Next Article in Journal
The Limits of Riemann Solutions for Chaplygin Gas Magnetohydrodynamics Euler Equations with Active Terms
Previous Article in Journal
Prediction of Structural Vibration Induced by Subway Operations Using Hybrid Method Based on Improved LSTM and Spectral Analysis
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On the Symmetric Form of the Three Primes Theorem Weighted by Δ(x)

Department of Mathematics, China University of Mining and Technology, Beijing 100083, China
Symmetry 2025, 17(1), 76; https://doi.org/10.3390/sym17010076
Submission received: 22 October 2024 / Revised: 31 December 2024 / Accepted: 4 January 2025 / Published: 6 January 2025
(This article belongs to the Section Mathematics)

Abstract

:
Let x be a large real number, d ( n ) be the Dirichlet divisor function and Δ ( x ) = n x d ( n ) x log x ( 2 γ 1 ) x . In this paper, we consider a weighted form of the three primes theorem: S ( N ; k 1 , k 2 , k 3 ) : = p 1 + p 2 + p 3 = N Δ k 1 ( p 1 ) Δ k 2 ( p 2 ) Δ k 3 ( p 3 ) , where p 1 , p 2 , p 3 run over primes, k 1 , k 2 , k 3 { 1 , 2 , , 9 } , and N is an large odd integer. For the case k i { 2 , 3 , , 9 } ( i = 1 , 2 , 3 ) , the others two k j { 2 , 3 , 4 } with j i , an asymptotic formula for S ( N ; k 1 , k 2 , k 3 ) has been derived, along with a non-trivial upper bound estimate for S ( N ; k 1 , k 2 , k 3 ) when min ( k 1 , k 2 , k 3 ) = 1 .
PACS:
11L07; 11L20; 11P32; 11N37

1. Introduction

The general divisor problem is to study the asymptotic behavior of the well known sum
D ( x ) : = n x d ( n ) = x log x + ( 2 γ 1 ) x + Δ ( x ) ,
as x tends to infinity, where γ is the Euler’s constant and Δ ( x ) is the “error term”. It was first proved by Dirichlet that Δ ( x ) = O ( x 1 / 2 ) . Furthermore, the exponent 1 / 2 was improved by many authors [1,2,3,4]. Until now, the best result, that is
Δ ( x ) x 131 / 416 ( log x ) 26497 / 8320 ,
was given by Huxley [5]. It is conjectured that
Δ ( x ) = O ( x 1 / 4 + ε )
holds for any ε > 0 , which is supported by the classical mean-square result
1 T Δ 2 ( x ) d x = C 2 T 3 / 2 + O ( T log 3 T log log T )
proved by Lau and Tsang [6], where C 2 is a positive constant which can be written down explicitly by the Riemann zeta-function ζ ( s ) , and the upper bound estimate
1 T | Δ ( x ) | A 0 d x T 1 + A 0 4 + ε ,
where A 0 > 2 is a real number. The estimate of type (5) can be found in Ivić [7] with A 0 = 35 / 4 . In this paper, we use Huxley’s result (2) and Ivić’s [7] method to obtain that we can take A 0 = 262 / 27 (similar to Lemma 8 in this paper).
For any integer 3 k 9 , we have derived the asymptotic formula of unified form
1 T Δ k ( x ) d x = C k T 1 + k / 4 + O ( T 1 + k 4 δ k + ε ) ,
where C k and δ k > 0 are explicit constants. The exact value of δ k was studied by many authors [8,9,10,11,12,13,14].
Also, the discrete mean values
D k ( x ) : = n x Δ k ( n ) , 1 k , k N
have been investigated by various authors. Define the continuous mean values
C k ( x ) : = 1 x Δ k ( t ) d t .
Many authors found that the discrete and the continuous mean value formulas are connected deeply with each other and studied the difference between D k ( x ) and C k ( x ) [4,15,16,17,18].
As analogues of the discrete mean values, we can consider the sum of Δ ( · ) over a subset of N . For example, the sum over primes, namely
p x Δ k ( p )
for integer 2 k 9 . The authors [19,20] have proved that, for 2 k 9 , (9) has the asymptotic formula
p x Δ k ( p ) = B k ( ) p x p k / 4 + O ( x 1 + k 4 θ ( k , A 0 ) + ε ) ,
where B k ( ) and θ ( k , A 0 ) > 0 ( 2 k 9 ) are computable constants.
Vinogradov [21] proved that, for every sufficiently large odd integer N, the equation
N = p 1 + p 2 + p 3
is solvable for prime numbers p 1 , p 2 , p 3 . More precisely, he proved the asymptotic formula
p 1 + p 2 + p 3 = N 1 = 1 2 S ( N ) N 2 log 3 N + O N 2 log 4 N ,
where S ( N ) is the singular series
S ( N ) = p N 1 1 ( p 1 ) 2 p N 1 1 ( p 1 ) 3 .
Formula (12) is called the three primes theorem, or Vinogradov–Goldbach theorem.

2. Main Result

In this paper, we consider the sum of Δ ( · ) over primes in arithmetic progression, namely
p x p ( m o d q ) Δ k ( p ) ,
where q > 1 is an integer, q , ( , q ) = 1 . Furthermore, we consider an exponential sum connected with Δ ( · ) , namely
p x Δ ( p ) e ( p α ) .
We obtain asymtotic formula for (14) and an upper bound estimate for (15). These results enable us to prove an analogue of Vinogradov’s three primes theorem with coefficients Δ ( · ) . for k 1 , k 2 , k 3 { 1 , 2 , , 9 } , i.e., the asymptotic formula of
S ( N ; k 1 , k 2 , k 3 ) : = p 1 + p 2 + p 3 = N Δ k 1 ( p 1 ) Δ k 2 ( p 2 ) Δ k 3 ( p 3 ) .
Then, we have the following theorems.
Theorem 1.
Suppose S ( N ; k 1 , k 2 , k 3 ) is defined by (16). When one of k i { 2 , 3 , , 9 } ( i = 1 , 2 , 3 ) , the other two k j { 2 , 3 , 4 } ( j i ) , we have the asymptotic formula
S ( N ; k 1 , k 2 , k 3 ) = 3 + k 1 + k 2 + k 3 4 Γ 1 + k 1 4 Γ 1 + k 2 4 Γ 1 + k 2 4 Γ 3 + k 1 + k 2 + k 3 4 × C ( k 1 , k 2 , k 3 ) S ( N ) N 2 + k 1 + k 2 + k 3 4 log 3 N + O N 2 + k 1 + k 2 + k 3 4 log 4 N ,
where C ( k 1 , k 2 , k 3 ) are computable constants, Γ denotes the Gamma function and S ( N ) is defined in (12).
Theorem 2.
If there exists k j = 1 for j { 1 , 2 , 3 } , then
S ( N ; k 1 , k 2 , k 3 ) N 2 + k 1 + k 2 + k 3 4 1 16 + ε .
By Theorem 1, Equation (12), and the Cauchy–Schwarz’s inequality, we obtain that the trivial upper bound for the case in Theorem 2 is
S ( N ; k 1 , k 2 , k 3 ) N 2 + k 1 + k 2 + k 3 4 log 3 N ,
and thus, Theorem 2 gives a non-trivial upper bound.

Notations

Throughout this paper, N is a large positive odd number and ε denotes a sufficiently small positive number, not necessarily the same at each occurrence. Let p, with or without subscripts, always denote a prime number. As usual, d ( n ) , Λ ( n ) , μ ( n ) , and φ ( n ) denote the Dirichlet divisor function, the von Mangoldt function, the Möbius function, and the Euler totient function, respectively, C denotes the set of complex numbers, R denotes the set of real numbers, and N denotes the set of natural numbers. We write e ( t ) : = e x p ( 2 π i t ) . The notation m M means M < m 2 M , f ( x ) g ( x ) means f ( x ) = O ( g ( x ) ) ; f ( x ) g ( x ) means f ( x ) g ( x ) f ( x ) .

