Systematic Literature Review of Optimization Algorithms for P||Cmax Problem
Abstract
:1. Introduction
- Report the results of a systematic literature review (SLR) conducted to identify, extract, evaluate, and synthesize the studies on the optimization algorithms. Summarize and categorize existing methods;
- Standardize the problem instances that the majority of algorithms were tested on;
- Uncover a comparison methodology for a fair algorithm performance evaluation.
2. Background
- Exact (E)—provide guarantees of optimality;
- Heuristic (H)—include constructive, improvement, and approximation algorithms;
- Metaheuristic (MH)—include general solution frameworks, possibly hybrid algorithms.
Paper | Time Period | Specific | Methods | Instances Used | Comparisons Explained |
---|---|---|---|---|---|
[21] | 1959–1970 | no | H | P | P |
[22] | 1959–1974 | no | E, H | N/A | P |
[23] | 1959–1977 | no | H | N/A | N/A |
[4] | 1959–1979 | no | H | N/A | P |
[24] | 1966–1981 | yes | H | N/A | P |
[18] | 1966–1981 | no | E, H | N/A | P |
[25] | 1966–1982 | no | H | N/A | P |
[26] | 1966–1987 | no | E, H | P | P |
[27] | 1969–1987 | no | H | N/A | P |
[28] | 1969–1987 | no | E | N/A | P |
[29] | 1966–1993 | no | H, MH | N/A | P |
[30] | 1959–1994 | no | E, H | P | P |
[31] | 1959–1997 | no | E, H | N/A | N/A |
[32] | 1959–1998 | no | E, H | N/A | P |
[33] | 1959–1999 | no | E, H | N/A | P |
[34] | 1966–2001 | no | E, H, MH | N/A | P |
[7] | 1959–2003 | no | MH | P | P |
[35] | 1959–2004 | no | H | N/A | N/A |
[36] | 1966–2004 | no | E, H, MH | N/A | P |
[20] | 1966–2008 | no | E, H, MH | P | P |
[37] | 1959–2009 | no | E, H, MH | N/A | P |
[38] | 1959–2012 | no | E, H, MH | N/A | P |
[39] | 1966–2013 | no | E, H, MH | P | P |
[40] | 1969–2014 | yes | E | P | P |
[8] | 1959–2017 | no | E, H, MH | P | P |
[41] | 1961–2017 | yes | H | P | P |
[42] | 1959–2018 | yes | E, H | P | P |
[43] | 1982–2022 | no | E | N/A | N/A |
[44] | 1959–2022 | no | E, H | P | P |
Proposed SLR | 1959–2024 | yes | All | All | All |
3. Systematic Literature Review Mapping Methodology
- Objectives and research questions;
- Search strategy;
- Search criteria;
- Inclusion and exclusion criteria;
- Search and selection procedure;
- Data extraction and synthesis;
- Important characteristics of selected primary studies.
3.1. Objectives and Research Questions
- RQ1. What are the main characteristics of optimization methods?
- RQ2. What are the characteristics of problem instances that methods were tested on?
- RQ3. What are the characteristics of comparison methodologies used for performance evaluation of optimization methods identified in RQ1?
- RQ4: Based on RQ3, could a fair algorithm’s performance evaluation be defined?
3.2. Search Strategy
3.3. Search Criteria
3.4. Inclusion and Exclusion Criteria
- IC1: the language is English;
- IC2: it is relevant to the problem;
- IC3: it is an empirical research paper, a technical report, a proof of concept, a journal article, a thesis, or a conference paper;
- IC4: it cites or is cited by any of the recognized research studies.
- EC1: study’s focus is not explicitly on scheduling problems related to ;
- EC2: the study does not address the optimization;
- EC3: the study does not meet all the inclusion criteria.
3.5. Search and Selection Procedure
- QC1: Does the research clearly address any theoretical aspect? (1 or 0);
- QC2: Does the research clearly explain a method? (1 or 0);
- QC3: Are the findings clearly stated? (1 or 0);
- QC4: Based on the findings, is the research valuable? (1 or 0).
3.6. Data Extraction and Synthesis
3.7. Important Characteristics of the Selected Primary Studies
4. RQ1: Optimization Algorithms
4.1. The Main Issues in Developing Optimization Algorithms
- reduce search space;
- have suitable data structures;
- have efficient rules for the construction/transformation of solutions.
4.1.1. Search Space Reduction
4.1.2. Data Structures
4.1.3. Construction/Transformation Rules
4.2. Exact Algorithms
- Exact exponential algorithms (EE);
- Fixed parameter tractable algorithms (FPT);
- Hybrid exact algorithms (HE).
4.2.1. Exponential Exact Algorithms
4.2.2. Fixed Parameter Tractable Algorithms
4.2.3. Hybrid Exact Algorithms
4.2.4. Summary of Exact Approaches
4.3. Heuristic Approaches
- Constructive Heuristics (CH);
- Improvement Heuristics (IH);
- Polynomial Time Approximation Schemes (PTAS).
4.3.1. Constructive Heuristics
4.3.2. Improvement Heuristics
Name | Reference | Known Characteristics | Compared With |
---|---|---|---|
N/A | 1978 [153] | Interactive | N/A |
IC | 1979 [154] | Interchange; AR: ; WTC: | N/A |
KOMP | 1980 [112] | KP + Interchange; WTC: | N/A |
EX | 1981 [157] | Interchange + Decomposition; AR: ; WTC: | N/A |
ICI, ICII | 1982 [155] | Interchange; AR: ; WTC: , Interchange; AR: ; WTC: | N/A |
3-PHASE | 1994 [135] | Interchange + Decomposition; AR: 2 | [154,155] |
X-TMO | 1995 [159] | SSP; AR: ; WTC: | N/A |
1996 [136] | Interchange; WTC: | N/A | |
PI | 1998 [160] | Interchange; WTC: | N/A |
1999 [17] | Cutting plane + ILP + Polyhedral theory | N/A | |
LPT+, MF+ | 2002 [161] | Interchange; AR: ; WTC: , Interchange; AR: ; WTC: | N/A |
ME | 2004 [162,163] | Interchange + Graph | [135] |
HI | 2004 [139] | BPP+TS; AR: | [135,163] |
MSS | 2006 [95] | SSP; AR: ; WTC: | [57,139] |
MSK | 2008 [14] | KP; AR: ; WTC: | [57,95,139] |
CA | 2011 [164] | Partial | [139,163] |
PSMF+ | 2015 [145] | Interchange + Partial; AR: ; | [139,163] |
2018 [122] | Interchange + BPP | [139] | |
MMIPMH | 2019 [165] | Hopfild; AR: | N/A |
SLACK+ | 2020 [146] | Interchange; AR: | N/A |
N/A | 2022 [166] | Interchange + KP | N/A |
DIST | 2023 [12] 2023 | Decomposition + MKP; AR: ; WTC: | N/A |
4.3.3. Polynomial Time Approximation Schemes
4.3.4. Summary of Heuristic Approaches
4.4. Metaheuristics
Summary of Metaheuristic Approaches
4.5. Parallel Optimization Algorithms
4.6. Taxonomy of Optimization Algorithms
5. RQ2: Standardization of the Problem Instances
- E instances;
- F instances;
- C instances;
- B instances.
5.1. E Instances
m | D | |||
---|---|---|---|---|
2, 3, 5 | 3, 4, 5 | , | ||
5, 15, 25, 50 | 2 | |||
3.33, 10, 16.67, 33.33 | 3 | |||
7.5, 12.5, 25 | 4 | |||
5, 8.33, 16.67 | 6 | |||
3.75, 6.25, 12.5 | 8 | |||
3, 5, 10 | 10 | |||
3.33, 3.67, 4.33, 4.67, 5.33, 5.67 | 3 | , , | ||
3.2, 3.4, 4.2, 4.4, 5.2, 5.4 | 5 | |||
3.12, 3.25, 4.12, 4.25, 5.12, 5.25 | 8 | |||
3.1, 3.2, 4.1, 4.2, 5.1, 5.2 | 10 | |||
4.5 | 2 | , , , , | ||
3.33 | 3 |
5.2. F Instances
m | D | |||
---|---|---|---|---|
2, 10, 20, 100, 200 | 5 | , , | ||
5, 10, 50, 100 | 10 | |||
2, 4, 20, 40 | 25 | |||
2, 10, 20, 100, 200 | 5 | |||
5, 10, 50, 100 | 10 | |||
2, 4, 20, 40 | 25 |
5.3. C Instances
m | D | |||
---|---|---|---|---|
2 | 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 | , , , , , , | ||
2.25 | 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88 | |||
2.5 | 8, 16, 24, 32, 40, 48, 56, 64, 72, 80 | |||
2.75 | 8, 16, 24, 32, 40, 48, 56, 64, 72, 80 | |||
3 | 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66 | |||
4 | 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 | |||
4.5 | 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88 | |||
5 | 8, 16, 24, 32, 40, 48, 56, 64, 72, 80 | |||
5.5 | 8, 16, 24, 32, 40, 48, 56, 64, 72, 80 | |||
6 | 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66 |
5.4. B Instances
m | D | |||
---|---|---|---|---|
5.5. Other Instances
5.6. Summary of Instance Groups
6. RQ3: Comparisons
6.1. General Methodology
- Select performance metrics;
- Design the experiment;
- Select test instances;
- Perform an experiment;
- Analyze and present results.
- Avoid comparing tuned versus untuned algorithms. Namely, the best scenario is if algorithms are compared at their peak performance, i.e., after parameter values are determined via some tuning procedure.
- Whenever possible, conduct a comparison on the same machine, with respect to both hardware and software characteristics. If this is not possible, use a machine with similar characteristics and perform the appropriate scaling of the results.
- The analysis must adhere to the 3Rs of Data Science: repeatability, reproducibility, and replicability all pointing towards getting the same results. Repeatability involves the same researcher and environment. Reproducibility engages another researcher on the same computer system. Replicability means that the estimated performance could be achievable by anyone in any computing environment.
6.2. Problem Specific Methodology
- —the objective function value [6,110,111,148,188]. This is the simplest solution quality measure, used mostly in the cases when the optimum or some other relevant data are not known. The makespan values obtained by analyzed algorithms are compared and the lowest among them is declared as the best. The main disadvantage of this metric is that it does not give any information about the distance of compared solutions from the best possible (optimum) solution.
- (error)—relative distance between the compared solutions [5,8,14,20,21,26,95,113,114,133,134,135,136,137,138,139,141,142,145,148,153,157,159,163,164,173,177,182,183,184,189,190,193,194,195,196,197,198,199,200,204,219,220]. The is calculated as , where bound is usually some estimation for the makespan of the best possible solution ; however, it can also be the makespan of the solution provided by some other algorithm . Other than having the same drawback as the previous metric, the main disadvantage of using the is that it can be calculated in different ways. When calculated differently, there is no consistent way of establishing a fair comparison.
