Sinclair, R.; Schoonman, J.; Prinz, F.B. Approaching the limits of dielectric breakdown for SiO2 films deposited by plasma-enhanced atomic layer deposition. Acta Mater. 2013, 61, 7660. [Google Scholar] [CrossRef]
- Bonifacio, C.S.; Rufner, J.F.; Holland, T.B.; Benthem, K.V. In situ transmission electron microscopy study of dielectric breakdown of surface oxides during electric field-assisted sintering of nickel nanoparticles. Appl. Phys. Lett. 2012, 101, 093107. [Google Scholar] [CrossRef]
- Bersuker, G.; Chowdhury, N.; Young, C.; Heh, D.; Misra, D.; Choi, R. Progressive breakdown characteristics of high-k/metal gate stacks in 2007. In Proceedings of the IEEE International Reliability Physics Symposium Proceedings. 45th Annual, (IEEE), Phoenix, AZ, USA, 15–19 April 2007. [Google Scholar]
- Tsuchiya, T.; Ono, Y. Charge pumping current from single Si/SiO2 interface traps: Direct observation of Pb centers and fundamental trap-counting by the charge pumping method. Jpn. J. Appl. Phys. 2015, 54, 04DC01. [Google Scholar] [CrossRef]
- Hong, Z.; Xu, Z. Amorphous SiO2/Si Interface Defects and Mechanism of Passivation/Depassivation Reaction. J. Syst. Simul. 2020, 32, 2362. [Google Scholar]
- Choi, S.; Baek, J.; Kim, T.; Min, K.H.; Jeong, M.S.; Song, H.E.; Kang, M.G.; Kim, D.; Kang, Y.; Lee, H.S.; et al. Interface analysis of ultrathin SiO2 layers between c-Si substrates and phosphorus-doped poly-Si by theoretical surface potential analysis using the injection-dependent lifetime. Prog. Photovolt. 2021, 29, 32–46. [Google Scholar] [CrossRef]
- Ko, E.; Choi, J.-H. Comparison of interfaces, band alignments, and tunneling currents between crystalline and amorphous silica in Si/SiO2/Si structures. Mater. Res. Express 2022, 9, 045005. [Google Scholar] [CrossRef]
- Khan, S.; Hamdioui, S. Temperature dependence of NBTI induced delay in IEEE 16th International On-Line Testing Symposium. Corfu Greece 2010, 5, 7. [Google Scholar]
- Kumar, N.C.; Subhash, C. Effects of temperature, bias and frequency on the dielectric properties and electrical conductivity of Ni/SiO2/p-Si/Al MIS Schottky diodes Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state. Chem. Phys. 2020, 817, 153294. [Google Scholar]
- Jung, H.E.; Shin, M. Effects of Si/SiO2 interface stress on the performance of ultra-thin-body field effect transistors: A first-principles study. Nanotechnology 2018, 29, 025201. [Google Scholar] [CrossRef]
- Yao, P.; Song, Y.; Zuo, X. First-Principles Calculations of Silicon Interstitial Defects at the Amorphous-SiO2/Si Interface, The journal of physical chemistry C. Nanomater. Interfaces 2021, 125, 15044–15051. [Google Scholar] [CrossRef]
- Rani, E.; Ingale, A.A.; Chaturvedi, A.; Kamal, C.; Phase, D.M.; Joshi, M.P.; Chakrabarti, A.; Banerjee, A.; Kukreja, L.M. Correlation of size and oxygen bonding at the interface of Si nanocrystal in Si-SiO2 nanocomposite: A Raman mapping study. J. Raman Spectrosc. J. Raman Spectrosc. 2016, 47, 457. [Google Scholar] [CrossRef]
- Tyaginov, S.; Jech, M.; Franco, J.; Sharma, P.; Kaczer, B.; Grasser, T. Understanding and Modeling the Temperature Behavior of Hot; Carrier Degradation in SiON nMOSFETs. IEEE Electron Device Lett. 2015, 37, 84. [Google Scholar] [CrossRef]
- Wu, Y.L.; Lin, J.J.; Chen, B.T.; Huang, C.Y. Position-Dependent Nanoscale Breakdown Characteristics of Thin Silicon Dioxide Film Subjected to Mechanical Strain. IEEE Trans. Device Mater. Reliab. 2012, 12, 158. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Ikeda, K.; Tamura, A.; Saito, T. On the viscosity and density of the molten FeO–SiO2 system. Trans. Jpn. Inst. Met. 1978, 19, 264–274. [Google Scholar] [CrossRef]