3. The Circle Method

For k 1 , k 2 , k 3 { 1 , 2 , , 9 } , α R and N > 1 , define
F i ( α ) : = p N Δ k i ( p ) e ( p α ) , i = 1 , 2 , 3 .
By the definition of S ( N ; k 1 , k 2 , k 3 ) and the well-known identity
0 1 e ( u α ) d α = 1 if u = 0 , 0 if u Z , u 0 ,
we have
S ( N ; k 1 , k 2 , k 3 ) = 0 1 F 1 ( α ) F 2 ( α ) F 3 ( α ) e ( N α ) d α = 1 c 1 + 1 c F 1 ( α ) F 2 ( α ) F 3 ( α ) e ( N α ) d α
for any c > 0 .
In order to compute the integral, we choose two parameters Q and τ as follows:
Q = log A N , τ = N log B N
with A , B real, A > 15 and B > A + 2 .
For any 0 a < q Q with ( a , q ) = 1 , define
I ( a , q ) : = a q 1 q τ , a q + 1 q τ , E 1 : = 1 q Q 0 a < q ( a , q ) = 1 I ( a , q ) , E 2 = 1 τ , 1 + 1 τ E 1 .
We call E 1 the m a j o r   a r c and E 2 the m i n o r   a r c .
We then have
S ( N ; k 1 , k 2 , k 3 ) = S 1 ( N ) + S 2 ( N ) ,
where
S 1 ( N ) = E 1 F 1 ( α ) F 2 ( α ) F 3 ( α ) e ( N α ) d α , S 2 ( N ) = E 2 F 1 ( α ) F 2 ( α ) F 3 ( α ) e ( N α ) d α .
The problem is now reduced to evaluating S 1 ( N ) and giving an upper bound of S 2 ( N ) .