6.3. Comparisons of Specific Algorithms Problem
6.3.1. Comparisons of Exact Algorithms
6.3.2. Comparisons of Heuristic Algorithms
6.3.3. Metaheuristics Comparisons
7. RQ4: Discussion, Challenges, and Future Work
- Isomorphic versions of problem;
- A lot of taxonomies available;
- Standardization of identified groups of instances;
- Instance nomenclature limitations;
- Fair algorithm performance evaluation;
- The state-of-the-art algorithm identification.
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Meaning | Group |
AF | Arc-flow | Exact |
B&B | Branch and Bound | |
DP | Dynamic Programming | |
EE | Exponential Exact | |
EN | Enumeration Approach | |
FPT | Fixed Parameter Tractable | |
HE | Hybrid Exact | |
LDE | Linear Diophantine Equations | |
SSM | Sort and Search Method | |
CH | Constructive Heuristic | Heuristic |
IH | Improvement Heuristic | |
PTAS | Polynomial Time Approximation Scheme | |
ACO | Ant Colony Optimisation | Metaheuristic |
ANN | Artificial Neural Network | |
BCO | Bee Colony Optimization | |
CS | Cuckoo Search | |
GA | Genetic Algorithm | |
GES | Grouping Evolutionary Strategy | |
GWO | Grey Wolf Optimiser | |
HS | Harmony Search | |
IBA | Immune-Based Approach | |
ILS | Iterated Local Search | |
MC | Monte Carlo | |
MH | Metaheuristic | |
PSO | Particle Swarm Optimization | Metaheuristic |
SS | Scatter Search | |
SA | Simulated Annealing | |
TS | Tabu Search | |
VNS | Variable Neighborhood Search | |
BPP | Bin Packing Problem | Problems |
IPMS | Identical Parallel Machine Scheduling Problem () | |
KP | Knapsack Problem | |
MKP | Multiple Knapsack Problem | |
MMBPP | Min-Max Bin Packing Problem () | |
MSSP | Multiple Subset-Sum Problem | |
MWNP | Multi-Way Number Partitioning Problem () | |
SSP | Subset-Sum Problem | |
AI | Artificial Intelligence | Terminology |
BC | Blockchain | |
ML | Machine Learning | |
OR | Operational Research | |
SLR | Systematic Literature Review | |
LB | Lower Bound |
References
- Maleš, U.; Ramljak, D.; Jakšić-Krüger, T.; Davidović, T.; Ostojić, D.; Haridas, A. Controlling the Difficulty of Combinatorial Optimization Problems for Fair Proof-of-Useful-Work-Based Blockchain Consensus Protocol. Symmetry 2023, 15, 140. [Google Scholar] [CrossRef]
- Garey, M.R.; Johnson, D.S. Computers and Intractability; Freeman and Company: San Francisco, CA, USA, 1979. [Google Scholar]
- Pinedo, M.L. Scheduling: Theory, Algorithms, and Systems, 5th ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A.R. Optimization and approximation in deterministic sequencing and scheduling: A survey. In Annals of Discrete Mathematics; Elsevier: Amsterdam, The Netherlands, 1979; Volume 5, pp. 287–326. [Google Scholar]
- Sevkli, M.; Uysal, H. A modified variable neighborhood search for minimizing the makespan on identical parallel machines. In Proceedings of the 2009 International Conference on Computers & Industrial Engineering, Troyes, France, 6–9 July 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 108–111. [Google Scholar]
- Davidovic, T.; Selmic, M.; Teodorovic, D. Scheduling independent tasks: Bee colony optimization approach. In Proceedings of the 2009 17th Mediterranean Conference on Control and Automation, Thessaloniki, Greece, 24–26 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1020–1025. [Google Scholar]
- Ritchie, G. Static Multi-Processor Scheduling with Ant Colony Optimisation & Local Search. Ph.D. Thesis, School of Informatics, University of Edinburgh, Edinburgh, Scotland, 2003. [Google Scholar]
- Lawrinenko, A. Identical Parallel Machine Scheduling Problems: Structural Patterns, Bounding Techniques and Solution Procedures. Ph.D. Thesis, Friedrich-Schiller-Universität Jena, Jena, Germany, 2017. [Google Scholar]
- Korf, R.E. A complete anytime algorithm for number partitioning. Artif. Intell. 1998, 106, 181–203. [Google Scholar] [CrossRef]
- Kämpke, T. Simulated annealing: Use of a new tool in bin packing. Ann. Oper. Res. 1988, 16, 327–332. [Google Scholar] [CrossRef]
- Scholl, A.; Klein, R.; Jürgens, C. Bison: A fast hybrid procedure for exactly solving the one-dimensional bin packing problem. Comput. Oper. Res. 1997, 24, 627–645. [Google Scholar] [CrossRef]
- Ostojić, D.; Urošević, A.; Davidović, T.; Jakšić-Krüger, T.; Ramljak, D. Decomposition-based efficient heuristic for scheduling. In Proceedings of the 50th International Symposium on Operational Research (SYM-OP-IS 2023), Mount Tara, Serbia, 18–21 September 2023; pp. 1027–1034. [Google Scholar]
- Hayes, B. Computing science: The easiest hard problem. Am. Sci. 2002, 90, 113–117. [Google Scholar] [CrossRef]
- Haouari, M.; Jemmali, M. Tight bounds for the identical parallel machine-scheduling problem: Part II. Int. Trans. Oper. Res. 2008, 15, 19–34. [Google Scholar] [CrossRef]
- Brackin, M.; Jakšić-Krüger, T. Statistical considerations about modeling performance of exact solvers on problem instances of P||CMAX. In Proceedings of the 50th International Symposium on Operational Research, SYMOPIS 2023, Mount Tara, Serbia, 18–21 September 2023. [Google Scholar]
- McNaughton, R. Scheduling with deadlines and loss functions. Manag. Sci. 1959, 6, 1–12. [Google Scholar] [CrossRef]
- Mokotoff, E. Scheduling to minimize the makespan on identical parallel Machines: An LP-based algorithm. Investig. Oper. 1999, 8, 97107. [Google Scholar]
- Lenstra, J.K.; Rinnooy Kan, A. An introduction to multiprocessor scheduling. Qüestiió 1981, 5, 1981. [Google Scholar]
- Talbi, E.G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Iori, M.; Martello, S. Scatter search algorithms for identical parallel machine scheduling problems. In Metaheuristics for Scheduling in Industrial and Manufacturing Applications; Springer: Berlin/Heidelberg, Germany, 2008; pp. 41–59. [Google Scholar]
- Baker, K.R. Procedures for sequencing tasks with one resource type. Int. J. Prod. Res. 1973, 11, 125–138. [Google Scholar] [CrossRef]
- Baker, K. Introduction to Sequencing and Scheduling; Wiley: Hoboken, NJ, USA, 1974. [Google Scholar]
- Panwalkar, S.S.; Iskander, W. A survey of scheduling rules. Oper. Res. 1977, 25, 45–61. [Google Scholar] [CrossRef]
- Langston, M.A. Processor Scheduling with Improved Heuristic Algorithms; Texas A&M University: College Station, TX, USA, 1981. [Google Scholar]
- Lawler, E.L.; Lenstra, J.K.; Rinnooy Kan, A. Recent developments in deterministic sequencing and scheduling: A survey. In Proceedings of the Deterministic and Stochastic Scheduling: Proceedings of the NATO Advanced Study and Research Institute on Theoretical Approaches to Scheduling Problems, Durham, UK, 6–17 July 1981; Springer: Berlin/Heidelberg, Germany, 1982; pp. 35–73. [Google Scholar]
- Błażewicz, J. Selected Topics in Scheduling Theory. In North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 1987; Volume 132, pp. 1–59. [Google Scholar]
- Langston, M.A. A study of composite heuristic algorithms. J. Oper. Res. Soc. 1987, 38, 539–544. [Google Scholar] [CrossRef]
- Sarkar, V. Partitioning and Scheduling Parallel Programs for Execution on Multiprocessors. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1987. [Google Scholar]
- Lawler, E.L.; Lenstra, J.K.; Rinnooy Kan, A.H.; Shmoys, D.B. Sequencing and scheduling: Algorithms and complexity. In Logistics of Production and Inventory; Handbooks in Operations Research and Management Science; Elsevier: Amsterdam, The Netherlands, 1993; Volume 4, pp. 445–522. [Google Scholar]
- Błażewicz, J.; Ecker, K.; Pesch, E.; Schmidt, G.; Weglarz, J. Scheduling in Computer and Manufacturing Systems; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Hoogeveen, J.; Lenstra, J.; van de Velde, S. Sequencing and scheduling. In Annotated Bibliographies in Combinatorial Optimization; Wiley: Hoboken, NJ, USA, 1997; pp. 180–197. [Google Scholar]
- Chen, B.; Potts, C.N.; Woeginger, G.J. A Review of Machine Scheduling: Complexity, Algorithms and Approximability. In Handbook of Combinatorial Optimization: Volume 1–3; Du, D.Z., Pardalos, P.M., Eds.; Springer: Boston, MA, USA, 1998; pp. 1493–1641. [Google Scholar]
- Karger, D.R.; Stein, C.; Wein, J. Scheduling algorithms. In Algorithms and Theory of Computation Handbook; Atallah, M., Ed.; CRC Press: Boca Raton, FL, USA, 1999; Volume 1, p. 20. [Google Scholar]
- Mokotoff, E. Parallel machine scheduling problems: A survey. Asia-Pac. J. Oper. Res. 2001, 18, 193. [Google Scholar]
- Eiselt, H.A.; Sandblom, C.L. Decision Analysis, Location Models, and Scheduling Problems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Leung, J.Y. Handbook of Scheduling: Algorithms, Models, and Performance Analysis; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Potts, C.N.; Strusevich, V.A. Fifty years of scheduling: A survey of milestones. J. Oper. Res. Soc. 2009, 60, S41–S68. [Google Scholar] [CrossRef]
- Behera, D.K. Complexity on parallel machine scheduling: A review. In Proceedings of the Emerging Trends in Science, Engineering and Technology, International Conference, INCOSET, Tiruchirappalli, India, 13–14 December 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 373–381. [Google Scholar]
- Baker, K.R.; Trietsch, D. Principles of Sequencing and Scheduling; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Schreiber, E.L. Optimal Multi-Way Number Partitioning. Ph.D. Thesis, University of California Los Angeles, Los Angeles, CA, USA, 2014. [Google Scholar]
- Laha, D.; Behera, D.K. A comprehensive review and evaluation of LPT, MULTIFIT, COMBINE and LISTFIT for scheduling identical parallel machines. Int. J. Inf. Commun. Technol. 2017, 11, 151–165. [Google Scholar] [CrossRef]
- Schreiber, E.L.; Korf, R.E.; Moffitt, M.D. Optimal multi-way number partitioning. J. ACM (JACM) 2018, 65, 1–61. [Google Scholar] [CrossRef]
- T’kindt, V.; Della Croce, F.; Liedloff, M. Moderate exponential-time algorithms for scheduling problems. 4OR 2022, 20, 533–566. [Google Scholar] [CrossRef]
- Deppert, M. Algorithms for Scheduling Problems and Integer Programming. Ph.D. Thesis, Universitätsbibliothek Kiel, Kiel, Germany, 2022. [Google Scholar]