- Smirnov, M.; Roginskii, E.; Savin, A.; Mazhenov, N.; Pankin, D. Density-functional study of the Si/SiO2 interfaces in short-period superlattices: Structures and energies. Coatings 2023, 13, 1231. [Google Scholar] [CrossRef]
- Tea, E.; Huang, J.; Hin, C. First principles study of band line up at defective metal-oxide interface: Oxygen point defects at Al/SiO2 interface. J. Phys. D Appl. Phys. 2016, 49, 095304. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, D.; Li, D.; Zhao, T.; Zhang, W.; Qiao, W.; Liang, Y.; Yang, Y. Research on the Evolution of Defects Initiation and the Diffusion of Dopant on the Si/SiO2 Interface. Adv. Mater. Interfaces 2024, 2400751. [Google Scholar] [CrossRef]
- Tahir-Kheli, J.; Miyata, M.; Iii, W.A.G. Dielectric breakdown in SiO2 via electric field induced attached hydrogen defects. Microelectron. Eng. 2005, 80, 174. [Google Scholar] [CrossRef]
- Lee, S.; Bondi, R.J.; Hwang, G.S. Atomistic structural description of the Si(001)/a-SiO2 interface: The influence of different Keating-like potential parameters. J. Appl. Phys. 2011, 109, 113519. [Google Scholar] [CrossRef]
- Khalilov, U.; Pourtois, G.; Duin, A.C.T.V.; Neyts, E.C. On the c-Si|a-SiO2 Interface in Hyperthermal Si Oxidation at Room Temperature. J. Phys. Chem. C 2012, 116, 21856–21863. [Google Scholar] [CrossRef]
- Spasojevi, I. Free radicals and antioxidants at a glance using EPR spectroscopy Critical Reviews in Clinical Laboratory. Sciences 2011, 48, 114. [Google Scholar]
- Myers, C.J. Asynchronous Circuit Design; Technical University of Denmark: Kongens Lyngby, Denmark, 2001. [Google Scholar]
- Ashery, A.; Elnasharty, M.M.M.; Khalil, A.A.I.; Azab, A.A. Negative resistance, capacitance in Mn/SiO2/p-Si MOS structure. Mater. Res. Express 2020, 7, 085901. [Google Scholar] [CrossRef]
- Khan, A.; Yamaguchi, M. DLTS: A Promising Technique for Understanding the Physics and Engineering of the Point Defects in Si and III-V Alloys. MRS Online Proc. Libr. Arch. 2007, 994, 0994-F07. [Google Scholar] [CrossRef]
- Breitenstein, O. SCANNING-DLTS. J. Phys. Colloq. 1989, 50, C6. [Google Scholar] [CrossRef]
- Stevie, F.A.; Donley, C.L. Introduction to x-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A Vac. Surf. Film. 2020, 38, 063204. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Lin, K.-L.; Lin, C.-C. Interfacial Reactions between Si and SiO2 with Ceramic Additives. Ceramics 2022, 5, 44–54. [Google Scholar] [CrossRef]
- Himpsel, F.J.; McFeely, F.R.; Taleb-Ibrahimi, A. Microscopic structure of the SiO2/Si interface. Phys. Rev. B 1988, 38, 6084. [Google Scholar] [CrossRef] [PubMed]
- Blasco, X.; Hill, D.; Porti, M.; Nafría, M.; Aymerich, X. Topographic characterization of AFM-grown SiO2 on Si. Nanotechnology 2001, 12, 110. [Google Scholar] [CrossRef]
- Oliveira, R.R.L.D.; Albuquerque, D.A.C.; Cruz, T.G.S.; Yamaji, F.M.; Leite, F.L. Atomic Force Microscopy—Imaging, Measuring and Manipulating Surfaces at the Atomic Scale; Applications InTech: Rijeka, Croatia, 2012; Volume 23, p. 3. [Google Scholar]
- Chao, L.; Guang, Y. The principle and applications of STEM and EELS Guang. Physics 2014, 43, 597. [Google Scholar]
- Mathurin, J.; Deniset-Besseau, A.; Bazin, D.; Dartois, E.; Wagner, M.; Dazzi, A. Photothermal AFM-IR spectroscopy and imaging: Status, challenges, and trends. J. Appl. Phys. 2022, 131, 010901. [Google Scholar] [CrossRef]