4. Additional Lemmas

In this section, we present some lemmas.
Lemma 1.
For x 1 , α R , we have
n x e ( n α ) min x , 1 2 α ,
where α denotes the distance from α to the nearest integer.
Proof. 
The proof of this Lemma has been found to be (8.6) in Iwaniec and kowalski [22]. □
Lemma 2.
Let z 1 be a real number and k 1 be an integer. Then, for any n 2 z k , it holds that
Λ ( n ) = j = 1 k ( 1 ) j 1 k j n 1 n 2 n 2 j = n n j + 1 , , n 2 j z ( log n 1 ) μ ( n j + 1 ) μ ( n 2 j ) .
Proof. 
See the argument on pp. 1366–1367 of Heath-Brown [23]. □
Lemma 3.
Suppose that
L ( H ) = i = 1 m A i H a i + j = 1 n B j H b j ,
where A i , B j , a i , and b j are positive. Assume further that H 1 H 2 . Then there exists some H with H 1 H H 2 and
L ( H ) i = 1 m A i H 1 a i + j = 1 n B j H 2 b j + i = 1 m j = 1 n ( A i b j B j a i ) 1 / ( a i + b j ) .
The implied constant depends only on m and n.
Proof. 
See Lemma 3 of Srinivasan [24]. □
Lemma 4.
For an fixed integer k 3 , let m 1 , , m k are integers, ( i 1 , , i k 1 ) { 0 , 1 } k 1 such that
α k = m 1 + ( 1 ) i 1 m 2 + + ( 1 ) i k 1 m k 0 ,
then
| α k | max ( m 1 , , m k ) ( 2 k 2 1 2 ) .
Proof. 
See Lemma 2.2 of Zhai [12]. □
Lemma 5.
Suppose k 2 is a fixed integer, y > 1 is a large parameter. Define
s k , l ( ) : = n 1 + + n l = n l + 1 + + n k d ( n 1 ) d ( n k ) ( n 1 n k ) 3 / 4 ( 1 l < k ) , s k , l ( y ) : = n 1 + + n l = n l + 1 + + n k n 1 , , n k y d ( n 1 ) d ( n k ) ( n 1 n k ) 3 / 4 ( 1 l < k ) .
Then, we have
(i) s k , l ( ) is convergent.
(ii)
| s k , l ( ) s k , l ( y ) | y 1 / 2 + ε , 1 l < k .
Proof. 
See Lemma 3.1 of Zhai [12]. □
Lemma 6.
Suppose N 1 , N 2 1 are given real numbers, α , β are real numbers such that 0 < α , β 1 . Define
T ( N 1 , N 2 , α , β ) = n 1 N 1 , n 2 N 2 n 1 n 2 1 | n 1 α n 2 α | β .
Then, we have
T ( N 1 , N 2 , α , β ) ( N 1 N 2 ) 1 α β / 2 log N 1 log N 2 .
Proof. 
See Lemma 2.11 of [19]. □
Lemma 7.
Suppose that f ( x ) : [ a , b ] R has continuous derivatives of arbitrary order on [ a , b ] , where 1 a < b 2 a . Suppose further that for either j = 1 or 2 we have
| f ( j ) ( x ) | λ j , x [ a , b ] .
Then
a < n b e ( f ( n ) ) λ 1 1 .
a < n b e ( f ( n ) ) a λ 2 1 / 2 + λ 2 1 / 2 .
Proof. 
See Lemma 2.1 of Graham and Kolesnik [25]. □
Lemma 8.
For any fixed real number 0 < A 262 / 27 = 9.70 . . . and a large real number x, we have the estimate
x < p 2 x | Δ ( p ) | A x 1 + A / 4 + ε .
Proof. 
See Lemma 2.11 of [20]. □
Lemma 9.
For real numbers N and x satisfying 1 N x , we define
δ 1 ( x , N ) = x 1 / 4 2 π n N d ( n ) n 3 / 4 cos 4 π n x π 4
Then, uniformly for N x 1 / 4 , we have
x < p 2 x | δ 1 ( p , N ) | 10 x 7 / 2 + ε .
Proof. 
See Lemma 2.12 of the authors [20]. □
Lemma 10.
For real numbers N and x satisfying 1 N x , we define
δ 2 ( x , N ) : = Δ ( x ) δ 1 ( x , N ) .
We have
δ 2 ( x , N ) x 1 / 2 + ε N 1 / 2 .
We also have, for N x 1 / 3 ,
x < p 2 x δ 2 ( p , N ) 2 x 3 / 2 + ε N 1 / 2 .
Moreover, if N x 1 / 8 , then for any fixed real number 2 < A A 0 = 262 / 27 we have the estimate
x < p 2 x | δ 2 ( p , N ) | A x 1 + A 4 + ε N A 4 , 2 < A 4 , x 1 + A 4 + ε N A 0 A A 0 4 , 4 < A < A 0 .
Proof. 
See Lemma 2.13 of the authors [20]. □
For real number σ [ 0 , 1 ] and fixed integer 1 k 9 , we state a multiple exponential sums of the following form:
m 1 M 1 m k M k α k 0 d ( m 1 ) d ( m k ) r R s S R S u ξ r η s e 2 α k ( r s ) 1 / 2 + σ r s ,
with q Z fixed, q > 0 , ξ r , η s C , | ξ r | u ε , | η s | u ε , and M 1 , , M k , R , S , u are given real numbers, such that 1 M 1 , , M k u , α 1 = m 1 , α 2 = m 1 ± m 2 and α k ( 3 k 9 ) are given in Lemma 4. In this sum, without loss of generality we assume m 1 = max ( m 1 , , m k ) . It is called a “Type I” sum, denoted by S I ( k ) , if η s = 1 or η s = log s ; otherwise, it is called a “Type II” sum, denoted by S I I ( k ) .
Lemma 11.
Suppose that ξ r u ε , η s = 1 or η s = log , R S u . Then for R u 1 / 4 , it holds that
u ε S I ( k ) u 1 / 2 M 1 5 / 4 + u 3 / 4 M 1 3 / 4 k = 1 , u 1 / 2 M 1 5 / 4 M 2 + u 3 / 4 ( M 1 M 2 ) 7 / 8 k = 2 , u 3 / 4 M 1 ( 2 k 3 + 3 / 4 ) ( M 2 M k ) 3 k 9 ,
Proof. 
Set f ( s ) = 2 α k r s + σ r s . It is easy to see that
f ( s ) = 1 2 α k r 1 / 2 s 3 / 2 | α k | R 1 / 2 S 3 / 2 .
If R u 1 / 4 , then by Lemma 7, we deduce that
u ε S I ( k ) m 1 M 1 m k M k α k 0 r R s S e ( f ( s ) ) m 1 M 1 m k M k α k 0 r R S ( | α k | R 1 / 2 S 3 / 2 ) 1 / 2 + ( | α k | R 1 / 2 S 3 / 2 ) 1 / 2 u 1 / 4 R M 1 5 / 4 ( M 2 M k ) + u 3 / 4 m 1 M 1 , , m k M k α k 0 1 | α k | 1 / 2 .
For 3 k 9 , by Lemma 4 we have
u ε S I ( k ) u 1 / 4 R M 1 5 / 4 ( M 2 M k ) + u 3 / 4 M 1 ( 2 k 3 + 3 / 4 ) ( M 2 M k ) u 1 / 2 M 1 5 / 4 ( M 2 M k ) + u 3 / 4 M 1 ( 2 k 3 + 3 / 4 ) ( M 2 M k ) u 3 / 4 M 1 ( 2 k 3 + 3 / 4 ) ( M 2 M k )
For k = 2 , when α 2 = m 1 m 2 , by Lemma 6 we have
u ε S I ( 2 ) u 1 / 4 R M 1 5 / 4 M 2 + u 3 / 4 ( M 1 M 2 ) 7 / 8 u 1 / 2 M 1 5 / 4 M 2 + u 3 / 4 ( M 1 M 2 ) 7 / 8 ,
when α 2 = m 1 + m 2 , it is easier to get the same estimate by using a + b 2 a b , we omit the details.
When k = 1 , α 1 = m 1 , we can easily obtain
u ε S I ( 1 ) u 1 / 4 R M 1 5 / 4 + u 3 / 4 M 1 3 / 4 u 1 / 2 M 1 5 / 4 + u 3 / 4 M 1 3 / 4 .
Combining (51)–(53) we complete the proof. □
Lemma 12.
Suppose | ξ r | u ε , | η s | u ε with r R , s S , R S u . Then for u 1 / 4 R u 1 / 2 , it holds that
u ε S I I ( k ) u 3 / 4 M 1 9 / 8 + u 7 / 8 + u 11 / 12 M 1 13 / 12 k = 1 , u 3 / 4 M 1 9 / 8 M 2 + u 7 / 8 M 1 M 2 + u 5 / 6 M 1 13 / 12 M 2 k = 2 , u 3 / 4 M 1 9 / 8 M 2 M k + u 7 / 8 M 1 2 k 4 + 7 / 8 M 2 M k 3 k 9 .
Proof. 
Let Y, which satisfies 1 < Y < R , be a parameter which will be chosen later. By the Weyl–van der Corput inequality (see Lemma 2.5 of Graham and Kolesnik [25]), we have
r R s S R S u ξ r η s e 2 α k ( r s ) 1 / 2 + σ r s 2 R 2 S 2 Y 1 R S Y 1 r R 0 < y Y T ( y ; r ) ,
where
T ( y ; r ) = s S e g ( s )
with
g ( s ) = 2 α k s ( r + y ) 1 / 2 r 1 / 2 σ y s .
It is easy to see that
g ( s ) = 1 2 α k S 3 / 2 ( r + y ) 1 / 2 r 1 / 2 | α k | S 3 / 2 R 1 / 2 | y |
By (39) of Lemma 7, we have
S ( y ; r ) S | α k | S 3 / 2 R 1 / 2 | y | 1 / 2 + | α k | S 3 / 2 R 1 / 2 | y | 1 / 2 .
Putting (59) into (55), we derive that
r R s S R S u ξ r η s e 2 α k ( r s ) 1 / 2 + σ r s 2 R 2 S 2 Y 1 + R S Y 1 × r R 0 < y Y | α k | 1 / 2 S 1 / 4 R 1 / 4 | y | 1 / 2 + | α k | 1 / 2 S 3 / 4 R 1 / 4 | y | 1 / 2 R 2 S 2 Y 1 + R S Y 1 | α k | 1 / 2 S 1 / 4 R 3 / 4 Y 3 / 2 + | α k | 1 / 2 S 3 / 4 R 5 / 4 Y 1 / 2 R 2 S 2 Y 1 + | α k | 1 / 2 S 5 / 4 R 7 / 4 Y 1 / 2 + | α k | 1 / 2 S 7 / 4 R 9 / 4 Y 1 / 2 .
By noting that 1 Y R , it follows from Lemma 3 that there exists an optimal Y such that
r R s S R S u ξ r η s e 2 α k ( r s ) 1 / 2 + σ r s 2 u 5 / 4 R 1 / 2 | α k | 1 / 2 + u 7 / 4 | α k | 1 / 2 + u 2 R 1 + u 3 / 2 R 1 / 2 + u 3 / 2 R 1 / 3 | α k | 1 / 3 ,
which implies
r R s S R S u ξ r η s e 2 α k ( r s ) 1 / 2 + σ r s u 5 / 8 R 1 / 4 | α k | 1 / 4 + u 7 / 8 | α k | 1 / 4 + u R 1 / 2 + u 3 / 4 R 1 / 4 + u 3 / 4 R 1 / 6 | α k | 1 / 6 .
Therefore, from the above estimate and the condition u 1 / 4 R u 1 / 2 , we obtain
u ε S I I ( k ) m 1 M 1 m k M k α k 0 × u 5 / 8 R 1 / 4 | α k | 1 / 4 + u 7 / 8 | α k | 1 / 4 + u R 1 / 2 + u 3 / 4 R 1 / 4 + u 3 / 4 R 1 / 6 | α k | 1 / 6 m 1 M 1 m k M k α k 0 u 3 / 4 | α k | 1 / 4 + u 7 / 8 | α k | 1 / 4 + u 7 / 8 + u 5 / 6 | α k | 1 / 6
using Lemma 4, for 3 k 9 we have
u ε S I I ( k ) u 3 / 4 M 1 9 / 8 M 2 M k + u 7 / 8 M 1 2 k 4 + 7 / 8 M 2 M k .
For k = 2 , when α 2 = m 1 m 2 , by Lemma 6 and the condition we derive that
u ε S I I ( 2 ) u 3 / 4 M 1 9 / 8 M 2 + u 7 / 8 M 1 M 2 + u 5 / 6 M 1 13 / 12 M 2 .
For the case α 2 = m 1 + m 2 , we can use the similar argument in Lemma 11. When k = 1 , α 1 = m 1 , we obtain
u ε S I I ( 1 ) u 3 / 4 M 1 9 / 8 + u 7 / 8 M 1 + u 5 / 6 M 1 13 / 12 .
Thus, combining (64)–(66), we complete the proof. □

5. Asymptotic Formula for S 1 ( N )

Suppose α = a / q + λ E 1 with 0 a < q Q , ( a , q ) = 1 , | λ | 1 / q τ . Without loss of generality, we only consider F 1 ( α ) , and for convenience we set k = k 1 . For 2 k 9 , we have
F 1 ( α ) = p N Δ k ( p ) e ( p α ) = p N Δ k ( p ) e a q + λ p = p N ( p , q ) = 1 Δ k ( p ) e a q + λ p + O p N p | q | Δ ( p ) | k = = 1 ( , q ) = 1 q e a q p N p ( m o d q ) Δ k ( p ) e ( p λ ) + O ( Q 1 + k / 2 ) = = 1 ( , q ) = 1 q e a q p N p ( m o d q ) Δ k ( p ) e ( p λ ) + O ( N ε )
where we use Q = log A N N ε and the trivial estimate Δ ( x ) x 1 / 2 .
By partial summation we have
F 1 ( α ) = = 1 ( , q ) = 1 q e a q 2 N e ( u λ ) d p u p ( m o d q ) Δ k ( p ) .
We are going to evaluate
π ( u ; q , ; k ) : = p u p ( m o d q ) Δ k ( p ) .