- Schryen, G.; Sperling, M. Literature reviews in operations research: A new taxonomy and a meta review. Comput. Oper. Res. 2023, 157, 106269. [Google Scholar] [CrossRef]
- Keele, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; Version 2.3, Technical Report EBSE 2007-001; Durham University: Durham, UK, 2007. [Google Scholar]
- Hu, T.C. Parallel Sequencing and Assembly Line Problems. Oper. Res. 1961, 9, 841–848. [Google Scholar] [CrossRef]
- Karp, R.M. Reducibility Among Combinatorial Problems; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Garey, M.R.; Graham, R.L.; Johnson, D.S. Performance Guarantees for Scheduling Algorithms. Oper. Res. 1978, 26, 3–21. [Google Scholar] [CrossRef]
- Lenstra, J.K.; Rinnooy Kan, A. Computational complexity of discrete optimization problems. In Annals of Discrete Mathematics; Elsevier: Amsterdam, The Netherlands, 1979; Volume 4, pp. 121–140. [Google Scholar]
- Bruno, J.; Downey, P.; Frederickson, G.N. Sequencing tasks with exponential service times to minimize the expected flow time or makespan. J. ACM (JACM) 1981, 28, 100–113. [Google Scholar] [CrossRef]
- Achugbue, J.O.; Chin, F.Y. Bounds on schedules for independent tasks with similar execution times. J. ACM (JACM) 1981, 28, 81–99. [Google Scholar] [CrossRef]
- Karmarkar, N.; Karp, R.M. The Differencing Method of Set Partitioning; Computer Science Division (EECS), University of California Berkeley: Berkeley, CA, USA, 1982. [Google Scholar]
- Hochbaum, D.S.; Shmoys, D.B. Using dual approximation algorithms for scheduling problems theoretical and practical results. J. ACM (JACM) 1987, 34, 144–162. [Google Scholar] [CrossRef]
- Dror, M.; Stern, H.I.; Lenstra, J.K. Parallel machine scheduling: Processing rates dependent on number of jobs in operation. Manag. Sci. 1987, 33, 1001–1009. [Google Scholar] [CrossRef]
- Weiss, G. On almost optimal priority rules for preemptive scheduling of stochastic jobs on parallel machines. Adv. Appl. Probab. 1995, 27, 821–839. [Google Scholar] [CrossRef]
- Dell’Amico, M.; Martello, S. Optimal Scheduling of Tasks on Identical Parallel Processors. ORSA J. Comput. 1995, 7, 191–200. [Google Scholar] [CrossRef]
- Alon, N.; Azar, Y.; Woeginger, G.J.; Yadid, T. Approximation schemes for scheduling on parallel machines. J. Sched. 1998, 1, 55–66. [Google Scholar] [CrossRef]
- Schuurman, P.; Vredeveld, T. Performance guarantees of local search for multiprocessor scheduling. INFORMS J. Comput. 2007, 19, 52–63. [Google Scholar] [CrossRef]
- Hurkens, C.A.; Vredeveld, T. Local search for multiprocessor scheduling: How many moves does it take to a local optimum? Oper. Res. Lett. 2003, 31, 137–141. [Google Scholar] [CrossRef]
- Brueggemann, T.; Hurink, J.L.; Vredeveld, T.; Woeginger, G.J. Very large-scale neighborhoods with performance guarantees for minimizing makespan on parallel machines. In Proceedings of the International Workshop on Approximation and Online Algorithms, Eilat, Israel, 11–12 October 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 41–54. [Google Scholar]
- Mnich, M.; Wiese, A. Scheduling and fixed-parameter tractability. Math. Program. 2015, 154, 533–562. [Google Scholar] [CrossRef]
- Walter, R.; Lawrinenko, A. A characterization of optimal multiprocessor schedules and new dominance rules. J. Comb. Optim. 2020, 40, 876–900. [Google Scholar] [CrossRef]
- Chen, L.; Jansen, K.; Zhang, G. On the optimality of exact and approximation algorithms for scheduling problems. J. Comput. Syst. Sci. 2018, 96, 1–32. [Google Scholar] [CrossRef]
- Brucker, P. Scheduling algorithms. J.-Oper. Res. Soc. 2007, 50, 774. [Google Scholar]
- Walter, R. Analyzing Various Aspects of Scheduling Independent Jobs on Identical Machines. Ph.D. Thesis, Friedrich Schiller University Jena, Jena, Germany, 2010. [Google Scholar]
- Anderson, E.J.; Glass, C.A.; Potts, C.N. Machine scheduling. In Local Search in Combinatorial Optimization; Princeton University Press: Princeton, NJ, USA, 2003; pp. 361–414. [Google Scholar]
- Błażewicz, J.; Dror, M.; Weglarz, J. Mathematical programming formulations for machine scheduling: A survey. Eur. J. Oper. Res. 1991, 51, 283–300. [Google Scholar] [CrossRef]
- Cheng, T.; Sin, C. A state-of-the-art review of parallel-machine scheduling research. Eur. J. Oper. Res. 1990, 47, 271–292. [Google Scholar] [CrossRef]
- Haupt, R. A survey of priority rule-based scheduling. Operations-Research-Spektrum 1989, 11, 3–16. [Google Scholar] [CrossRef]
- Graham, R.L. Combinatorial scheduling theory. In Mathematics Today Twelve Informal Essays; Springer: Berlin/Heidelberg, Germany, 1978; pp. 183–211. [Google Scholar]
- Lenstra, J.K.; Kan, A.R. New directions in scheduling theory. Oper. Res. Lett. 1984, 2, 255–259. [Google Scholar] [CrossRef]
- Lenstra, J.K.; Kan, A.R.; Brucker, P. Complexity of machine scheduling problems. In Annals of Discrete Mathematics; Elsevier: Amsterdam, The Netherlands, 1977; Volume 1, pp. 343–362. [Google Scholar]
- Gonzalez, M.J., Jr. Deterministic processor scheduling. ACM Comput. Surv. (CSUR) 1977, 9, 173–204. [Google Scholar] [CrossRef]
- Sahni, S. General techniques for combinatorial approximation. Oper. Res. 1977, 25, 920–936. [Google Scholar] [CrossRef]
- Coffman, E.G., Jr.; Bruno, J.L. Computer and Job-Shop Scheduling Theory; Wiley: Hoboken, NJ, USA, 1976. [Google Scholar]
- Parker, R.G. Deterministic Scheduling Theory; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Bauke, H.; Mertens, S.; Engel, A. Phase transition in multiprocessor scheduling. Phys. Rev. Lett. 2003, 90, 158701. [Google Scholar] [CrossRef]
- Korf, R. Objective functions for multi-way number partitioning. In Proceedings of the International Symposium on Combinatorial Search, Atlanta, GA, USA, 8–10 July 2010; Volume 1, pp. 71–72. [Google Scholar]
- Boxma, O. A probabilistic analysis of the LPT scheduling rule. In Proceedings of the International Symposium on Computer Performance Modelling, Measurement and Evaluation, San Francisco, CA, USA, 14 December 1984; Gelenbe, E., Ed.; North-Holland Publishing Company: Amsterdam, The Netherlands, 1984; pp. 475–490. [Google Scholar]
- Boxma, O.J. A probabilistic analysis of multiprocessor list scheduling: The erlang case. Commun. Stat. Stoch. Model. 1985, 1, 209–220. [Google Scholar] [CrossRef]
- Coffman, E.G., Jr.; Flatto, L.; Lueker, G.S. Expected makespans for largest-first multiprocessor scheduling. In Proceedings of the International Symposium on Computer Performance Modelling, Measurement and Evaluation, San Francisco, CA, USA, 3–7 December 1984; pp. 491–506. [Google Scholar]
- Coffman, E.G., Jr.; Frederickson, G.N.; Lueker, G.S. A note on expected makespans for largest-first sequences of independent tasks on two processors. Math. Oper. Res. 1984, 9, 260–266. [Google Scholar] [CrossRef]
- Coffman, E.G., Jr.; Johnson, D.S.; Lueker, G.S.; Shor, P.W. Probabilistic analysis of packing and related partitioning problems. Stat. Sci. 1993, 8, 40–47. [Google Scholar] [CrossRef]
- Lueker, G.S. A note on the average-case behavior of a simple differencing method for partitioning. Oper. Res. Lett. 1987, 6, 285–287. [Google Scholar] [CrossRef]
- Frenk, J.; Rinnooy Kan, A. The rate of convergence to optimality of the LPT rule. Discret. Appl. Math. 1986, 14, 187–197. [Google Scholar] [CrossRef]
- Gent, I.P.; Walsh, T. Phase transitions and annealed theories: Number partitioning as a case study. In Proceedings of the European Conference on Artificial Intelligence, Budapest, Hungary, 11–16 August 1996; pp. 170–174. [Google Scholar]
- Gent, I.P.; Walsh, T. Analysis of heuristics for number partitioning. Comput. Intell. 1998, 14, 430–451. [Google Scholar] [CrossRef]
- Vredeveld, T. Combinatorial Approximation Algorithms: Guaranteed Versus Experimental Performance. Ph.D. Thesis, 1 (Tesearch TU/e / Graduation TU/e), Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands, 2002. [Google Scholar]
- Brueggemann, T.; Hurink, J.L.; Vredeveld, T.; Woeginger, G.J. Exponential size neighborhoods for makespan minimization scheduling. Nav. Res. Logist. (NRL) 2011, 58, 795–803. [Google Scholar] [CrossRef]
- Pittel, B. Perfect partitions of a random set of integers. arXiv 2022, arXiv:2210.00656. [Google Scholar]
- Bauke, H.; Franz, S.; Mertens, S. Number partitioning as a random energy model. J. Stat. Mech. Theory Exp. 2004, 2004, P04003. [Google Scholar] [CrossRef]
- Bovier, A.; Kurkova, I. Poisson convergence in the restricted k-partitioning problem. Random Struct. Algorithms 2007, 30, 505–531. [Google Scholar] [CrossRef]
- Pan, A. Random Walks, Number Partitioning, and Regular Graphs. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2024. [Google Scholar]
- Haouari, M.; Gharbi, A.; Jemmali, M. Tight bounds for the identical parallel machine scheduling problem. Int. Trans. Oper. Res. 2006, 13, 529–548. [Google Scholar] [CrossRef]
- Fekete, S.P.; Schepers, J. New classes of fast lower bounds for bin packing problems. Math. Program. 2001, 91, 11–31. [Google Scholar] [CrossRef]
- Webster, S. A general lower bound for the makespan problem. Eur. J. Oper. Res. 1996, 89, 516–524. [Google Scholar] [CrossRef]
- Held, M.; Karp, R.M. A Dynamic Programming Approach to Sequencing Problems. J. Soc. Ind. Appl. Math. 1962, 10, 196–210. [Google Scholar] [CrossRef]
- Fomin, F.V.; Kratsch, D. Exact Exponential Algorithms; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Cygan, M.; Fomin, F.V.; Kowalik, Ł.; Lokshtanov, D.; Marx, D.; Pilipczuk, M.; Pilipczuk, M.; Saurabh, S. Parameterized Algorithms; Springer: Berlin/Heidelberg, Germany, 2015; Volume 4. [Google Scholar]
- Rothkopf, M.H. Scheduling Independent Tasks on Parallel Processors. Manag. Sci. 1966, 12, 437–447. [Google Scholar] [CrossRef]
- Sahni, S.K. Algorithms for scheduling independent tasks. J. ACM (JACM) 1976, 23, 116–127. [Google Scholar] [CrossRef]
- Karp, R.M. Dynamic programming meets the principle of inclusion and exclusion. Oper. Res. Lett. 1982, 1, 49–51. [Google Scholar] [CrossRef]
- O’Neil, T.E. Sub-Exponential Algorithms for 0/1 Knapsack and Bin Packing. 2011. Available online: https://api.semanticscholar.org/CorpusID:17331195 (accessed on 19 January 2025).