- Cui, J.; Zheng, H.; He, K. In situ TEM study on conversion-type electrodes for rechargeable ion batteries. Adv. Mater. 2021, 33, 2000699. [Google Scholar] [CrossRef]
- Zheng, Q.; Jiang, J.; Li, X.; Bustillo, K.C.; Zheng, H. In situ TEM observation of calcium silicate hydrate nanostructure at high temperatures. Cem. Concr. Res. 2021, 149, 106579. [Google Scholar] [CrossRef]
- Park, B.T.; Yong, K. Controlled growth of core–shell Si–SiOx and amorphous SiO2 nanowires directly from NiO/Si. Nanotechnology 2004, 15, S365. [Google Scholar] [CrossRef]
- Terekhov, V.A.; Terukov, E.I.; Undalov, Y.K.; Barkov, K.A.; Kurilo, N.A.; Ivkov, S.A.; Nesterov, D.N.; Seredin, P.V.; Goloshchapov, D.L.; Minakov, D.A.; et al. Effect of Plasma Oxygen Content on the Size and Content of Silicon Nanoclusters in Amorphous SiOx Films Obtained with Plasma-Enhanced Chemical Vapor Deposition. Symmetry 2023, 15, 1800. [Google Scholar] [CrossRef]
- Stoneham, A.; Szymanski, M.; Shluger, A. Atomic and ionic processes of silicon oxidation. Phys. Rev. B 2001, 63, 303. [Google Scholar] [CrossRef]
- Bongiorno, A.; Pasquarello, A. Oxygen diffusion through the disordered oxide network during silicon oxidation. Phys. Rev. Lett. 2002, 88, 125901. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Chen, H.; Dong, S.; Lv, G. Correlation between High Dose Rate Irradiation and Low Dose Rate Irradiation for Switched Dose Rate Technique. IEEE Trans. Nucl. Sci. 2019, 66, 1612–1619. [Google Scholar] [CrossRef]
- Alkauskas, A.; Pasquarello, A. Alignment of hydrogen-related defect levels at the Si-SiO2 interface. Phys. B Condens. Matter 2007, 401, 546. [Google Scholar] [CrossRef]
- Ma, Z.; Xu, J.; Li, H.; Song, Y.; Zhang, L.; Lu, B. 3D Simulation of the Defect Generation by Hydrogen at Si−SiO2 Interface. In Proceedings of the The 8th International Conference on Computational Methods, Beijing, China, 25–29 July 2017. [Google Scholar]
- Wei, Y.; Li, X.; Liu, C.; Liu, Y.; Zhao, J.; Dong, S.; Li, H.; Wang, Q. Atomic and electron analyzing of irradiation damage in Si/SiO2 interfaces caused by irradiation: First-principle calculation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2019, 451, 89. [Google Scholar] [CrossRef]
- Capan, I.; Janicki, V.; Jacimovic, R.; Pivac, B. C–V and DLTS studies of radiation induced Si–SiO2 interface defects. Nucl. Inst Methods Phys. Res. B 2012, 282, 59. [Google Scholar] [CrossRef]
- Pungerčič, A.; Mascolino, V.; Haghighat, A.; Snoj, L. Verification of a novel fuel burnup algorithm in the RAPID code system based on Serpent-2 simulation of the TRIGA Mark II research reactor. Nucl. Eng. Technol. 2023, 55, 3732. [Google Scholar] [CrossRef]
- Kim, J.S.; Tyryshkin, A.M.; Lyon, S.A. Annealing shallow Si/SiO2 interface traps in electron-beam irradiated high-mobility metal-oxide-silicon transistors. Appl. Phys. Lett. 2017, 110, 123505.1. [Google Scholar] [CrossRef]
- Ma, T.; Bonaldo, S.; Mattiazzo, S.; Baschirotto, A.; Enz, C.; Paccagnell, A.A.; Gerardin, S. TID degradation mechanisms in 16-nm bulk FinFETs irradiated to ultrahigh doses. IEEE Trans. Nucl. Sci. 2021, 68, 1571. [Google Scholar] [CrossRef]
- Halova, E.; Alexandrova, S.; Kaschieva, S.; Dmitriev, S.N. Interface trap generation in MOS structures by high-energy electron irradiation. J. Phys. Conf. 2010, 253, 012047. [Google Scholar] [CrossRef]
- Ma, Y.; Gao, B.; Gong, M.; Willis, M.; Li, Y. High fluence swift heavy ion structure modification of the SiO2/Si interface and gate insulator in 65nm MOSFETs. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2017, 396, 56. [Google Scholar] [CrossRef]