5.1. Asymptotic Formula for π ( u ; q , ; k )

Using the notations in Lemmas 9 and 10, let M be a real number such that 1 M x ; thus, we have
p u p ( m o d q ) Δ k ( p ) : = 11 + O 12 + 22 ,
where
11 = p u p ( m o d q ) δ 1 ( p , M ) k , 12 = p u | δ 1 ( p , M ) | k 1 | δ 2 ( p , M ) | , 22 = p u | δ 2 ( p , M ) | k .
For 22 , using (46) and (45), for M u 1 / 8 one has
22 u 1 + k 4 + ε M k 4 , 2 k 4 , u 1 + k 4 + ε M A 0 k A 0 4 , 4 < k 9 ,
where A 0 = 262 / 27 .
For 12 , using Lemma 9, Equations (46) and (45), and Hölder’s inequality, we obtain
12 u 1 + k 4 + ε M 1 4 , 2 k 8 , u 13 / 4 + ε M A 0 9 A 0 4 , k = 9 .
Next, we turn to evaluate 11 . Using cos α cos β = 1 2 ( cos ( α β ) + cos ( α + β ) ) , we have
11 = p u p ( m o d q ) p k / 4 ( 2 π ) k m 1 M m k M d ( m 1 ) d ( m k ) ( m 1 m k ) 3 / 4 j = 1 k cos 4 π m j p π 4 = 1 ( 2 π ) k 2 k 1 i k { 0 , 1 } k 1 m 1 M m k M d ( m 1 ) d ( m k ) ( m 1 m k ) 3 / 4 × p u p ( m o d q ) p k / 4 cos 4 π α k p π 4 β k ,
where
α k = m 1 + ( 1 ) i 1 m 2 + + ( 1 ) i k 1 m k , β k = 1 + ( 1 ) i 1 + + ( 1 ) i k 1 , i k = ( i 1 , , i k 1 ) .
We divide the 11 into two parts:
11 : = 1 ( 2 π ) k 2 k 1 111 + 112 ,
where
111 = i k { 0 , 1 } k 1 cos ( π 4 β k ) m 1 M m k M α k = 0 d ( m 1 ) d ( m k ) ( m 1 m k ) 3 / 4 p u p ( m o d q ) p k / 4 , 112 = i k { 0 , 1 } k 1 m 1 M m k M α k 0 d ( m 1 ) d ( m k ) ( m 1 m k ) 3 / 4 p u p ( m o d q ) p k / 4 cos 4 π α k p π 4 β k .
First, we consider the contribution of 111 . For the inner sum, by partial summation and Siegel–Walfisz theorem, we have
p u p ( m o d q ) p k / 4 = 2 u t k / 4 d p t p ( m o d q ) 1 = 2 u t k / 4 d 1 φ ( q ) 2 t 1 log r d r + O t e c 1 log t = 1 φ ( q ) 2 u t k / 4 log t d t + O ( 1 + | λ | u ) u 1 + k / 4 e c 1 log u = 1 φ ( q ) 2 u t k / 4 log t d t + O u 1 + k / 4 e c 2 log u ,
where c 1 , c 2 > 0 are constants.
Using a similar argument on (4.1)–(4.4) as made by Zhai [12], we obtain
111 = B k ( ) φ ( q ) 2 u t k / 4 log t d t + O u 1 + k / 4 e c 2 log u + O ( u 1 + k / 4 + ε M 1 / 2 ) ,
where
B k ( ) = l = 1 k 1 k 1 l s k , l ( ) cos π ( k 2 l ) 4 .
Next, we consider the contribution of 112 . One can see 112 can be written as a linear combination of O ( log k M log u ) sums of the form
i k { 0 , 1 } k 1 m 1 M 1 m k M k α k 0 d ( m 1 ) d ( m k ) ( m 1 m k ) 3 / 4 p u p ( m o d q ) p k / 4 cos 4 π α k p π 4 β k = 1 2 i k { 0 , 1 } k 1 m 1 M 1 m k M k α k 0 d ( m 1 ) d ( m k ) ( m 1 m k ) 3 / 4 × p u p ( m o d q ) p k / 4 e 2 α k p β k 8 e 2 α k p + β k 8 ,
where we use cos 2 π a = ( e ( a ) e ( a ) ) / 2 , and where 1 M 1 , , M k M . Without loss of generality, we assume that max ( M 1 , , M k ) = M 1 . By a splitting argument we only need to estimate
S 1 = i k { 0 , 1 } k 1 m 1 M 1 m k M k α k 0 d ( m 1 ) d ( m k ) ( m 1 m k ) 3 / 4 p u p ( m o d q ) p k / 4 e 2 α k p .
Trivially we have
S 1 u k / 4 ( M 1 M k ) 3 / 4 | S 1 * | ,
where
S 1 * = i k { 0 , 1 } k 1 m 1 M 1 m k M k α k 0 d ( m 1 ) d ( m k ) p u p ( m o d q ) e 2 α k p .
It follows from partial summation that
S 1 * = i k { 0 , 1 } k 1 m 1 M 1 m k M k α k 0 d ( m 1 ) d ( m k ) u 2 u d A k ( x ) log x = i k { 0 , 1 } k 1 m 1 M 1 m k M k α k 0 d ( m 1 ) d ( m k ) A k ( x ) log x | u 2 u u 2 u A k ( x ) x log 2 x d x ,
where
A k ( x ) = p x p ( m o d q ) ( log p ) e 2 α k p .
Moreover, by the definition of Λ ( n ) , we easily obtain
A k ( x ) = p x p ( m o d q ) Λ ( n ) e 2 α k n p 2 x p ( m o d q ) Λ ( n ) e 2 α k n = p x p ( m o d q ) Λ ( n ) e 2 α k n + O p 2 x 1 = p x p ( m o d q ) Λ ( n ) e 2 α k n + O ( x 1 / 2 ) .
Combining (81)–(87), it is sufficient to give the upper bound of the following sum
S 1 * * = i k { 0 , 1 } k 1 m 1 M 1 m k M k α k 0 d ( m 1 ) d ( m k ) n u n ( m o d q ) Λ ( n ) e 2 α k n .
It is known that
1 q m = 1 q e ( n ) m q = 1 if q n , 0 if q n ,
we can represent the innermost sum in (88) as
n u n ( m o d q ) Λ ( n ) e 2 α k n = 1 q m = 1 q n u Λ ( n ) e 2 α k n + ( n ) m q
From (88) and (90), we know that it suffices to estimate
i k { 0 , 1 } k 1 m 1 M 1 m k M k α k 0 d ( m 1 ) d ( m k ) n u Λ ( n ) e 2 α k n + n m q 1 .
After using Heath-Brown’s identity, i.e., Lemma 2 with k = 3 , one can see that the exponential sum
i k { 0 , 1 } k 1 m 1 M 1 m k M k α k 0 d ( m 1 ) d ( m k ) n u Λ ( n ) e 2 α k n + n m q 1 .
can be written as linear combination of O ( log 6 x ) sums, each of which is of the form
T * : = i k { 0 , 1 } k 1 m 1 M 1 m k M k α k 0 d ( m 1 ) d ( m k ) × n 1 N 1 n 6 N 6 ( log n 1 ) μ ( n 4 ) μ ( n 5 ) μ ( n 6 ) e 2 α k n 1 n 2 n 6 + ( n 1 n 2 n 6 ) m q 1 ,
where N 1 N 6 u ; 2 N i ( 2 u ) 1 / 3 , i = 4 , 5 , 6 and some n i may only take value 1. Therefore, it is sufficient for us to estimate for each T * defined as in (93). Next, we will consider four cases.