- Lenté, C.; Liedloff, M.; Soukhal, A.; T’Kindt, V. On an extension of the Sort & Search method with application to scheduling theory. Theor. Comput. Sci. 2013, 511, 13–22. [Google Scholar]
- Jansen, K.; Land, F.; Land, K. Bounding the running time of algorithms for scheduling and packing problems. SIAM J. Discret. Math. 2016, 30, 343–366. [Google Scholar] [CrossRef]
- Chen, L.; Jansen, K.; Zhang, G. On the optimality of approximation schemes for the classical scheduling problem. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Portland, OR, USA, 5–7 January 2014; pp. 657–668. [Google Scholar]
- Goemans, M.X.; Rothvoß, T. Polynomiality for bin packing with a constant number of item types. J. ACM (JACM) 2020, 67, 1–21. [Google Scholar] [CrossRef]
- Chen, L.; Marx, D.; Ye, D.; Zhang, G. Parameterized and Approximation Results for Scheduling with a Low Rank Processing Time Matrix. In Proceedings of the 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017), Hannover, Germany, 8–11 March 2017; Vollmer, H., Vallée, B., Eds.; Leibniz International Proceedings in Informatics (LIPIcs): Dagstuhl, Germany, 2017; Volume 66, pp. 22:1–22:14. [Google Scholar]
- Fisher, M.L. Optimal Solution of Scheduling Problems Using Lagrange Multipliers: Part I. Oper. Res. 1973, 21, 1114–1127. [Google Scholar] [CrossRef]
- Fisher, M.L. Optimal Solution of Scheduling Problems Using Lagrange Multipliers: Part II. In Proceedings of the Symposium on the Theory of Scheduling and Its Applications, Nashville, TN, USA, 14 November 1973; Elmaghraby, S.E., Ed.; Springer: Berlin/Heidelberg, Germany, 1973; pp. 294–318. [Google Scholar]
- Elmaghraby, S.E.; Elimam, A.A. Knapsack-Based Approaches to the Makespan Problem on Multiple Processors. AIIE Trans. 1980, 12, 87–96. [Google Scholar] [CrossRef]
- Mokotoff, E. An exact algorithm for the identical parallel machine scheduling problem. Eur. J. Oper. Res. 2004, 152, 758–769. [Google Scholar] [CrossRef]
- Dell’Amico, M.; Iori, M.; Martello, S.; Monaci, M. Heuristic and exact algorithms for the identical parallel machine scheduling problem. INFORMS J. Comput. 2008, 20, 333–344. [Google Scholar] [CrossRef]
- Korf, R.E. Multi-way number partitioning. In Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence, Pasadena, CA, USA, 14–16 July 2009; pp. 538–543. [Google Scholar]
- Korf, R.E. A hybrid recursive multi-way number partitioning algorithm. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, Spain, 16–22 July 2011. [Google Scholar]
- Moffitt, M.D. Search strategies for optimal multi-way number partitioning. In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013; pp. 623–629. [Google Scholar]
- Korf, R.; Schreiber, E. Optimally Scheduling Small Numbers of Identical Parallel Machines. In Proceedings of the International Conference on Automated Planning and Scheduling, Rome, Italy, 10–14 June 2013; Volume 23, pp. 144–152. [Google Scholar]
- Schreiber, E.L.; Korf, R.E. Improved bin completion for optimal bin packing and number partitioning. In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013; pp. 651–658. [Google Scholar]
- Korf, R.E.; Schreiber, E.L.; Moffitt, M.D. Optimal Sequential Multi-Way Number Partitioning. In Proceedings of the International Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale, FL, USA, 6–8 January 2014. [Google Scholar]
- Schreiber, E.; Korf, R. Cached iterative weakening for optimal multi-way number partitioning. In Proceedings of the AAAI Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014; Volume 28. [Google Scholar]
- KOWALCZYK, D. Branch-and-Price Algorithms for Scheduling Problems. Ph.D. Thesis, KU LEUVEN, Leuven, Belgium, 2018. [Google Scholar]
- Mrad, M.; Souayah, N. An arc-flow model for the makespan minimization problem on identical parallel machines. IEEE Access 2018, 6, 5300–5307. [Google Scholar] [CrossRef]
- Gharbi, A.; Bamatraf, K. An Improved Arc Flow Model with Enhanced Bounds for Minimizing the Makespan in Identical Parallel Machine Scheduling. Processes 2022, 10, 2293. [Google Scholar] [CrossRef]
- Martello, S.; Toth, P. Lower bounds and reduction procedures for the bin packing problem. Discret. Appl. Math. 1990, 28, 59–70. [Google Scholar] [CrossRef]
- Belov, G.; Scheithauer, G. A branch-and-cut-and-price algorithm for one-dimensional stock cutting and two-dimensional two-stage cutting. Eur. J. Oper. Res. 2006, 171, 85–106. [Google Scholar] [CrossRef]
- Graham, R.L. Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 1966, 45, 1563–1581. [Google Scholar] [CrossRef]
- Graham, R.L. Bounds on Multiprocessing Timing Anomalies. SIAM J. Appl. Math. 1969, 17, 416–429. [Google Scholar] [CrossRef]
- Coffman, E.G., Jr.; Garey, M.R.; Johnson, D.S. An Application of Bin-Packing to Multiprocessor Scheduling. SIAM J. Comput. 1978, 7, 1–17. [Google Scholar] [CrossRef]
- Mokotoff, E.; Jimeno, J.L.; Gutiérrez, A.I. List scheduling algorithms to minimize the makespan on identical parallel machines. Trans. Oper. Res. 2001, 9, 243–269. [Google Scholar] [CrossRef]
- Johnson, D.S. Fast allocation algorithms. In Proceedings of the 13th Annual Symposium on Switching and Automata Theory (SWAT 1972), Washington, DC, USA, 25–27 October 1972; IEEE: Piscataway, NJ, USA, 1972; pp. 144–154. [Google Scholar]
- Friesen, D.K.; Langston, M.A. Evaluation of a MULTIFIT-based scheduling algorithm. J. Algorithms 1986, 7, 35–59. [Google Scholar] [CrossRef]
- Lee, C.Y.; Massey, J. Multiprocessor scheduling: An extension of the MULTIFIT algorithm. J. Manuf. Syst. 1988, 7, 25–32. [Google Scholar] [CrossRef]
- Lee, C.Y.; Massey, J. Multiprocessor scheduling: Combining LPT and MULTIFIT. Discret. Appl. Math. 1988, 20, 233–242. [Google Scholar] [CrossRef]
- França, P.M.; Gendreau, M.; Laporte, G.; Müller, F.M. A composite heuristic for the identical parallel machine scheduling problem with minimum makespan objective. Comput. Oper. Res. 1994, 21, 205–210. [Google Scholar] [CrossRef]
- Riera, J.; Alcaide, D.; Sicilia, J. Approximate algorithms for the P||Cmax problem. Trans. Oper. Res. 1996, 4, 345–359. [Google Scholar]
- Gupta, J.N.D.; Ruiz-Torres, A.J. A LISTFIT heuristic for minimizing makespan on identical parallel machines. Prod. Plan. Control 2001, 12, 28–36. [Google Scholar] [CrossRef]
- Jimeno, J.L.; Mokotoff, E.; Pérez, J. A Constructive Algorithm to Minimise the Makespan on Identical Parallel Machines. In Proceedings of the Eighth International Workshop on Project Management and Scheduling, Valencia, Spain, 3–5 April 2002. [Google Scholar]
- Alvim, A.C.; Ribeiro, C.C. A hybrid bin-packing heuristic to multiprocessor scheduling. In Proceedings of the International Workshop on Experimental and Efficient Algorithms, Angra dos Reis, Brazil, 25–28 May 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–13. [Google Scholar]
- Paletta, G.; Pietramala, P. A new approximation algorithm for the nonpreemptive scheduling of independent jobs on identical parallel processors. SIAM J. Discret. Math. 2007, 21, 313–328. [Google Scholar] [CrossRef]
- Gualtieri, M.I.; Paletta, G.; Pietramala, P. A new n log n algorithm for the identical parallel machine scheduling problem. Int. J. Contemp. Math. Sciences 2008, 3, 25–36. [Google Scholar]
- Gualtieri, M.; Pietramala, P.; Rossi, F. Heuristic Algorithms for Scheduling Jobs on Identical Parallel Machines via Measures of Spread. IAENG Int. J. Appl. Math. 2009, 39. [Google Scholar]
- Chiaselotti, G.; Gualtieri, M.I.; Pietramala, P. Minimizing the makespan in nonpreemptive parallel machine scheduling problem. J. Math. Model. Algorithms 2010, 9, 39–51. [Google Scholar] [CrossRef]
- Kuruvilla, A.; Paletta, G. Minimizing makespan on identical parallel machines. Int. J. Oper. Res. Inf. Syst. (IJORIS) 2015, 6, 19–29. [Google Scholar] [CrossRef]
- Paletta, G.; Ruiz-Torres, A.J. Partial solutions and multifit algorithm for multiprocessor scheduling. J. Math. Model. Algorithms Oper. Res. 2015, 14, 125–143. [Google Scholar] [CrossRef]