- Park, H.; Qi, J.; Xu, Y.; Varga, K.; Weiss, S.M.; Rogers, B.R.; Luepke, G.; Tolk, N. Characterization of boron charge traps at the interface of Si/SiO2 using second harmonic generation. Appl. Phys. Lett. 2009, 95, 167. [Google Scholar] [CrossRef]
- Scheick, L.Z.; Guertin, S.M.; Swift, G.M. Analysis of radiation effects on individual DRAM cells. IEEE Trans. Nucl. Sci. 2000, 4, 2534. [Google Scholar] [CrossRef]
- Chou, Y.-J.; Borisenko, K.B.; Das, P.P.; Nicolopoulos, S.; Gemmi, M.; Kirkland, A.I. Influence of Precession Electron Diffraction Parameters and Energy Filtering on Reduced Density Function Analysis of Thin Amorphous Silica Films—Implications for Structural Studies. Symmetry 2023, 15, 1291. [Google Scholar] [CrossRef]
- Kaschieva, S.; Dmitriev, S.N. Influence of the ambient on radiation-induced effects during high-energy electron irradiation of MOS structures. Vacuum 2002, 69, 87. [Google Scholar] [CrossRef]
- Fridlund, C.; Laakso, J.; Nordlund, K.; Djurabekova, F. Atomistic simulation of ion irradiation of semiconductor heterostructures. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2017, 409, 14. [Google Scholar] [CrossRef]
- Goiffon, V.; Bilba, T.; Deladerrière, T.; Beaugendre, G.; Roch, A.L.; Dion, A.; Virmontois, C.; Belloir, J.M.; Gaillardin, M.; Jay, A. Radiation-Induced Variable Retention Time in Dynamic Random Access Memories. IEEE Trans. Nucl. Sci. 2020, 67, 234. [Google Scholar] [CrossRef]
- Ditali, A.; Ma, M.K.; Johnston, M. X-Ray Radiation Effect in DRAM Retention Time. IEEE Trans. Device Mater. Reliab. 2007, 7, 105. [Google Scholar] [CrossRef]
- Fridlund, C.; Toijala, R.; Flinck, O.; Laakso, J.; Nordlund, K.; Djurabekova, F. Adaptive moving environment for efficient molecular dynamics simulations of high-fluence ion irradiation. Comput. Mater. Sci. 2022, 214, 111708. [Google Scholar] [CrossRef]
- Fridlund, C.; Lopez-Cazalilla, A.; Nordlund, K.; Djurabekova, F. Deformations related to atom mixing in Si/SiO2/Si nanopillars under high-fluence broad-beam irradiation. Phys. Rev. Mater. 2021, 5, 083606. [Google Scholar] [CrossRef]
- Xu, X.; Heinig, K.-H.; Möller, W.; Engelmann, H.-J.; Klingner, N.; Gharbi, A.; Tiron, R.; von Borany, J.; Hlawacek, G. Morphology modification of Si nanopillars under ion irradiation at elevated temperatures: Plastic deformation and controlled thinning to 10 nm. Semicond. Sci. Technol. 2019, 35, 015021. [Google Scholar] [CrossRef]
- Sakaev, I.; Linden, J.; Ishaaya, A.A. Dynamic fracture of SiO2 films due to laser-induced confined micro-explosion at the Si/SiO2 interface: Time-resolved imaging and finite-element simulation. Opt. Laser Technol. 2022, 150, 107938. [Google Scholar] [CrossRef]
- Yan, Y.; Dalpian, G.M.; Al-Jassim, M.M.; Wei, S.H. Energetics and electronic structure of stacking faults in ZnO. Phys. Rev. B 2004, 70, 3352. [Google Scholar] [CrossRef]
- Maurice, V.; Despert, G.; Zanna, S.; Bacos, M.P.; Marcus, P. Self-assembling of atomic vacancies at an oxide/intermetallic alloy interface. Nat. Mater. 2004, 3, 687. [Google Scholar] [CrossRef] [PubMed]
- Ishibe, T.; Maeda, Y.; Terada, T.; Naruse, N.; Mera, Y.; Kobayashi, E.; Nakamura, Y. Resistive switching memory performance in oxide hetero-nanocrystals with well-controlled interfaces. Sci. Technol. Adv. Mater. 2020, 21, 195–204. [Google Scholar] [CrossRef]
- Nakamura, Y.; Isogawa, M.; Ueda, T.; Yamasaka, S.; Matsui, H.; Kikkawa, J.; Ikeuchi, S.; Oyake, T.; Hori, T.; Shiomi, J.; et al. Anomalous reduction of thermal conductivity in coherent nanocrystal architecture for silicon thermoelectric material. Nano Energy 2015, 12, 845–851. [Google Scholar] [CrossRef]