5.1.1. Case 1

If there exists an N j such that N j u 3 / 4 , then we must have j 3 for the fact that N j u 1 / 3 with j = 4 , 5 , 6 . Let
r = 1 i 6 i j n i , s = n j , R = 1 i 6 i j N i , S = N j .
In this case, we can see that T * is a sum of “Type I” satisfying R u 1 / 4 . By Lemma 11, we have
u ε S I ( k ) u 1 / 2 M 1 5 / 4 M 2 + u 3 / 4 ( M 1 M 2 ) 7 / 8 , k = 2 , u 3 / 4 M 1 ( 2 k 3 + 3 / 4 ) ( M 2 M k ) , 3 k 9 ,

5.1.2. Case 2

If there exists an N j such that u 1 / 2 N j < u 3 / 4 , then we take
r = 1 i 6 i j n i , s = n j , R = 1 i 6 i j N i , S = N j .
Thus, T * is a sum of “Type II” satisfying u 1 / 4 R u 1 / 2 . By Lemma 12, we have
u ε S I I ( k ) u 3 / 4 M 1 9 / 8 M 2 + u 7 / 8 M 1 M 2 + u 5 / 6 M 1 13 / 12 M 2 k = 2 , u 3 / 4 M 1 9 / 8 M 2 M k + u 7 / 8 M 1 2 k 4 + 7 / 8 M 2 M k 3 k 9 .

5.1.3. Case 3

If there exists an N j such that u 1 / 4 N j < u 1 / 2 , then we take
r = n j , s = 1 i 6 i j n i , R = N j , S = 1 i 6 i j N i .
Thus, T * is a sum of "Type II" satisfying u 1 / 4 R u 1 / 2 . By Lemma 12, we have
u ε S I I ( k ) u 3 / 4 M 1 9 / 8 M 2 + u 7 / 8 M 1 M 2 + u 5 / 6 M 1 13 / 12 M 2 k = 2 , u 3 / 4 M 1 9 / 8 M 2 M k + u 7 / 8 M 1 2 k 4 + 7 / 8 M 2 M k 3 k 9 .

5.1.4. Case 4

If N j < u 1 / 4 ( j = 1 , 2 , 3 , 4 , 5 , 6 ) , without loss of generality, we assume that N 1 N 2 N 6 . Let denote the natural number j such that
N 1 N 2 N j 1 < u 1 / 4 , N 1 N 2 N j u 1 / 4 .
Since N 1 < u 1 / 4 and N 6 < u 1 / 4 , then 2 5 . Thus, we have
u 1 / 4 N 1 N 2 N = ( N 1 N 2 N 1 ) · N < u 1 / 4 · u 1 / 4 = u 1 / 2 .
Let
r = i = 1 n i , s = i = + 1 6 n i , R = i = 1 N i , S = i = + 1 6 N i .
At this time, T * is a sum of “Type II” satisfying u 1 / 4 R u 1 / 2 . By Lemma 12, we have
u ε S I I ( k ) u 3 / 4 M 1 9 / 8 M 2 + u 7 / 8 M 1 M 2 + u 5 / 6 M 1 13 / 12 M 2 k = 2 , u 3 / 4 M 1 9 / 8 M 2 M k + u 7 / 8 M 1 2 k 4 + 7 / 8 M 2 M k 3 k 9 .
Combining the above four cases, we derive that
u ε · T * u 1 / 2 M 1 5 / 4 M 2 + u 3 / 4 M 1 9 / 8 M 2 + u 7 / 8 M 1 M 2 + u 5 / 6 M 1 13 / 12 M 2 k = 2 , u 3 / 4 M 1 ( 2 k 3 + 3 / 4 ) ( M 2 M k ) + u 7 / 8 M 1 2 k 4 + 7 / 8 M 2 M k 3 k 9 .
which, combined with (83) and (85), yields
u ε · 112 u 1 / 2 + k / 4 M 1 1 / 2 M 2 1 / 4 + u 3 / 4 + k / 4 M 1 3 / 8 M 2 1 / 4 + u 7 / 8 + k / 4 ( M 1 M 2 ) 1 / 4 + u 5 / 6 + k / 4 M 1 1 / 3 M 2 1 / 4 k = 2 , u 3 / 4 + k / 4 M 1 2 k 3 ( M 2 M k ) 1 / 4 + u 7 / 8 + k / 4 M 1 2 k 4 + 1 8 ( M 2 M k ) 1 / 4 3 k 9 .
Above all, since M 1 , , M k M , by Equations (76), (79) and (105), we conclude that
11 = B k ( ) ( 2 π ) k 2 k 1 2 u t k / 4 log t d t + O u 1 + k / 4 e c 2 log u + O u 1 + k / 4 + ε M 1 / 2 + u 1 / 2 + k / 4 M 3 / 4 + u 3 / 4 + k / 4 M 5 / 8 + u 7 / 8 + k / 4 M 1 / 2 + u 5 / 6 + k / 4 M 7 / 12 , k = 2 , u 3 / 4 + k / 4 M 2 k 3 + ( k 1 ) / 4 + u 7 / 8 + k / 4 M 2 k 4 + ( 2 k 1 ) / 8 , 3 k 9 . ,
where B k ( ) is defined in (79).
Combining (70), (72), (73) and (106), we can find real constants θ k > 0 ( 2 k 9 ) , such that if we take
M = u 4 θ k , 2 < k 8 , u A 0 4 A 0 9 θ k , k = 9 ,
where A 0 = 262 / 27 , then
p u p ( m o d q ) Δ k ( p ) = 1 φ ( q ) B k ( ) ( 2 π ) k 2 k 1 2 u t k / 4 log t d t + O u 1 + k / 4 e c 2 log u + O ( u 1 + k / 4 θ k + ε ) ,
and it is easy to see that the latter O-term can be ignored; thus, we have
π ( u ; q , ; k ) = 1 φ ( q ) B k ( ) ( 2 π ) k 2 k 1 2 u t k / 4 log t d t + O u 1 + k / 4 e c 2 log u .