- Della Croce, F.; Scatamacchia, R. The longest processing time rule for identical parallel machines revisited. J. Sched. 2020, 23, 163–176. [Google Scholar] [CrossRef]
- Davidović, T. Exhaustive List–Scheduling heuristic for dense task graphs. YUJOR 2000, 10, 123–136. [Google Scholar]
- Öztürk, S. A New Heuristic Algorithm for Minimizing the Makespan on Identical Parallel Machines. Ph.D. Thesis, Marmara Universitesi, Istanbul, Turkey, 2008. [Google Scholar]
- Johnson, D.S.; Demers, A.; Ullman, J.D.; Garey, M.R.; Graham, R.L. Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM J. Comput. 1974, 3, 299–325. [Google Scholar] [CrossRef]
- Martello, S.; Toth, P. Worst-case analysis of greedy algorithms for the subset-sum problem. Math. Program. 1984, 28, 198–205. [Google Scholar] [CrossRef]
- Martello, S.; Toth, P. Knapsack Problems: Algorithms and Computer Implementations; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1990. [Google Scholar]
- Pisinger. Dynamic Programming on the Word RAM. Algorithmica 2003, 35, 128–145. [Google Scholar] [CrossRef]
- Nichols, R.; Bulfin, R.; Parker, R. An interactive procedure for minimizing makespan on parallel processors. Int. J. Prod. Res. 1978, 16, 77–81. [Google Scholar] [CrossRef]
- Finn, G.; Horowitz, E. A linear time approximation algorithm for multiprocessor scheduling. BIT Numer. Math. 1979, 19, 312–320. [Google Scholar] [CrossRef]
- Langston, M.A. Improved 0/1-interchange scheduling. BIT Numer. Math. 1982, 22, 282–290. [Google Scholar] [CrossRef]
- Barr, R.S.; Ross, G.T. A Linked List Data Structure for a Binary Knapsack Algorithm; Research Report CC 232; Center for Cybernetic Studies, University of Texas: Austin, TX, USA, 1 July 1975. [Google Scholar]
- Blackstone, J.H., Jr.; Phillips, D.T. An improved heuristic for minimizing makespan among m identical parallel processors. Comput. Ind. Eng. 1981, 5, 279–287. [Google Scholar] [CrossRef]
- Langston, M.A. Remarks on the makespan minimization problem. Comput. Ind. Eng. 1984, 8, 193–195. [Google Scholar] [CrossRef]
- Ho, J.C.; Wong, J.S. Makespan minimization for m parallel identical processors. Nav. Res. Logist. (NRL) 1995, 42, 935–948. [Google Scholar] [CrossRef]
- Ghomi, S.M.T.F.; Ghazvini, F.J. A pairwise interchange algorithm for parallel machine scheduling. Prod. Plan. Control 1998, 9, 685–689. [Google Scholar] [CrossRef]
- Costa, A.M.; Vargas, P.A.; Von Zuben, F.J.; Franca, P.M. Makespan minimization on parallel processors: An immune-based approach. In Proceedings of the 2002 Congress on Evolutionary Computation, CEC’02 (Cat. No. 02TH8600), Honolulu, HI, USA, 12–17 May 2002; IEEE: Piscataway, NJ, USA, 2002; Volume 1, pp. 920–925. [Google Scholar]
- Frangioni, A.; Necciari, E.; Scutellà, M.G. A Multi-Exchange Neighborhood for Minimum Makespan Machine; Technical Report; Università di Pisa: Pisa, Italy, 2000. [Google Scholar]
- Frangioni, A.; Necciari, E.; Scutella, M.G. A multi-exchange neighborhood for minimum makespan parallel machine scheduling problems. J. Comb. Optim. 2004, 8, 195–220. [Google Scholar] [CrossRef]
- Paletta, G.; Vocaturo, F. A composite algorithm for multiprocessor scheduling. J. Heuristics 2011, 17, 281–301. [Google Scholar] [CrossRef]
- Habiba, H.; Hassam, A.; Sari, Z.; Amine, C.M.; Souad, T. Minimizing Makespan on Identical Parallel Machines. In Proceedings of the 2019 International Conference on Applied Automation and Industrial Diagnostics (ICAAID), Elazig, Turkey, 25–27 September 2019; Volume 1, pp. 1–6. [Google Scholar]
- Ostojić, D.; Davidović, T.; Jakšić-Krüger, T.; Ramljak, D. Comparative Analysis of Heuristic Approaches to P||Cmax. In Proceedings of the 11th International Conference on Operations Research and Enterprise Systems, ICORES, Virtual, 3–5 February 2022; SciTePress: Setúbal, Portugal, 2022; pp. 259–266. [Google Scholar]
- Vazirani, V.V. Approximation Algorithms; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Hochbaum, D.S.; Shmoys, D.B. Using dual approximation algorithms for scheduling problems: Theoretical and practical results. In Proceedings of the 26th Annual Symposium on Foundations of Computer Science (sfcs 1985), Portland, OR, USA, 21–23 October 1985; IEEE: Piscataway, NJ, USA, 1985; pp. 79–89. [Google Scholar]
- Leung, J.Y. Bin packing with restricted piece sizes. Inf. Process. Lett. 1989, 31, 145–149. [Google Scholar] [CrossRef]
- Hochbaum, D.S. Approximation algorithms for NP-hard problems. ACM Sigact News 1997, 28, 40–52. [Google Scholar] [CrossRef]
- Jansen, K. An EPTAS for scheduling jobs on uniform processors: Using an MILP relaxation with a constant number of integral variables. SIAM J. Discret. Math. 2010, 24, 457–485. [Google Scholar] [CrossRef]
- Jansen, K.; Rohwedder, L. On integer programming, discrepancy, and convolution. Math. Oper. Res. 2023, 48, 1481–1495. [Google Scholar] [CrossRef]
- Berndt, S.; Deppert, M.A.; Jansen, K.; Rohwedder, L. Load balancing: The long road from theory to practice. In Proceedings of the 2022 Proceedings of the Symposium on Algorithm Engineering and Experiments (ALENEX), SIAM, Alexandria, VA, USA, 9–10 January 2022; pp. 104–116. [Google Scholar]
- Jansen, K.; Rohwedder, L. On integer programming and convolution. In Proceedings of the 10th Innovations in Theoretical Computer Science Conference (ITCS 2019), San Diego, CA, USA, 10–12 January 2019; Schloss-Dagstuhl-Leibniz Zentrum für Informatik: Wadern, Germany, 2019. [Google Scholar]
- Jansen, K.; Klein, K.M.; Verschae, J. Closing the gap for makespan scheduling via sparsification techniques. Math. Oper. Res. 2020, 45, 1371–1392. [Google Scholar] [CrossRef]
- Sreenivas, P.; Saheb, S.K.P.; Yohan, M. An overview of harmony search algorithm applied in identical parallel machine scheduling. In Recent Trends in Mechanical Engineering: Select Proceedings of ICIME; Springer: Singapore, 2020; pp. 709–714. [Google Scholar]
- Davidović, T.; Šelmić, M.; Teodorović, D.; Ramljak, D. Bee colony optimization for scheduling independent tasks to identical processors. J. Heuristics 2012, 18, 549–569. [Google Scholar] [CrossRef]
- Hübscher, R.; Glover, F. Applying tabu search with influential diversification to multiprocessor scheduling. Comput. Oper. Res. 1994, 21, 877–884. [Google Scholar] [CrossRef]
- Brucker, P.; Hurink, J.; Werner, F. Improving local search heuristics for some scheduling problems. Part II. Discret. Appl. Math. 1997, 72, 47–69. [Google Scholar] [CrossRef]
- Thesen, A. Design and evaluation of tabu search algorithms for multiprocessor scheduling. J. Heuristics 1998, 4, 141–160. [Google Scholar] [CrossRef]
- Min, L.; Cheng, W. A genetic algorithm for minimizing the makespan in the case of scheduling identical parallel machines. Artif. Intell. Eng. 1999, 13, 399–403. [Google Scholar] [CrossRef]
- Lee, W.C.; Wu, C.C.; Chen, P. A simulated annealing approach to makespan minimization on identical parallel machines. Int. J. Adv. Manuf. Technol. 2006, 31, 328–334. [Google Scholar] [CrossRef]
- Tang, L.; Luo, J. A new ILS algorithm for parallel machine scheduling problems. J. Intell. Manuf. 2006, 17, 609–619. [Google Scholar] [CrossRef]
- Akyol, D.E.; Bayhan, G.M. Minimizing makespan on identical parallel machines using neural networks. In Proceedings of the International Conference on Neural Information Processing, Hong Kong, China, 3–6 October 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 553–562. [Google Scholar]
- Akyol, D.E. Identical parallel machine scheduling with dynamical networks using time-varying penalty parameters. In Multiprocessor Scheduling: Theory Applications; I-TECH Education and Publishing: Vienna, Austria, 2007; pp. 293–314. [Google Scholar]
- Yu, A.; Gu, X. An Improved Transiently Chaotic Neural Network Approach for Identical Parallel Machine Scheduling. In Proceedings of the Advances in Cognitive Neurodynamics ICCN 2007; Wang, R., Shen, E., Gu, F., Eds.; Springer: Amsterdam, The Netherlands, 2008; pp. 909–913. [Google Scholar]
- Davidović, T.; Janićijević, S. Heuristic Approach to Scheduling Independent Tasks on Identical Processor. In Proceedings of the Symposium on Information Technology, YUINFO, Moscow, Russia, 23–25 January 2009; pp. 1–6. [Google Scholar]