- Robertson, J. High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 2006, 69, 327. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, Z.; Song, Z.; Zheng, W. Silicon cross-coupled gated tunneling diodes. Chip 2024, 3, 100094. [Google Scholar] [CrossRef]
- Akchurin, N.; Altopp, G.; Burkle, B.; Frey, W.; Heintz, U.; Hinton, N.; Hoeferkamp, M.; Kazhykarim, Y.; Kuryatkov, V.; Mengke, T. Modeling of surface damage at the Si/SiO2-interface of irradiated MOS-capacitors. J. Instrum. 2023, 18, P08001. [Google Scholar] [CrossRef]
- Qu, G.; Min, D.; Zhao, Z.; Frechette, M.; Li, S. Radiation Effect on the Electron Transport Properties of SiO2/Si Interface: Role of Si Dangling-Bond Defects and Oxygen Vacancy. In Proceedings of the IEEE 2nd International Conference on Dielectrics (ICD), Budapest, Hungary, 1–5 July 2018. [Google Scholar]
- Moxim, S.J.; Ashton, J.P.; Lenahan, P.M.; Flatte, M.E.; King, S.W. Observation of Radiation-Induced Leakage Current Defects in MOS Oxides with Multifrequency Electrically Detected Magnetic Resonance and Near-Zero-Field Magnetoresistance. IEEE Trans. Nucl. Sci. 2020, 67, 228. [Google Scholar] [CrossRef]
- Poehlsen, T.; Fretwurst, E.; Klanner, R.; Schwandt, J.; Zhang, J. Time dependence of charge losses at the Si-SiO2 interface in p+n-silicon strip sensors. Nucl. Inst. Methods Phys. Res. A 2013, 731, 172–176. [Google Scholar] [CrossRef]
- Tai, Y.-H.; Yeh, S.; Huang, S.-H.; Chang, T.-C. Total-dose effect of X-ray irradiation on low-temperature polycrystalline silicon thin-film transistors. IEEE Electron Device Lett. 2020, 41, 864. [Google Scholar] [CrossRef]
- Koveshnikov, S.; Knyazev, M.; Soltanovich, O. relaxation and annealing of Si/SiO2 charges induced by low-energy electron beam. Mater. Sci. Eng. B 2021, 274, 115487. [Google Scholar] [CrossRef]
- Zhang, J.; Fretwurst, E.; Klanner, R.; Pintilie, I.; Turcato, M. Investigation of X-ray induced radiation damage at the Si-SiO2 interface of silicon sensors for the European XFEL. J. Instrum. 2012, 7, C12012. [Google Scholar] [CrossRef]
- Nikolskaya, A.A.; Korolev, D.S.; Mikhaylov, A.N.; Konakov, A.A.; Belov, A.I.; Marychev, M.O.; Murtazin, R.I.; Pavlov, D.A.; Tetelbaum, D.I. Photoluminescence of silicon at 1235,nm produced by irradiation of SiO2/Si with Kr+ ions and subsequent high-temperature annealing—ScienceDirect. Surf. Coat. Technol. 2020, 386, 125496. [Google Scholar] [CrossRef]
- Revuelta, S.; Cánovas, E. Exciton formation dynamics at the SiO2/Si interface. Commun. Mater. 2023, 4, 97. [Google Scholar] [CrossRef]
- Nie, S.; Kristensen, S.T.; Gu, A.; Chin, R.L.; Trupke, T.; Hameiri, Z. Photoluminescence-Based Spatially Resolved Temperature Coefficient Maps of Silicon Wafers and Solar Cells. IEEE J. Photovolt. 2020, 10, 585. [Google Scholar] [CrossRef]
- Trupke, T.; Green, M.A.; Wurfel, P.; Altermatt, P.P.; Wang, A.; Zhao, J.; Corkish, R. Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon. J. Appl. Phys. 2003, 94, 4930. [Google Scholar] [CrossRef]
- Wang, Y. Effects of interface states and positive charges on NBTI in silicon-oxynitride p-MOSFETs. IEEE Trans. Device Mater. Reliab. 2008, 8, 814–821. [Google Scholar] [CrossRef]
- Huang, J.S.; Liao, C.N.; Tu, K.N.; Cheng, S.L.; Chen, L.J. Abnormal electrical behavior and phase changes in implanted p + − and n + − Si channels under high current densities. J. Appl. Phys. 1998, 84, 4788. [Google Scholar] [CrossRef]