5.2. Asymptotic Formula for S 1 ( N )

Since k 1 , k 2 and k 3 are symmetric in S 1 ( N ) , without loss of generality, we will only evaluate F 1 ( α ) .
Lemma 13.
Using the notations in Section 3. For α = a q + λ , | λ | 1 q τ with q Q , we have
F 1 ( α ) = B k 1 ( ) ( 2 π ) k 1 2 k 1 1 μ ( q ) φ ( q ) υ 1 ( λ ) + O ( N 1 + k 1 4 e c 3 log N ) ,
where c 3 > 0 is a constant, B k 1 ( ) is defined in Equation (79), and
υ 1 ( λ ) = 2 N u k 1 4 e ( u λ ) log u d u .
In addition, F i ( α ) , B k i ( ) , and υ i ( λ ) ( i = 2 , 3 ) are defined similarly and have the similar asymptotic formulas, which are depended only on k 2 and k 3 .
Proof. 
At the begining of Section 5, we obtain
F 1 ( α ) = = 1 ( , q ) = 1 q e a q 2 N e ( u λ ) d π ( u ; q , ; k 1 ) = = 1 ( , q ) = 1 q e a q 2 N e ( u λ ) d 1 φ ( q ) B k 1 ( ) ( 2 π ) k 1 2 k 1 1 2 u t k 1 4 log t d t + O u 1 + k 1 4 e c 2 log u = 1 φ ( q ) B k 1 ( ) ( 2 π ) k 1 2 k 1 1 = 1 ( , q ) = 1 q e a q 2 N u k 1 4 e ( u λ ) log u d u + O ( 1 + | λ | N ) N 1 + k 1 4 e c 2 log N = 1 φ ( q ) B k 1 ( ) ( 2 π ) k 1 2 k 1 1 = 1 ( , q ) = 1 q e a q 2 N u k 1 4 e ( u λ ) log u d u + O N 1 + k 1 4 e c 3 log N ,
where c 3 > 0 is a constant. Noting that
= 1 ( , q ) = 1 q e a q = μ ( q ) ,
we get
F 1 ( α ) = B k 1 ( ) ( 2 π ) k 1 2 k 1 1 μ ( q ) φ ( q ) υ 1 ( λ ) + O ( N 1 + k 1 4 e c 3 log N ) .
Then, we turn to evaluate S 1 ( N ) .
Lemma 14.
For 2 k 1 , k 2 , k 3 9 , we have
S 1 ( N ) = 3 + k 1 + k 2 + k 3 4 Γ 1 + k 1 4 Γ 1 + k 2 4 Γ 1 + k 2 4 Γ 3 + k 1 + k 2 + k 3 4 C ( k 1 , k 2 , k 3 ) S ( N ) N 2 + k 1 + k 2 + k 3 4 log 3 N + O N 2 + k 1 + k 2 + k 3 4 log 4 N ,
where S ( N ) is defined in, Γ is the Euler Gamma function, and C ( k 1 , k 2 , k 3 ) are constants defined by
C ( k 1 , k 2 , k 3 ) = i = 1 3 B k i ( ) ( 2 π ) k i 2 k i 1 .
Proof. 
By Equation (109), Lemma 112, and using the trival estimate | υ i ( λ ) | N 1 + k i 4 / log N ( i = 1 , 2 , 3 ) , we derive that
i = 1 3 F i ( α ) = C ( k 1 , k 2 , k 3 ) μ ( q ) φ 3 ( q ) i = 1 3 υ i ( λ ) + O N 3 + k 1 + k 2 + k 3 4 e c 4 log N ,
where c 4 > 0 is a constant. Then, we have
1 C ( k 1 , k 2 , k 3 ) E 1 1 3 F i ( α ) e ( N α ) d α = 1 q Q a = 1 ( a , q ) = 1 q e a N q 1 q τ 1 q τ μ ( q ) φ 3 ( q ) i = 1 3 υ i ( λ ) + O N 3 + k 1 + k 2 + k 3 4 e c 4 log N e ( N λ ) d λ = 1 q Q μ ( q ) φ 3 ( q ) a = 1 ( a , q ) = 1 q e a N q 1 q τ 1 q τ i = 1 3 υ i ( λ ) e ( N λ ) d λ + O N 3 + k 1 + k 2 + k 3 4 e c 4 log N Q τ 1 = 1 q Q μ ( q ) φ 3 ( q ) a = 1 ( a , q ) = 1 q e a N q 1 q τ 1 q τ i = 1 3 υ i ( λ ) e ( N λ ) d λ + O N 2 + k 1 + k 2 + k 3 4 e c 5 log N ,
where c 5 > 0 is a constant.
Define
υ i * ( λ ) : = n = 3 N n k i 4 e ( n λ ) log n , υ i * * ( λ ) : = n = 3 N n k i 4 e ( n λ ) log N , i = 1 , 2 , 3 .
Next, for i = 1 , 2 , 3 , we have
n 1 n u k i 4 e ( u λ ) log u d u n k i 4 e ( n λ ) log n = n 1 n u k i 4 e ( u λ ) log u n k i 4 e ( n λ ) log n d u = n 1 n n u x k i 4 e ( λ x ) log x d x d u = n 1 n n u 2 π i λ e ( λ x ) x k i 4 log x + x k i 4 1 e ( λ x ) log x x k i 4 1 e ( λ x ) log 2 x d x d u | λ | n k i 4 + n k i 4 1 log n ,
and thus
υ i ( λ ) = 2 N u k 1 4 e ( u λ ) log u d u = n = 3 N n 1 n u k 1 4 e ( u λ ) log u d u = n = 3 N n k i 4 e ( n λ ) log n + O n = 3 N | λ | n k i 4 + n k i 4 1 log n = n = 3 N n k i 4 e ( n λ ) log n + O N k i 4 + | λ | N 1 + k i 4 = υ i * ( λ ) + O N k i 4 ( log N ) B
Therefore, we get
i = 1 3 υ i ( λ ) = i = 1 3 υ i * ( λ ) + O N 2 + k 1 + k 2 + k 3 4 ( log N ) B 2 ,
where we use the trivial estimate | υ i ( λ ) | N 1 + k i 4 ( log N ) 1 . Hence, one has
1 q τ 1 q τ i = 1 3 υ i ( λ ) e ( N λ ) d λ = 1 q τ 1 q τ i = 1 3 υ i * ( λ ) e ( N λ ) d λ + O N 2 + k 1 + k 2 + k 3 4 ( log N ) B 2 ( q τ ) 1 = 1 q τ 1 q τ i = 1 3 υ i * ( λ ) e ( N λ ) d λ + O N 1 + k 1 + k 2 + k 3 4 ( log N ) 2 B 2 .
By Lemma 1 and partial summation, we derive that
υ i * ( λ ) = 2 < n N n k i 4 e ( n λ ) log n = 2 N u k i 4 log u d 2 < n u e ( λ n ) N k i 4 log N 2 < n N e ( λ n ) + 2 N 2 < n u e ( λ n ) u k i 4 1 1 log u u k i 4 1 1 log 2 u d u N k i 4 max 2 < u N 2 < n u e ( λ n ) N k i 4 max 2 < u N min u , 1 | λ | N k i 4 min N , 1 | λ | ,
which implies that
1 q τ 1 2 i = 1 3 υ i * ( λ ) e ( N λ ) d λ N k 1 + k 2 + k 3 4 1 q τ 1 2 d λ | λ | 3 N k 1 + k 2 + k 3 4 ( q τ ) 2 N k 1 + k 2 + k 3 4 ( Q τ ) 2 N 2 + k 1 + k 2 + k 3 4 ( log N ) 2 ( B A ) .
Therefore, we have
1 q τ 1 q τ i = 1 3 υ i * ( λ ) e ( N λ ) d λ 1 2 1 2 i = 1 3 υ i * ( λ ) e ( N λ ) d λ + O N 2 + k 1 + k 2 + k 3 4 ( log N ) 2 ( B A ) .
On the other hand, we get
| υ i * ( λ ) υ i * * ( λ ) | = n = 3 N n k i 4 e ( n λ ) log n n = 3 N n k i 4 e ( n λ ) log N N k i 4 n = 3 N 1 log n 1 log N N k i 4 2 N 1 log u 1 log N d u = N k i 4 2 N u N d t t log 2 t d u = N k i 4 2 N d t t log 2 t 2 t d u N k i 4 2 N d t log 2 t N 1 + k i 4 log 2 N ,
which implies
υ i * ( λ ) = υ i * * ( λ ) + O N 1 + k i 4 log 2 N .
We have
a 1 a 2 a 3 b 1 b 2 b 3 = ( a 1 b 1 ) a 2 a 3 + ( a 2 b 2 ) a 1 b 3 + ( a 3 b 3 ) b 1 b 2 | a 1 b 1 | | a 2 a 3 | + | a 2 b 2 | | a 1 b 3 | + | a 3 b 3 | | b 1 b 2 | ,
thus
i = 1 3 υ i * ( λ ) i = 1 3 υ i * * ( λ ) N 1 + k 1 4 log 2 N υ 2 * ( λ ) υ 3 * ( λ ) + N 1 + k 2 4 log 2 N υ 3 * ( λ ) υ 3 * * ( λ ) + N 1 + k 3 4 log 2 N υ 1 * * ( λ ) υ 2 * * ( λ ) ,
and without loss of generality, we derive that
1 2 1 2 i = 1 3 υ i * ( λ ) e ( N λ ) d λ = 1 2 1 2 i = 1 3 υ i * * ( λ ) e ( N λ ) d λ + O N 1 + k 1 4 log 2 N 1 2 1 2 υ 2 * ( λ ) υ 3 * ( λ ) d λ + O N 1 + k 2 4 log 2 N 1 2 1 2 υ 3 * ( λ ) υ 3 * * ( λ ) d λ + O N 1 + k 3 4 log 2 N 1 2 1 2 υ 1 * * ( λ ) υ 2 * * ( λ ) d λ .
Noting the fact that
1 2 1 2 υ i * ( λ ) 2 d λ = n 1 = 3 N n 2 = 3 N ( n 1 n 2 ) k i 4 log n 1 log n 2 1 2 1 2 e ( λ ( n 1 n 2 ) ) d λ N 1 + k i 2 log 2 N ,
and
1 2 1 2 υ i * * ( λ ) 2 d λ = 1 log 2 N n 1 = 3 N n 2 = 3 N ( n 1 n 2 ) k i 4 1 2 1 2 e ( λ ( n 1 n 2 ) ) d λ N 1 + k i 2 log 2 N ,
using the Cauchy–Schwarz’s inequality, we deduce that
1 2 1 2 i = 1 3 υ i * ( λ ) e ( N λ ) d λ = 1 2 1 2 i = 1 3 υ i * * ( λ ) e ( N λ ) d λ + O N 2 + k 1 + k 2 + k 3 4 log 4 N .
And then we have
1 2 1 2 i = 1 3 υ i * ( λ ) e ( N λ ) d λ = 1 ( log N ) 3 n 1 = 3 N n 2 = 3 N n 3 = 3 N n 1 k 1 4 n 2 k 2 4 n 3 k 3 4 1 2 1 2 e ( ( n 1 + n 2 + n 3 N ) λ ) d λ + O N 2 + k 1 + k 2 + k 3 4 log 4 N = 1 ( log N ) 3 N = n 1 + n 2 + n 3 3 < n i N i = 1 , 2 , 3 n 1 k 1 4 n 2 k 2 4 n 3 k 3 4 + O N 2 + k 1 + k 2 + k 3 4 log 4 N .
Using partial summation and Theorem 3.6 in Karatsuba [26], we derive that
1 2 1 2 i = 1 3 υ i * ( λ ) e ( N λ ) d λ = 1 N u 1 + u 2 + u 3 N 0 < u 1 , u 2 , u 3 N u 1 k 1 4 u 2 k 2 4 u 3 k 3 4 d u 1 d u 2 d u 3 + O N 2 + k 1 + k 2 + k 3 4 log 4 N = N 2 + k 1 + k 2 + k 3 4 log 3 N u 1 + u 2 + u 3 1 0 < u 1 , u 2 , u 3 1 u 1 k 1 4 u 2 k 2 4 u 3 k 3 4 d u 1 d u 2 d u 3 + O N 2 + k 1 + k 2 + k 3 4 log 4 N = 3 + k 1 + k 2 + k 3 4 Γ 1 + k 1 4 Γ 1 + k 2 4 Γ 1 + k 2 4 Γ 3 + k 1 + k 2 + k 3 4 N 2 + k 1 + k 2 + k 3 4 log 3 N + O N 2 + k 1 + k 2 + k 3 4 log 4 N .
By Equations (123), (126) and (136), we can see that the innermost integral in Equation (118) is
1 q τ 1 q τ i = 1 3 υ i ( λ ) e ( N λ ) d λ = 1 q τ 1 q τ i = 1 3 υ i * ( λ ) e ( N λ ) d λ + O N 1 + k 1 + k 2 + k 3 4 ( log N ) 2 B 2 = 1 2 1 2 i = 1 3 υ i * ( λ ) e ( N λ ) d λ + O N 2 + k 1 + k 2 + k 3 4 ( log N ) 2 ( B A ) + N 1 + k 1 + k 2 + k 3 4 ( log N ) 2 B 2 = 3 + k 1 + k 2 + k 3 4 Γ 1 + k 1 4 Γ 1 + k 2 4 Γ 1 + k 2 4 Γ 3 + k 1 + k 2 + k 3 4 N 2 + k 1 + k 2 + k 3 4 log 3 N + O N 2 + k 1 + k 2 + k 3 4 log 4 N .
Putting Equation (137) into Equation (118), and using the conclusion of the three primes theorem, we have
S 1 ( N ) = 3 + k 1 + k 2 + k 3 4 Γ 1 + k 1 4 Γ 1 + k 2 4 Γ 1 + k 2 4 Γ 3 + k 1 + k 2 + k 3 4 C ( k 1 , k 2 , k 3 ) S ( N ) N 2 + k 1 + k 2 + k 3 4 log 3 N + O N 2 + k 1 + k 2 + k 3 4 log 4 N .
Hence, we have completed the proof of Lemma 14. □