- Davidović, T.; Janićijević, S. VNS for Scheduling Independent Tasks on Identical Processors. In Proceedings of the 36th Symposium on Operational Research, SYMOPIS, Scottsdale, AZ, USA, 22–25 September 2009; pp. 301–304. [Google Scholar]
- Kashan, A.H.; Karimi, B. A discrete particle swarm optimization algorithm for scheduling parallel machines. Comput. Ind. Eng. 2009, 56, 216–223. [Google Scholar] [CrossRef]
- Chen, J.; Pan, Q.K.; Li, H. Harmony search algorithm with dynamic subpopulations for scheduling identical parallel machines. In Proceedings of the 2010 Sixth International Conference on Natural Computation, Yantai, China, 10–12 August 2010; IEEE: Piscataway, NJ, USA, 2010; Volume 5, pp. 2369–2373. [Google Scholar]
- Chen, J.; Liu, G.L.; Lu, R. Discrete harmony search algorithm for identical parallel machine scheduling problem. In Proceedings of the 30th Chinese Control Conference, Yantai, China, 22–24 July 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 5457–5461. [Google Scholar]
- Jing, C.; Jun-qing, L. Efficient variable neighborhood search for identical parallel machines scheduling. In Proceedings of the 31st Chinese Control Conference, Hefei, China, 25–27 July 2012; pp. 7228–7232. [Google Scholar]
- Laha, D. A simulated annealing heuristic for minimizing makespan in parallel machine scheduling. In Proceedings of the Swarm, Evolutionary, and Memetic Computing: Third International Conference, SEMCCO 2012, Proceedings 3, Bhubaneswar, India, 20–22 December 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 198–205. [Google Scholar]
- Sevkli, M.; Sevkli, A.Z. A stochastically perturbed particle swarm optimization for identical parallel machine scheduling problems. In Bio-Inspired Computational Algorithms and Their Applications; IntechOpen Limited: London, UK, 2012; pp. 371–382. [Google Scholar]
- Chen, J.; Pan, Q.K.; Wang, L.; Li, J.Q. A hybrid dynamic harmony search algorithm for identical parallel machines scheduling. Eng. Optim. 2012, 44, 209–224. [Google Scholar] [CrossRef]
- Laha, D.; Behera, D.K. An Improved Cuckoo Search Algorithm for Parallel Machine Scheduling. In Proceedings of the Swarm, Swarm, Evolutionary, and Memetic Computing: 5th International Conference, SEMCCO 2014, Bhubaneswar, India, 18–20 December 2014; Revised Selected Papers 5. Springer International Publishing: Cham, Switzerland, 2015; pp. 788–800. [Google Scholar]
- Kashan, A.H.; Keshmiry, M.; Dahooie, J.H.; Abbasi-Pooya, A. A simple yet effective grouping evolutionary strategy (GES) algorithm for scheduling parallel machines. Neural Comput. Appl. 2018, 30, 1925–1938. [Google Scholar] [CrossRef]
- Laha, D.; Gupta, J.N. An improved cuckoo search algorithm for scheduling jobs on identical parallel machines. Comput. Ind. Eng. 2018, 126, 348–360. [Google Scholar] [CrossRef]
- Alharkan, I.; Bamatraf, K.; Noman, M.A.; Kaid, H.; Abouel Nasr, E.S.; El-Tamimi, A.M. An order effect of neighborhood structures in variable neighborhood search algorithm for minimizing the makespan in an identical parallel machine scheduling. Math. Probl. Eng. 2018, 2018, 3586731. [Google Scholar] [CrossRef]
- Kamaraj, S.; Saravanan, M. Optimisation of identical parallel machine scheduling problem. Int. J. Rapid Manuf. 2019, 8, 123–132. [Google Scholar] [CrossRef]
- Ghalami, L.; Grosu, D. Scheduling parallel identical machines to minimize makespan: A parallel approximation algorithm. J. Parallel Distrib. Comput. 2019, 133, 221–231. [Google Scholar] [CrossRef]
- Davidović, T.; Jakšić-Krüger, T.; Ramljak, D.; Šelmić, M.; Teodorović, D. Parallelization strategies for bee colony optimization based on message passing communication protocol. Optimization 2013, 62, 1113–1142. [Google Scholar] [CrossRef]
- Abdelsalam, K.M.; Khamis, S.M.; Bahig, H.M.; Bahig, H.M. A multicore-based algorithm for optimal multi-way number partitioning. Int. J. Inf. Technol. 2023, 15, 2929–2940. [Google Scholar] [CrossRef]
- Kedia, S. A Job Scheduling Problem with Parallel Processors; Unpublished Report; Department of Industrial and Operations Engineering, University of Michigan: Ann Arbor, MI, USA, 1971. [Google Scholar]
- Ostojić, D.; Jolović, M.; Drašković, R.; Fellague, A. Efficient Generation of Diverse Instances for P||Cmax Solver Evaluation. In Proceedings of the First Deep Tech Open Science Day Conference, Kragujevac, Serbia, 5 April 2024. [Google Scholar]
- Ostojić, D.; Zarges, C.; Davidović, T.; Ramljak, D. Polynomial Regression Model for Standardizing Large Precision Instances for P||Cmax problem. In Proceedings of the Book of Abstracts of the Artificial Intelligence Conference, San Francisco, CA, USA, 10–13 June 2024. [Google Scholar]
- Dell’Amico, M.; Martello, S. A note on exact algorithms for the identical parallel machine scheduling problem. Eur. J. Oper. Res. 2005, 160, 576–578. [Google Scholar] [CrossRef]
- Falkenauer, E. A hybrid grouping genetic algorithm for bin packing. J. Heuristics 1996, 2, 5–30. [Google Scholar] [CrossRef]
- Davidović, T.; Crainic, T.G. Benchmark-Problem Instances for Static Scheduling of Task Graphs with Communication Delays on Homogeneous Multiprocessor Systems. Comput. Oper. Res. 2006, 33, 2155–2177. [Google Scholar] [CrossRef]
- Tobita, T.; Kasahara, H. A standard task graph set for fair evaluation of multiprocessor scheduling algorithms. J. Sched. 2002, 5, 379–394. [Google Scholar] [CrossRef]
- Dell’Amico, M.; Iori, M.; Martello, S.; Monaci, M. A note on exact and heuristic algorithms for the identical parallel machine scheduling problem. J. Heuristics 2012, 18, 939–942. [Google Scholar] [CrossRef]
- Beiranvand, V.; Hare, W.; Lucet, Y. Best practices for comparing optimization algorithms. Optim. Eng. 2017, 18, 815–848. [Google Scholar] [CrossRef]
- Bartz-Beielstein, T.; Doerr, C.; Berg, D.v.d.; Bossek, J.; Chandrasekaran, S.; Eftimov, T.; Fischbach, A.; Kerschke, P.; La Cava, W.; Lopez-Ibanez, M.; et al. Benchmarking in optimization: Best practice and open issues. arXiv 2020, arXiv:2007.03488. [Google Scholar]
- Hooker, J.N. Needed: An empirical science of algorithms. Oper. Res. 1994, 42, 201–212. [Google Scholar] [CrossRef]
- Rardin, R.L.; Uzsoy, R. Experimental evaluation of heuristic optimization algorithms: A tutorial. J. Heuristics 2001, 7, 261–304. [Google Scholar] [CrossRef]
- Barr, R.S.; Golden, B.L.; Kelly, J.P.; Resende, M.G.; Stewart, W.R. Designing and reporting on computational experiments with heuristic methods. J. Heuristics 1995, 1, 9–32. [Google Scholar] [CrossRef]
- Krüger, T.J. Development, Implementation and Theoretical Analysis of the Bee Colony Optimization Meta-Heuristic Method. Ph.D. Thesis, University of Novi Sad, Novi Sad, Serbia, 2017. [Google Scholar]
- Biedrzycki, R. Comparison with State-of-the-Art: Traps and Pitfalls. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Krakow, Poland, 1 July 2021; IEEE: Pisccataway, NJ, USA, 2021; pp. 863–870. [Google Scholar]
- Behera, D.K.; Laha, D. Comparison of heuristics for identical parallel machine scheduling. Adv. Mater. Res. 2012, 488, 1708–1712. [Google Scholar] [CrossRef]
- Alvim, A.C.; Ribeiro, C. A hybrid heuristic for bin-packing and multiprocessor scheduling. In Proceedings of the International Workshop on Experimental and Efficient Algorithms, Angra dos Reis, Brazil, 25–28 May 2004. [Google Scholar]
- Alba, E.; Luque, G.; Nesmachnow, S. Parallel metaheuristics: Recent advances and new trends. Int. Trans. Oper. Res. 2013, 20, 1–48. [Google Scholar] [CrossRef]
- Crainic, T. Parallel metaheuristics and cooperative search. In Handbook of Metaheuristics; Springer: Cham, Switzerland, 2019; pp. 419–451. [Google Scholar]
- Xiao, X. A direct proof of the 4/3 bound of lpt scheduling rule. In Proceedings of the 2017 5th International Conference on Frontiers of Manufacturing Science and Measuring Technology (FMSMT 2017). Atlantis Press, Taiyuan, China, 24–25 June 2017; pp. 486–489. [Google Scholar]