- Li, X.; Tung, C.; Pey, K.; Lo, V. The chemistry of gate dielectric breakdown. In Proceedings of the IEEE International Electron Devices Meeting (IEEE), San Francisco, CA, USA, 15–17 December 2008. [Google Scholar]
- Li, X.; Tung, C.H.; Pey, K.L. The nature of dielectric breakdown. Appl. Phys. Lett. 2008, 93, 80. [Google Scholar] [CrossRef]
- Pey, K.L.; Tung, C.H.; Tang, L.J.; Lin, W.H.; Radhakrishnan, M.K. Size difference in dielectric-breakdown-induced epitaxy in narrow n- and p-metal oxide semiconductor field effect transistors. Appl. Phys. Lett. 2003, 83, 2940. [Google Scholar] [CrossRef]
- Wilk, G.D.; Wallace, R.M.; Anthony, J. High-κ gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 2001, 89, 5243–5275. [Google Scholar] [CrossRef]
- Inoue, M.; Shimada, A.; Shirafuji, J. AFM observation of Si/SiO2 interface subjected to electric stress. Appl. Surf. Sci. 1997, 117, 187. [Google Scholar] [CrossRef]
- Moxim, S.J.; Sharov, F.V.; Hughart, D.R.; Haase, G.S.; McKay, C.G.; Lenahan, P.M. Atomic-scale defects generated in the early/intermediate stages of dielectric breakdown in Si/SiO2 transistors. Appl. Phys. Lett. 2022, 120, 063502. [Google Scholar] [CrossRef]
- Poon, T.C.; Card, H.C. Energy and electric field dependence of Si-SiO2 interface state parameters by optically activated admittance experiments. J. Appl. Phys. 1980, 51, 6273. [Google Scholar] [CrossRef]
- Paskaleva, A.; Atanassova, E. Electrical stress and plasma-induced traps in SiO2. Microelectron. Reliab. Microelectron. Reliab. 2000, 40, 933. [Google Scholar] [CrossRef]
- Suzuki, K.; Yamasue, K.; Cho, Y. Nanoscale capacitance-voltage profiling of DC bias induced stress on a high-K/SiO2/Si gate stack. Microelectron. Reliab. 2021, 126, 114278. [Google Scholar] [CrossRef]
- Jung, H.; Kim, W.H.; Oh, I.K.; Lee, C.W.; Matras, C.L.; Lee, S.J.; Myoung, J.M.; Lee, H.B.R.; Kim, H. Growth characteristics and electrical properties of SiO2 thin films prepared using plasma-enhanced atomic layer deposition and chemical vapor deposition with an aminosilane precursor. J. Mater. Sci. 2016, 51, 5082. [Google Scholar] [CrossRef]
- Cowie, M.; Constantinou, P.C.; Curson, N.J.; Stock, T.J.; Grutter, P. Spatially resolved random telegraph fluctuations of a single trap at the Si/SiO2 interface. Proc. Natl. Acad. Sci. USA 2024, 2403, 07251. [Google Scholar]
- Korkin, A.; Greer, J.C.; Bersuker, G.; Karasiev, V.V.; Bartlett, R.J. Computational design of Si/SiO2 interfaces: Stress and strain on the atomic scale. Phys. Rev. B—Condens. Matter Mater. Phys. 2006, 73, 16185. [Google Scholar] [CrossRef]
- Liu, X.Y.; Jovanovic, D.; Stumpf, R. First-principles study of Si-SiO2 interface and the impact on mobility. Appl. Phys. Lett. 2005, 86, 2357. [Google Scholar] [CrossRef]
- Kovačević, G.; Pivac, B. Structure, defects, and strain in silicon-silicon oxide interfaces. J. Appl. Phys. 2014, 115, 4. [Google Scholar] [CrossRef]
- Li, G.; San, H.; Chen, X.Y. Charging and discharging in ion implanted dielectric films used for capacitive radio frequency microelectromechanical systems switch. J. Appl. Phys. 2009, 105, 12. [Google Scholar] [CrossRef]
- Ho, S.S.; Rajgopal, S.; Mehregany, M. Thick PECVD silicon dioxide films for MEMS devices. Sens. Actuators A Phys. 2016, 240, 1–9. [Google Scholar] [CrossRef]
- Chowdhuri, A.R.; Jin, D.U.; Rosado, J.; Takoudis, C.G. Strain and substoichiometry at the Si(100)/SiO2 interface. Phys. Rev. B 2003, 67, 245305. [Google Scholar] [CrossRef]
- Kim, W.J.; Park, K.R.; Ryu, S.O.; Kim, B.S.; Kwon, J.; Kim, W.B. Fundamental Origin of Si Surface Defects Caused by Laser Irradiation and Prevention of Suboxide Formation through High Density Ultrathin SiO2. Appl. Surf. Sci. 2024, 662, 159997. [Google Scholar]