6. Upper Bound Estimate for S 2 ( N )

Since k 1 , k 2 , k 3 are symmetric, without loss of generality, we assume max ( k 1 , k 2 , k 3 ) = k 1 , then
S 2 ( N ) = E 2 i = 1 3 F i ( α ) e ( N α ) d α sup α E 2 | F 1 ( α ) | 0 1 | F 2 ( α ) F 3 ( α ) | d α .
Using Cauchy–Schwarz’s inequality, we derive that
S 2 ( N ) sup α E 2 | F 1 ( α ) | 0 1 | F 2 ( α ) | 2 d α 1 / 2 0 1 | F 3 ( α ) | 2 d α 1 / 2 sup α E 2 | F 1 ( α ) | p 1 N p 2 N Δ k 2 ( p 1 ) Δ k 2 ( p 2 ) 0 1 e ( ( p 1 p 2 ) α ) d α 1 / 2 × p 1 N p 2 N Δ k 3 ( p 1 ) Δ k 3 ( p 2 ) 0 1 e ( ( p 1 p 2 ) α ) d α 1 / 2 sup α E 2 | F 1 ( α ) | p N Δ 2 k 2 ( p ) 1 / 2 p N Δ 2 k 3 ( p ) 1 / 2 sup α E 2 | F 1 ( α ) | N 1 + k 2 + k 3 4 log N
provided that 2 k 2 4 and 2 k 3 4 , where we use Equation (10). Then, in order to prove the theorem, we need to show
sup α E 2 | F 1 ( α ) | N 1 + k 1 4 log 3 N .
For i = 1 , 2 , 3 , using partial summation, we obtain
F i ( α ) = p N Δ k i ( p ) e ( p α ) = 2 N e ( u α ) d p u Δ k i ( p ) = 2 N e ( u α ) d B k i ( ) ( 2 π ) k i 2 k i 1 1 φ ( q ) 2 u t k i 4 log t d t + O u 1 + k i 4 e c 6 log u = B k i ( ) ( 2 π ) k i 2 k i 1 1 φ ( q ) 2 N u k i 4 e ( u α ) log u d u + O u 1 + k i 4 e c 6 log u .
where c 6 > 0 is a constant. For α = a / q + λ with Q < q τ , | λ | 1 q τ and ( a , q = 1 ) , 1 a q , and thus, we obtain
F i ( α ) N k i 4 | α | log N N k i 4 τ log N N 1 + k i 4 log B + 1 N
by using the first derivative test (see (2.3) of Ivić [7]). If B 2 , Equation (141) holds, and hence
S 2 ( N ) N 2 + k 1 + k 2 + k 3 4 log 4 N .
Combining Equation (25), Lemma 14, and Equation (144), we complete the proof of Theorem 1.