- Friesen, D.K. Tighter bounds for the multifit processor scheduling algorithm. SIAM J. Comput. 1984, 13, 170–181. [Google Scholar] [CrossRef]
- Yue, M. On the exact upper bound for the multifit processor scheduling algorithm. ANnals Oper. Res. 1990, 24, 233–259. [Google Scholar] [CrossRef]
- Fischetti, M.; Martello, S. Worst-case analysis of the differencing method for the partition problem. Math. Program. 1987, 37, 117–120. [Google Scholar] [CrossRef]
- Michiels, W.; Korst, J.; Aarts, E.; Leeuwen, J. Performance ratios of the Karmarkar–Karp differencing method. J. Comb. Optim. 2007, 13, 19–32. [Google Scholar] [CrossRef]
- Michiels, W. Performance Ratios for the Differencing Method. Ph.D. Thesis, Eindhoven University of Technology (TU/e), Frits Philips Inst. Quality Management, Eindhoven, The Netherlands, 2004. [Google Scholar] [CrossRef]
- Boettcher, S.; Mertens, S. Analysis of the Karmarkar-Karp differencing algorithm. Eur. Phys. J. B 2008, 65, 131–140. [Google Scholar] [CrossRef]
- Coffman, E.G., Jr.; Whitt, W. Recent Asymptotic Results in the Probabilistic Analysis of Schedule Makespans. In Scheduling Theory and Its Applications; Chrètienne, P., Coffman, E.G., Jr., Lenstra, J.K., Liu, Z., Eds.; Wiley: New York, NY, USA, 1997; pp. 15–31. [Google Scholar]
- Yakir, B. The Differencing Algorithm LDM for Partitioning: A Proof of a Conjecture of Karmarkar and Karp. Math. Oper. Res. 1996, 21, 85–99. [Google Scholar] [CrossRef]
- Ho, J.C.; Massabò, I.; Paletta, G.; Ruiz-Torres, A.J. A note on posterior tight worst-case bounds for longest processing time schedules. 4OR 2019, 17, 97–107. [Google Scholar] [CrossRef]
- Blocher, J.D.; Sevastyanov, S. A note on the Coffman–Sethi bound for LPT scheduling. J. Sched. 2015, 18, 325–327. [Google Scholar] [CrossRef]
- Chen, B. A note on LPT scheduling. Oper. Res. Lett. 1993, 14, 139–142. [Google Scholar] [CrossRef]
- Blocher, J.D.; Chand, S. Scheduling of parallel processors: A posterior bound on LPT sequencing and a two-step algorithm. Nav. Res. Logist. (NRL) 1991, 38, 273–287. [Google Scholar] [CrossRef]
- Dobson, G. Scheduling Independent Tasks on Uniform Processors. SIAM J. Comput. 1984, 13, 705–716. [Google Scholar] [CrossRef]
- Coffman, E.G., Jr.; Sethi, R. A Generalized Bound on LPT Sequencing. In Proceedings of the 1976 ACM SIGMETRICS Conference on Computer Performance Modeling Measurement and Evaluation, SIGMETRICS ’76, New York, NY, USA, 29–31 March 1976; pp. 306–310. [Google Scholar]
- Paletta, G.; Vocaturo, F. A short note on an advance in estimating the worst-case performance ratio of the MPS algorithm. SIAM J. Discret. Math. 2010, 23, 2198–2203. [Google Scholar] [CrossRef]
- Benoit, A.; Canon, L.C.; Elghazi, R.; Héam, P.C. Asymptotic Performance and Energy Consumption of SLACK. In Proceedings of the Euro-Par 2023: Parallel Processing, Limassol, Cyprus, 28 August–1 September 2023; Cano, J., Dikaiakos, M.D., Papadopoulos, G.A., Pericàs, M., Sakellariou, R., Eds.; Springer Nature: Cham, Switzerland, 2023. [Google Scholar]
- Lee, M.; Lee, K.; Pinedo, M. Tight approximation bounds for the LPT rule applied to identical parallel machines with small jobs. J. Sched. 2022, 25, 721–740. [Google Scholar] [CrossRef]
- Benoit, A.; Canon, L.C.; Elghazi, R.; Héam, P.C. Update on the Asymptotic Optimality of LPT. In Proceedings of the Euro-Par 2021: Parallel Processing, Lisbon, Portugal, 1–3 September 2021; Sousa, L., Roma, N., Tomás, P., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 55–69. [Google Scholar]
- Frenk, J.B.G.; Rinnooy Kan, A.H.G. The Asymptotic Optimality of the LPT Rule. Math. Oper. Res. 1987, 12, 241–254. [Google Scholar] [CrossRef]
- Loulou, R. Tight Bounds and Probabilistic Analysis of Two Heuristics for Parallel Processor Scheduling. Math. Oper. Res. 1984, 9, 142–150. [Google Scholar] [CrossRef]
- Coffman, E.G., Jr.; Frederickson, G.N.; Lueker, G.S. Probabilistic Analysis of the LPT Processor Scheduling Heuristic. In Deterministic and Stochastic Scheduling: Proceedings of the NATO Advanced Study and Research Institute on Theoretical Approaches to Scheduling Problems Held in Durham, England, 6–17 July 1981; Dempster, M.A.H., Lenstra, J.K., Rinnooy Kan, A.H.G., Eds.; Springer: Amsterdam, The Netherlands, 1982; pp. 319–331. [Google Scholar]
- Kao, T.Y.; Elsayed, E.A. Performance of the LPT algorithm in multiprocessor scheduling. Comput. Oper. Res. 1990, 17, 365–373. [Google Scholar] [CrossRef]
- Coffman, E.G., Jr.; Lueker, G.S.; Rinnooy Kan, A.H.G. Asymptotic Methods in the Probabilistic Analysis of Sequencing and Packing Heuristics. Manag. Sci. 1988, 34, 266–290. [Google Scholar] [CrossRef]
- Bruno, J.L.; Downey, P.J. Probabilistic Bounds on the Performance of List Scheduling. SIAM J. Comput. 1986, 15, 409–417. [Google Scholar] [CrossRef]
- Coffman, E.G., Jr.; Gilbert, E.N. On the Expected Relative Performance of List Scheduling. Oper. Res. 1985, 33, 548–561. [Google Scholar] [CrossRef]
- Han, S.; Hong, D.; Leung, J.Y.T. On the Asymptotic Optimality of Multiprocessor Scheduling Heuristics for the Makespan Minimization Problem. ORSA J. Comput. 1995, 7, 201–204. [Google Scholar] [CrossRef]
- Coffman, E.G., Jr.; Langston, M.A. A performance guarantee for the greedy set-partitioning algorithm. Acta Inform. 1984, 21, 409–415. [Google Scholar] [CrossRef]
- Alvim, A.C.; Ribeiro, C.C. A Hybrid Bin-Packing Heuristic to Multiprocessor Scheduling: Detailed Computational Results. In Proceedings of the International Workshop on Experimental and Efficient Algorithms, Angra dos Reis, Brazil, 25–28 May 2004. [Google Scholar]
- Berretta, R.; Moscato, P. The number partitioning problem: An open challenge for evolutionary computation? In New Ideas in Optimization; McGraw-Hill Ltd.: London, UK, 1999; pp. 261–278. [Google Scholar]
- Pan, Q.K.; Tasgetiren, M.F.; Liang, Y.C. A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem. Comput. Oper. Res. 2008, 35, 2807–2839. [Google Scholar] [CrossRef]
- Tasgetiren, M.F.; Liang, Y.C.; Sevkli, M.; Gencyilmaz, G. A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem. Eur. J. Oper. Res. 2007, 177, 1930–1947. [Google Scholar] [CrossRef]
- Fernandez, A.; Insfran, E.; Abrahão, S. Usability evaluation methods for the web: A systematic mapping study. Inf. Softw. Technol. 2011, 53, 789–817. [Google Scholar] [CrossRef]
- Filippi, C.; Romanin-Jacur, G. Exact and approximate algorithms for high-multiplicity parallel machine scheduling. J. Sched. 2009, 12, 529–541. [Google Scholar] [CrossRef]
- Filippi, C. An approximate algorithm for a high-multiplicity parallel machine scheduling problem. Oper. Res. Lett. 2010, 38, 312–317. [Google Scholar] [CrossRef]
- Gabay, M. High-Multiplicity Scheduling and Packing Problems: Theory and Applications. Ph.D. Thesis, Université de Grenoble, Grenoble, France, 2014. [Google Scholar]
- Oosterwijk, T. Approximation Algorithms in Allocation, Scheduling and Pricing. Ph.D. Thesis, Universitaire Pers Maastricht, Maastricht, The Netherlands, 2018. [Google Scholar]
- Hoos, H.H.; Stützle, T. Empirical analysis of randomized algorithms. In Handbook of Approximation Algorithms and Metaheuristics; CRC: Boca Raton, FL, USA, 2018. [Google Scholar]
Name | Reference | Known Characteristics | Compared With |
---|---|---|---|
1962 [98] | DP; WTC: ; WSC: | N/A | |
1966 [101] | DP; WTC: | N/A | |
1976 [102] | DP; WTC: | N/A | |
1982 [103] | DP; WTC: ; WSC: | N/A | |
1987 [26] | DP; WTC: | N/A | |
2011 [104] | DP; WTC: | N/A | |
2013 [105] | SSM; WTC: ; WSC: | N/A |
Name | Reference | Known Characteristics | Compared With |
---|---|---|---|
N/A | 1973 [110,111] | B&B + Lagrange multipliers | N/A |
N/A | 1980 [112] | KP + Reduction method | N/A |
BIN, DM | 1995 [57] | BPP, B&B + MS + New LB | N/A |
CGA, CKK | 1998 [9] | Small m; B&B + LDM | N/A |
2004 [113] | B&B + Cutting plane + Polyhedral theory | N/A | |
HJ | 2008 [14] | B&B + Symmetry-breaking + New LBs | [57] |
DIMM | 2008 [114] | B&B + Branch and price + Bin. search + SS | [57] |
, RNP | 2009 [115] | Small m; B&B + LDM | [9] |
IRNP | 2011 [116] | Small m; B&B + LDM + SSP | [115] |
MOF | 2013 [117] | Small m; B&B + SSP | [116] |
BSBCP, , | 2013 [118] | Small m; BPP; B&B + LDM + SSP | [9,116] |
BSIBC | 2013 [119] | Bin. Search + BPP | [114,118] |
, | 2014 [120] | Small m; B&B + LDM + SSP | [117,118] |
CIW | 2014 [121] | Small m; Iter. weakening + Caching | [117,119,120] |
WL, | 2017 [8,63] | B&B + Path-related dominance criteria | [14,114] |
LCS | 2018 [42] | Small m; Iter. weakening + Caching + B&B | [9,115,116,117,119,120,121] |
KL | 2018 [122] | Bin. Search + B&B | [57,114] |
AF | 2018 [123] | ILP + AF + Reduction criteria + BPP | [8,14] |
iAF | 2022 [124] | ILP + AF + Graph compress. + BPP + VNS | [123] |
DIST | 2023 [12] | Decomposition + MKP | [124] |
Name | Reference | Known Characteristics | Compared With |
---|---|---|---|
SLS | 1966 [127] | AR: ; WTC: | N/A |
LPT, KK | 1969 [128] | AR: for ; WTC: , AR: ; Strongly -hard | N/A |
1972 [131] | AR: ; WTC: | N/A | |
MF | 1978 [129] | AR: ; WTC: | [128,131] |
MAAAT | 1980 [112] | WTC: | N/A |
LDM | 1982 [53] | AR: for ; WTC: | N/A |
1986 [132] | AR: (tight for ); WTC: | N/A | |
1988 [133] | AR: for ; WTC: | [128,129] | |
COMBINE | 1988 [134] | AR: for ; WTC: | [128,129] |
1994 [135] | WTC: | N/A | |
MS | 1995 [57] | WTC: | N/A |
1996 [136] | AR: ; WTC: | [128,129] | |
LISTFIT | 2001 [137] | AR: ; WTC: | [128,129,134] |
FGH, DGH | 2001 [130] | AR: ; WTC: | [128,129,136] |
AP | 2002 [138] | WTC: | [128,129,130] |
2004 [139] | WTC: | N/A | |
SS, | 2006 [95] | WTC: , AR: ; WTC: | [57,128] |
MPS | 2007 [140] | AR: ; WTC: | [128] |
PSC | 2008 [141] | WTC: | [128] |
2009 [142] | WTC: | [128] | |
SPS | 2010 [143] | AR: ; WTC: | [128] |
DJMS | 2015 [144] | AR: ; WTC: | [128,129,134,137] |
PSMF | 2015 [145] | AR: ; WTC: | [128,129,134,137] |
SLACK | 2020 [146] | AR: for ; WTC: | [53,128,134] |
Approximation Scheme | QPTAS | PTAS | EPTAS | FPTAS |
---|---|---|---|---|
WTC |
Name | Reference | Known Characteristics | Compared With |
---|---|---|---|
-DUAL | 1985 [54,168] | WTC: | N/A |
N/A | 1989 [169] | WTC: | N/A |
N/A | 1998 [58,170] | WTC: | N/A |
N/A | 2010 [171] | WTC: | N/A |
JR | 2019 [174] | WTC: | N/A |
N/A | 2020 [175] | WTC: | N/A |
BDJR | 2022 [173] | WTC: | N/A |
N/A | 2023 [172] | WTC: | N/A |
Name | Reference | Known Characteristics | Compared With |
---|---|---|---|
1988 [10] | SA | N/A | |
HG | 1994 [178] | TS | [10] |
1997 [179] | SA | N/A | |
TGR | 1998 [180] | TS | [178] |
, | 1999 [181] | GA, SA | N/A |
AIS, | 2002 [161] | IBA | N/A |
AntMPS | 2003 [7] | ACO | N/A |
2006 [182] | SA | N/A | |
2006 [183] | ILS | N/A | |
HDNN | 2006 [184] | ANN | N/A |
2007 [185] | ANN | N/A | |
TCNN, | 2008 [186] | ANN | [184] |
2008 [114] | SS | N/A | |
2009 [187] | MC | N/A | |
MVNS, | 2009 [5] | VNS, GA | N/A |
2009 [6] | BCO | N/A | |
2009 [188] | VNS | [187] | |
, HDPSO | 2009 [189] | PSO | [182] |
DSHS | 2010 [190] | HS | [182,189] |
, HDHS | 2011 [191] | HS | [5,181,182] |
RIVNS, HIVNS | 2012 [192] | VNS | [5,181,182] |
2012 [193] | SA | [182] | |
SPPSO, , | 2012 [194] | PSO | N/A |
2012 [177] | BCO | N/A | |
, BHS, | 2012 [195] | HS, HS, HS+VNS | [182,189] |
CSA | 2015 [196] | CS | [182,189] |
GES, GES+ | 2018 [197] | GES | [182] |
ICSA | 2018 [198] | CS | [182,189,195,196] |
, , , | 2018 [199] | VNS | [5,181,182,192] |
, | 2019 [200] | GA, GWO | N/A |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4 | 7 | 9 | 11 | 13 | 16 | 18 | 22 | 27 | 33 | 40 | 48 | 59 | 72 | 86 |
2 | 9 | 11 | 14 | 17 | 19 | 22 | 25 | 29 | 34 | 40 | 47 | 56 | 67 | 79 | 94 |
3 | 12 | 16 | 18 | 22 | 25 | 28 | 32 | 36 | 42 | 48 | 55 | 64 | 75 | 87 | 102 |
4 | 15 | 20 | 25 | 28 | 31 | 35 | 39 | 44 | 49 | 56 | 63 | 72 | 83 | 95 | 110 |
5 | 18 | 24 | 29 | 33 | 38 | 42 | 46 | 52 | 57 | 64 | 72 | 81 | 92 | 104 | 118 |
6 | 22 | 28 | 34 | 39 | 44 | 49 | 54 | 59 | 65 | 72 | 80 | 90 | 100 | 113 | 127 |
7 | 26 | 33 | 39 | 45 | 50 | 56 | 61 | 67 | 74 | 81 | 89 | 99 | 110 | 122 | 137 |
8 | 29 | 37 | 44 | 51 | 57 | 63 | 69 | 75 | 82 | 90 | 99 | 108 | 119 | 132 | 146 |
9 | 33 | 41 | 49 | 57 | 63 | 70 | 77 | 84 | 91 | 99 | 108 | 118 | 129 | 142 | 156 |
10 | 36 | 45 | 55 | 62 | 70 | 77 | 85 | 92 | 100 | 108 | 118 | 128 | 139 | 152 | 167 |
11 | 39 | 50 | 59 | 68 | 77 | 85 | 93 | 101 | 109 | 118 | 127 | 138 | 150 | 163 | 177 |
12 | 42 | 54 | 64 | 74 | 83 | 92 | 101 | 109 | 118 | 128 | 138 | 148 | 160 | 174 | 188 |
13 | 45 | 58 | 69 | 80 | 90 | 100 | 109 | 118 | 128 | 137 | 148 | 159 | 171 | 185 | 200 |
14 | 48 | 62 | 74 | 86 | 97 | 107 | 117 | 127 | 137 | 147 | 158 | 170 | 182 | 196 | 211 |
15 | 51 | 66 | 79 | 92 | 104 | 115 | 125 | 136 | 147 | 157 | 169 | 181 | 194 | 208 | 223 |
16 | 54 | 70 | 84 | 98 | 110 | 122 | 134 | 145 | 156 | 168 | 180 | 192 | 205 | 220 | 236 |
17 | 56 | 73 | 89 | 103 | 117 | 130 | 142 | 154 | 166 | 178 | 190 | 203 | 217 | 232 | 248 |
18 | 59 | 77 | 94 | 109 | 124 | 137 | 150 | 163 | 176 | 189 | 202 | 215 | 229 | 244 | 261 |
Name | WTC | AR | WTC Points | AR Points | Points |
---|---|---|---|---|---|
13 | 7 | 20 | |||
COMBINE | 13 | 6 | 19 | ||
MF | 13 | 6 | 19 | ||
SLACK | 14 | 4 | 18 | ||
13 | 5 | 18 | |||
LPT | 14 | 4 | 18 | ||
14 | 4 | 18 | |||
ICII | 13 | 4 | 17 | ||
SPS | 14 | 3 | 17 | ||
ICI | 13 | 3 | 16 | ||
FGH | 10 | 6 | 16 | ||
DGH | 10 | 6 | 16 | ||
PSMF | 10 | 6 | 16 | ||
SLS | 2 | 14 | 2 | 16 | |
? | 15 | 0 | 15 | ||
MPS | 12 | 3 | 15 | ||
LDM | 11 | 4 | 15 | ||
LISTFIT | 9 | 6 | 15 | ||
DJMS | 9 | 6 | 15 | ||
MAAAT | ? | 14 | 0 | 14 | |
AP | ? | 14 | 0 | 14 | |
? | 14 | 0 | 14 | ||
PSC | ? | 14 | 0 | 14 | |
? | 14 | 0 | 14 | ||
IC | 2 | 13 | 1 | 14 | |
? | 13 | 0 | 13 | ||
MF+ | 6 | 6 | 12 | ||
LPT+ | 6 | 4 | 10 | ||
EX | 5 | 4 | 9 | ||
MS | ? | 8 | 0 | 8 | |
X-TMO | 1 | 6 | 7 | ||
SS | ? | 7 | 0 | 7 | |
KOMP | ? | 7 | 0 | 7 | |
PSMF+ | ? | 0 | 6 | 6 | |
MSS | 2 | 4 | 1 | 5 | |
HI | ? | 0 | 5 | 5 | |
DIST | 1 | 4 | 5 | ||
MMIPMH | ? | 0 | 4 | 4 | |
SLACK + | ? | 0 | 4 | 4 | |
MSK | 2 | 3 | 1 | 4 | |
? | 2 | 0 | 2 | ||
3-PHASE | ? | 2 | 0 | 1 | 1 |
KK | ? | 1 | 0 | 1 |
m, n | D | HDPSO | CSA | ICSA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
2, 9 | 1.001 | 1.000 | 1.000 | N/A | N/A | 1.000 | 1.000 | 1.000 | 1.001 | |
1.001 | 1.001 | 1.001 | N/A | N/A | 1.001 | 1.001 | 1.002 | 1.001 | ||
1.004 | 1.004 | 1.004 | N/A | N/A | 1.004 | 1.003 | 1.002 | 1.003 | ||
1.004 | 1.004 | 1.004 | N/A | N/A | 1.004 | 1.004 | 1.002 | 1.005 | ||
1.002 | 1.002 | 1.002 | N/A | N/A | 1.002 | 1.001 | 1.002 | 1.003 | ||
3, 10 | 1.001 | 1.001 | 1.001 | N/A | N/A | 1.001 | 1.002 | 1.003 | 1.006 | |
1.008 | 1.007 | 1.007 | N/A | N/A | 1.007 | 1.005 | 1.006 | 1.009 | ||
1.010 | 1.009 | 1.009 | N/A | N/A | 1.010 | 1.006 | 1.011 | 1.010 | ||
1.017 | 1.016 | 1.016 | N/A | N/A | 1.016 | 1.008 | 1.010 | 1.020 | ||
1.009 | 1.009 | 1.009 | N/A | N/A | 1.009 | 1.006 | 1.007 | 1.008 | ||
Average | 1.0057 | 1.0053 | 1.0053 | 1.0064 | 1.0061 | 1.0054 | 1.0036 | 1.0046 | 1.0067 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostojić, D.; Ramljak, D.; Urošević, A.; Jolović, M.; Drašković, R.; Kakka, J.; Jakšić Krüger, T.; Davidović, T. Systematic Literature Review of Optimization Algorithms for P||Cmax Problem. Symmetry 2025, 17, 178. https://doi.org/10.3390/sym17020178
Ostojić D, Ramljak D, Urošević A, Jolović M, Drašković R, Kakka J, Jakšić Krüger T, Davidović T. Systematic Literature Review of Optimization Algorithms for P||Cmax Problem. Symmetry. 2025; 17(2):178. https://doi.org/10.3390/sym17020178
Chicago/Turabian StyleOstojić, Dragutin, Dušan Ramljak, Andrija Urošević, Marija Jolović, Radovan Drašković, Jainil Kakka, Tatjana Jakšić Krüger, and Tatjana Davidović. 2025. "Systematic Literature Review of Optimization Algorithms for P||Cmax Problem" Symmetry 17, no. 2: 178. https://doi.org/10.3390/sym17020178
APA StyleOstojić, D., Ramljak, D., Urošević, A., Jolović, M., Drašković, R., Kakka, J., Jakšić Krüger, T., & Davidović, T. (2025). Systematic Literature Review of Optimization Algorithms for P||Cmax Problem. Symmetry, 17(2), 178. https://doi.org/10.3390/sym17020178