- Nandihalli, N. Thermoelectric films and periodic structures and spin Seebeck effect systems: Facets of performance optimization. Mater. Today Energy 2022, 25, 100965. [Google Scholar] [CrossRef]
- Wang, S.; Macdonald, D. Temperature dependence of Auger recombination in highly injected crystalline silicon. J. Appl. Phys. 2012, 112, 346. [Google Scholar] [CrossRef]
- Nie, S.; Kristensen, S.T.; Gu, A.; Trupke, T.; Hameiri, Z. A Novel Method for Characterizing Temperature Sensitivity of Silicon Wafers and Cells. In Proceedings of the IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019. [Google Scholar]
- Devine, R.A.B.; Mathiot, D.; Warren, W.L.; Fleetwood, D.M.; Aspar, B. Point defect generation during high temperature annealing of the Si-SiO2 interface. Appl. Phys. Lett. 1993, 63, 2926. [Google Scholar] [CrossRef]
- Çetinkaya, H.; Yıldırım, M.; Durmuş, P.; Altındal, Ş. Diode-to-diode variation in dielectric parameters of identically prepared metal-ferroelectric-semiconductor structures. J. Alloys Compd. 2017, 728, 896. [Google Scholar] [CrossRef]
- Hofmann, K.; Rubloff, W.G.; Liehr, M. High temperature reaction and defect chemistry at the Si/SiO2 interface. Appl. Surf. Sci. 1987, 30, 25. [Google Scholar] [CrossRef]
- Celler, G.K.; Trimble, L.E. High-temperature stability of Si/SiO2 interfaces and the influence of SiO flux on thermomigration of impurities in SiO2. Appl. Phys. Lett. 1988, 53, 2492. [Google Scholar] [CrossRef]
- Grasser, T.; Entner, R.; Triebl, O.; Enichlmair, H.; Minixhofer, R. TCAD Modeling of Negative Bias Temperature Instability. In Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices, Monterey, CA, USA, 6–8 September 2006. [Google Scholar]
- Thoan, N.H.; Keunen, K.; Afanas’ev, V.V.; Stesmans, A. Interface state energy distribution and Pb defects at Si(110)/SiO2 interfaces: Comparison to (111) and (100) silicon orientations. J. Appl. Phys. 2001, 109, 013710. [Google Scholar] [CrossRef]
- Marinopoulos, A.G.; Batyrev, I.; Zhou, X.J.; Schrimpf, R.D.; Fleetwood, D.M.; Pantelides, S.T. Hydrogen shuttling near Hf-defect complexes in Si∕SiO2∕HfO2 structures. Appl. Phys. Lett. 2007, 91, 23. [Google Scholar] [CrossRef]
- Ravsher, T.; Degraeve, R.; Garbin, D.; Clima, S.; Fantini, A.; Donadio, G.; Kundu, S.; Devulder, W.; Hody, H.; Potoms, G. Comprehensive Performance and Reliability Assessment of Se-based Selector-Only Memory in 2024. In Proceedings of the IEEE International Reliability Physics Symposium (IRPS), Grapevine, TX, USA, 14–18 April 2024. [Google Scholar]
- Haixia, L.; Aiming, J.; Canyan, Z.; Feng, M.L. Structure properties and electrical mechanisms of Si(001)/SiO2 interface with varying Si layer thickness in nano-scale transistor. Curr. Appl. Phys. 2018, 18, 1020. [Google Scholar]
- Nie, S.; Bonilla, R.S.; Hameiri, Z. Unravelling the silicon-silicon dioxide interface under different operating conditions. Sol. Energy Mater. Sol. Cells 2021, 224, 111021. [Google Scholar] [CrossRef]
- Sinton, R.A.; Cuevas, A.; Stuckings, M. Quasi-steady-state Photoconductance, A New Method for Solar Cell Material and Device Characterization. In Proceedings of the Photovoltaic Specialists Conference, Washington, DC, USA, 13–17 May 1996. [Google Scholar]
- Jolly, F.; Cantin, J.L.; Rochet, F.; Dufour, G.; Bardeleben, H.J.V. Temperature effects on the Si/SiO2 interface defects and suboxide distribution. J. Non-Cryst. Solids 1999, 245, 217. [Google Scholar] [CrossRef]
- Campbell, J.P.; Lenahan, P.M.; Cochrane, C.J.; Krishnan, A.T.; Krishnan, S. Atomic-scale defects involved in the negative-bias temperature instability. IEEE Trans. Device Mater. Reliab. 2007, 7, 540–557. [Google Scholar] [CrossRef]
- Kushida-Abdelghafar, K.; Watanabe, K.; Ushio, J.; Murakami, E. Effect of nitrogen at SiO2/Si interface on reliability issues—Negative-bias-temperature instability and Fowler–Nordheim-stress degradation. Appl. Phys. Lett. 2002, 81, 4362–4364. [Google Scholar] [CrossRef]
Sample | Neutron Fluence | (eV) | (eV−1 cm−2) |
---|---|---|---|
Sasprep | - | 0.27 0.01 | 1011 |
S-IR-1 | 1.6 1012 | 0.27 0.02 | 1010 |
S-IR-2 | 1012 | 0.27 0.01 | 1011 |
S-IR-3 | 1.6 1013 | 0.23 0.01 | 1011 |
Reference | Irridiantion Factor | Particle Energy (eV) | Dit (cm−2 eV−1) | Defects (cm−2) |
---|---|---|---|---|
[1] | Dose: 4 krad | Pb: 4.6 × 1010 E′γ: 5 × 1010 | ||
Dose: 6 krad | Pb: 6.3 × 1010 E′γ: 6 × 1010 | |||
[49] | Flux: 7.8 × 1012 | 7 × 105 | 1.3 × 1011 | |
Flux: 1.6 1013 | 7 × 105 | 1.4 × 1011 | ||
[50] | Irradiated 30 s | 2.3 × 107 | Pb: 6.8 × 1012 | |
Irradiated 120 s | 2.3 × 107 | Pb: 1.48 × 1013 | ||
[48] | Unirradiated | 1 × 104 | 0.76 × 1011 | |
N2 annealed | 1 × 104 | 0.7 × 1011 | ||
[71] | Irradiation time 1 h | 3 × 103 | 1.2 × 1011 | |
[48] | Flux: 5 × 1015 | 3.5 × 104 | 9 × 1010 | |
[44] | Dose: 0.1 krad | 1.9 × 109 |
Reference | Bias (V) | Time (s) | Leakage Current (nA) | DBIE (nm) |
---|---|---|---|---|
[67] | 1 | 1.4 × 107 | ||
[42] | 4.1 | 400 | 4 × 104 | 200 |
[80] | 5.4 | 40 | ||
5.4 | 5 | |||
[9] | 5 | 2500 | 105 | |
10.5 | 225.8 | |||
[84] | 15 | 30 | ||
[10] | 5 | 104 | 500 |
Reference | Sample | Temperature (K) | Other Conditions | Time (s) | ||
---|---|---|---|---|---|---|
[94] | Si + 45 nmSiO2 | 1173 | 6 1020 | |||
[97] | Si + 400 nmSiO2 | 1678 | Injection As | 3600 | 230 | |
Si + 400 nmSiO2 + 100 nmSi3N4 | 1678 | Injection As | 10,800 | 120 | ||
[15] | Si + 65 nmSiO2 | 398 | 105 | 6.91 × 1011 | ||
Si + 65 nmSiO2 | 298 | 105 | 3.66 × 1011 | |||
[118] | 77 | 6.7 × 1012 | ||||
[119] | 323 | 2.8 × 1012 |
Reference | Stress (MPa) | Temperature (K) | Irradiation (Mrad) | Electrical Stress | Dit (cm−2 eV−1) | Breakdown Voltage (V) |
---|---|---|---|---|---|---|
[101] | 400 | 1.3 × 1011 | ||||
400 | 4.5 × 1010 | |||||
[21] | −825 | 5 | Bias: 8.8 (V) | 8.3 | ||
+660 | 5 | Bias: 8.8 (V) | 8.5 | |||
−825 | Bias: 8.8 (V) | 8.8 | ||||
+660 | Bias: 8.8 (V) | 9 | ||||
[94] | 1320 | 26 | 2.2 × 1012 | |||
[125] | 413 | Bias: −1.8 (V) | 8.2 × 1010 | |||
300 | Bias: −2 (V) | 1.6 × 1010 | ||||
[126] | 398 | Electric field strength: 6.3 (MV/cm) | 5 × 1012 | |||
[90] | 373 | Bias: −3.17 (V) | 5.1 × 1011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Yang, Y.; Chen, D.; Zhao, T.; Li, D.; Yang, Y. Research on Si/SiO2 Interfaces Characteristics Under Service Conditions. Symmetry 2025, 17, 46. https://doi.org/10.3390/sym17010046
Zhang W, Yang Y, Chen D, Zhao T, Li D, Yang Y. Research on Si/SiO2 Interfaces Characteristics Under Service Conditions. Symmetry. 2025; 17(1):46. https://doi.org/10.3390/sym17010046
Chicago/Turabian StyleZhang, Weida, Yunqi Yang, Dongdong Chen, Tianlong Zhao, Di Li, and Yintang Yang. 2025. "Research on Si/SiO2 Interfaces Characteristics Under Service Conditions" Symmetry 17, no. 1: 46. https://doi.org/10.3390/sym17010046
APA StyleZhang, W., Yang, Y., Chen, D., Zhao, T., Li, D., & Yang, Y. (2025). Research on Si/SiO2 Interfaces Characteristics Under Service Conditions. Symmetry, 17(1), 46. https://doi.org/10.3390/sym17010046