7. Proof of Theorem 2

We are going to give the upper bound for F i ( α ) ( i = 1 , 2 , 3 ) when k i = 1 . We have
p N Δ ( p ) e ( p α ) = p N δ 1 ( p , M ) e ( p α ) + p N δ 2 ( p , M ) e ( p α ) : = Φ 1 + Φ 2 .
For Φ 2 , by Equation (45) and Cauchy–Schwarz’s inequality,
p N δ 2 ( p , M ) e ( p α ) p N δ 2 2 ( p , M ) 1 / 2 p N 1 1 / 2 N 5 / 4 + ε M 1 / 4
holds for M N 1 / 3 .
In order to estimate Φ 1 , by Lemma 9 and the similar argument in Section 5.1, it is sufficient to estimate
N 1 / 4 M 3 / 4 m M d ( m ) n 1 N 1 n 6 N 6 ( log n 1 ) μ ( n 4 ) μ ( n 5 ) μ ( n 6 ) e 2 m 1 / 2 n 1 n 2 n 6 + ( n 1 n 2 n 6 ) α ,
where N 1 N 6 u ; 2 N i ( 2 u ) 1 / 3 , i = 4 , 5 , 6 and some n i may only take value 1, α [ 0 , 1 ] . Furthermore, using Lemmas 11 and 12 of the condition k = 1 , similar to the four cases in Section 4, we have
N ε Φ 1 N 3 / 4 M 1 / 2 + N M 3 / 8 + N 7 / 8 M 1 / 4 + N 13 / 12 M 1 / 3 .
Take M = N 1 / 4 , combining Equations (145), (146) and (148) we obtain
F i ( α ) N 19 / 16 + ε .
Thus, if there exists j { 1 , 2 , 3 } such that k j = 1 (without loss of generality we take j = 1 ), then
S ( N ; k 1 , k 2 , k 3 ) = 0 1 F 1 ( α ) F 2 ( α ) F 3 ( α ) e ( N α ) d α sup α [ 0 , 1 ] | F 1 ( α ) | 0 1 | F 2 ( α ) F 3 ( α ) | d α .
By Equation (140) we obtain
S ( N ; k 1 , k 2 , k 3 ) sup α [ 0 , 1 ] | F 1 ( α ) | N 1 + k 2 + k 3 4 log N N 2 + k 1 + k 2 + k 3 4 1 16 + ε .
Thus, we have completed the proof of Theorem 2.

8. Conclusions

This article gives an analogue of the three primes theorem, which is weighted by Δ ( · ) . The methods in this paper can be used for further research. For example, the three primes theorem weighted by the error term of the sum of other arithmetic functions may only need to give new estimate for the exponential sum generated by new error terms. Moreover, it may be used in other problems which should use the circle method.

Funding

This work is supported by the Natural Science Foundation of Beijing Municipal (Grant No.1242003) and the National Natural Science Foundation of China (Grant No.12471009).

Acknowledgments

The authors would like to appreciate the peer reviewer for their patience in reviewing this paper.

Conflicts of Interest

The author declares no conflicts of interest.

References

  1. Huxley, M.N. Exponential sums and lattice points. II. Proc. Lond. Math. Soc. 1993, 66, 279–301. [Google Scholar] [CrossRef]
  2. Kolesnik, G. On the order of ζ( 1 2 + it) and Δ(R). Pac. J. Math. 1982, 98, 107–122. [Google Scholar] [CrossRef]
  3. van der Corput, J.G. Zum Teilerproblem. Math. Ann. 1928, 98, 697–716. [Google Scholar] [CrossRef]
  4. Voronoï, G. Sur une fonction transcendante et ses applications à la sommation de quelques séries. Ann. Sci. École Norm. Sup. 1904, 21, 207–267. [Google Scholar] [CrossRef]
  5. Huxley, M.N. Exponential sums and lattice points. III. Proc. Lond. Math. Soc. 2003, 87, 591–609. [Google Scholar] [CrossRef]
  6. Lau, Y.-K.; Tsang, K.-M. On the mean square formula of the error term in the Dirichlet divisor problem. Math. Proc. Camb. Philos. Soc. 2009, 146, 277–287. [Google Scholar] [CrossRef]
  7. Ivić, A. The Riemann Zeta-Function; A Wiley-Interscience Publication; John Wiley & Sons, Inc.: New York, NY, USA, 1985. [Google Scholar]
  8. Ivić, A.; Sargos, P. On the higher moments of the error term in the divisor problem. Ill. J. Math. 2007, 51, 353–377. [Google Scholar] [CrossRef]
  9. Cao, X.; Tanigawa, Y.; Zhai, W. On hybrid moments of Δ2(x) and Δ3(x). Ramanujan J. 2022, 58, 597–631. [Google Scholar] [CrossRef]
  10. Li, J. On the seventh power moment of Δ(x). Int. J. Number Theory 2017, 13, 571–591. [Google Scholar] [CrossRef]
  11. Tsang, K.M. Higher-power moments of Δ(x), E(t) and P(x). Proc. Lond. Math. Soc. 1992, 65, 65–84. [Google Scholar] [CrossRef]
  12. Zhai, W. On higher-power moments of Δ(x). II. Acta Arith. 2004, 114, 35–54. [Google Scholar] [CrossRef]
  13. Zhai, W. On higher-power moments of Δ(x). III. Acta Arith. 2005, 118, 263–281. [Google Scholar] [CrossRef]
  14. Zhang, D.; Zhai, W. On the fifth-power moment of Δ(x). Int. J. Number Theory 2011, 7, 71–86. [Google Scholar] [CrossRef]
  15. Cao, X.; Furuya, J.; Tanigawa, Y.; Zhai, W. On the differences between two kinds of mean value formulas of number-theoretic error terms. Int. J. Number Theory 2014, 10, 1143–1170. [Google Scholar] [CrossRef]
  16. Furuya, J. On the average orders of the error term in the Dirichlet divisor problem. J. Number Theory 2005, 115, 1–26. [Google Scholar] [CrossRef]
  17. Hardy, G.H. The Average Order of the Arithmetical Functions P(x) and Δ(x). Proc. Lond. Math. Soc. 1916, 15, 192–213. [Google Scholar] [CrossRef]
  18. Voronoi, G. Sur un problème du calcul des fonctions asymptotiques. J. Reine Angew. Math. 1903, 126, 241–282. [Google Scholar] [CrossRef]
  19. Guo, Z.; Li, X. On a sum of the error term of the dirichlet divisor function over primes. arXiv 2024, arXiv:2410.00329. [Google Scholar]
  20. Guo, Z.; Li, X. On high power moments of the error term of the dirichlet divisor function over primes. arXiv 2024, arXiv:2410.00936. [Google Scholar]
  21. Vinogradov, I.M. Representation of an odd number as the sum of three primes. Proc. Ussr Acad. Sci. 1937, 15, 129–132. [Google Scholar]
  22. Iwaniec, H.; Kowalski, E. Analytic Number Theory; Volume 53 of American Mathematical Society Colloquium Publications; American Mathematical Society: Providence, RI, USA, 2004. [Google Scholar]
  23. D. R. Heath-Brown. Prime numbers in short intervals and a generalized Vaughan identity. Can. J. Math. 1982, 34, 1365–1377. [Google Scholar] [CrossRef]
  24. Srinivasan, B.R. The lattice point problem of many-dimensional hyperboloids. II. Acta Arith. 1963, 8, 173–204. [Google Scholar] [CrossRef]
  25. Graham, S.W.; Kolesnik, G. Van der Corput’s Method of Exponential Sums; volume 126 of London Mathematical Society Lecture Note Series; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
  26. Karatsuba, A.A. Basic Analytic Number Theory; Russian Edition; Springer: Berlin, Germany, 1993. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Guo, Z. On the Symmetric Form of the Three Primes Theorem Weighted by Δ(x). Symmetry 2025, 17, 76. https://doi.org/10.3390/sym17010076

AMA Style

Guo Z. On the Symmetric Form of the Three Primes Theorem Weighted by Δ(x). Symmetry. 2025; 17(1):76. https://doi.org/10.3390/sym17010076

Chicago/Turabian Style

Guo, Zhen. 2025. "On the Symmetric Form of the Three Primes Theorem Weighted by Δ(x)" Symmetry 17, no. 1: 76. https://doi.org/10.3390/sym17010076

APA Style

Guo, Z. (2025). On the Symmetric Form of the Three Primes Theorem Weighted by Δ(x). Symmetry, 17(1), 76. https://doi.org/10.3390/sym17010076

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop