Next Article in Journal
Open Source Simulation for Compression Analysis of Corrugated Boards
Next Article in Special Issue
Sharp Bounds of Hermitian Toeplitz Determinants for Bounded Turning Functions
Previous Article in Journal
Pear Object Detection in Complex Orchard Environment Based on Improved YOLO11
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Comprehensive Subfamilies of Bi-Univalent Functions Defined by Error Function Subordinate to Euler Polynomials

1
Department of Applied Science, Ajloun College, Al Balqa Applied University, Ajloun 26816, Jordan
2
Department of Mathematics, Faculty of Science, Al al-Bayt University, Mafraq 25113, Jordan
3
College of Applied and Health Sciences, A’Sharqiyah University, P.O. Box 42, Ibra 400, Oman
*
Authors to whom correspondence should be addressed.
Symmetry 2025, 17(2), 256; https://doi.org/10.3390/sym17020256
Submission received: 28 November 2024 / Revised: 3 January 2025 / Accepted: 6 February 2025 / Published: 8 February 2025

Abstract

:
Recently, several researchers have estimated the Maclaurin coefficients, namely q 2 and q 3 , and the Fekete–Szegö functional problem of functions belonging to some special subfamilies of analytic functions related to certain polynomials, such as Lucas polynomials, Legendrae polynomials, Chebyshev polynomials, and others. This study obtains the bounds of coefficients q 2 and q 3 , and the Fekete–Szegö functional problem for functions belonging to the comprehensive subfamilies T ( ζ , ϵ , δ ) and J ( φ , δ ) of analytic functions in a symmetric domain U , using the imaginary error function subordinate to Euler polynomials. After specializing the parameters used in our main results, a number of new special cases are also obtained.

1. Introduction

The study of bi-univalent functions using error functions combines sophisticated mathematical methods for error estimates and approximation with complex analysis, especially function theory. Subfamilies of univalent functions that are analytic in a particular domain are called bi-univalent functions. Using error functions to explore bi-univalent functions is motivated by a combination of classical function theory, numerical analysis, and applications to engineering and physics. We can improve our comprehension of bi-univalent functions by using error functions, which offer more accurate characterizations, sharper bounds, and better approximations.
Also, there are numerous uses for the error function in probability science, statistics, applied mathematics, and partial differential equation physics. The error function in quantum mechanics is crucial for estimating the likelihood of seeing a particle in a given area. Alzer [1] and Coman [2] provided a variety of error function properties and inequalities, whereas Elbert et al. [3] investigated the properties of complementary error functions.
Let A U F symbolize the family of analytic and univalent functions Q in the symmetric domain U = { ς C : ς < 1 } and satisfy Q ( 0 ) = Q ( 0 ) 1 = 0 of the form
Q ( ς ) = ς + k = 2 q k ς k , ( ς U ) .
Every function Q A U F has an inverse Q 1 , defined by
Q 1 ( Q ( ς ) ) = ς and ϖ = Q ( Q 1 ( ϖ ) ) ( ς U , ϖ < r 0 ( Q ) 1 4 ) ,
where (see [4])
Q 1 ( ϖ ) = H ( ϖ ) = ϖ q 2 ϖ 2 + ( 2 q 2 2 q 3 ) ϖ 3 ( q 4 + 5 q 2 3 5 q 3 q 2 ) ϖ 4 + .
Let Π be the family of bi-univalent functions in U given by (1) (Q is bi-univalent in U if Q and Q 1 are univalent in U ) (see [5]).
The function Q is subordinate to H, symbolized by Q H , if there exists the function ϖ A U F , and the functions Q and H are analytic in U , such that
ϖ ( 0 ) = 0 and | ϖ ( ς ) | < 1 , ( ς U )
such that
Q ( ς ) = H ( ϖ ( ς ) ) .
Also, if H is univalent in U , then
Q ( ς ) H ( ς ) if and only if Q ( 0 ) = H ( 0 ) and Q ( U ) H ( U ) .
Abramowitz and Stegun [6] defined the following error function
erf ς = 2 π 0 ς e t 2 d t = 2 π k = 0 1 k ς 2 k + 1 2 k + 1 k ! , ( ς C ) .
Further, defines the following error function, whereas erfi denotes the imaginary error function
erf i ς = 2 π 0 ς e t 2 d t = 2 π k = 0 ς 2 k + 1 2 k + 1 k ! , ( ς C ) .
Since the error function is odd (i.e., erf ς = erf ς ), it is symmetric with respect to the origin.
The error Function (3) is generalized as follows:
erf μ ς = μ ! π 0 ς e t μ d t , μ N 0 = N { 0 } = μ ! π k = 0 1 k ς μ k + 1 μ n + 1 k ! , ( ς C ) .
From (5), we have erf 0 ς = ς e π , erf 1 ς = 1 e ς π , erf 2 ς = erf ς .
Clearly, the function erf μ ς does not belong in the family A U F . Thus, it is natural to consider the following function:
E μ ς = π μ ! ς 1 1 μ erf μ ς 1 / μ = ς + k = 2 1 k 1 ( k 1 μ + 1 ) k 1 ! ς k , ( μ N , ς U ) .
Also, the imaginary error Function (4) is generalized as follows:
erf i μ ς = μ ! π 0 ς e t μ d t = μ ! π k = 0 ς μ k + 1 μ k + 1 k ! , ( μ N 0 , ς C ) .
Further, the normalization of the generalized imaginary error function erfiμ(ς) is given by
E μ ς = π μ ! ς 1 1 μ erf i μ ς 1 / μ = ς + k = 2 1 ( k 1 μ + 1 ) k 1 ! ς k , ( μ N , ς U ) .
Making use of the convolution, we construct the linear operator E Q μ :   A U F A U F to be given as
E Q μ ς = Q ( ς ) E μ ς = ς + k = 2 1 ( k 1 μ + 1 ) k 1 ! q k ς k , ( μ N , ς U ) .
Remark 1.
If we take μ = 2 in (6), we obtain the normalization for Ramachandran et al. [7], and if we take μ = 2 in (8), we obtain the normalization for Mohammed et al. [8].
Understanding complex functions and their geometric features requires an understanding of Euler polynomials, which originated in the studies of Leonhard Euler in the seventeenth century. In geometric function theory, they are essential for describing conformal mappings that locally preserve angles. They are also extensively used in many branches of geometric function theory, such as Riemann surface theory, Schwarz–Christoffel mappings, and the study of univalent functions. The complex connection between geometric transformations and analytic functions made possible by Euler polynomials is clarified by these applications.
Euler polynomials G k ( δ ) are defined using the generating function (see, e.g., [9,10]):
K ( δ , H ) = 2 e H δ e H + 1 = k = 0 G k ( δ ) H k k ! , 1 2 < δ 1 , H < π .
A precise formula for G k ( δ ) is given by
G j ( δ ) = i = 0 j 1 2 i u = 0 i ( 1 ) u i u ( δ + u ) j .
From (10), the function G i ( δ ) in terms of G u is obtained as follows:
G i ( δ ) = u = 0 i G u 2 u i u ( δ 1 2 ) i u .
The initial Euler polynomial values are as follows:
G 0 ( δ ) = 1 ; G 1 ( δ ) = 2 δ 1 2 ; G 2 ( δ ) = δ 2 δ ; G 3 ( δ ) = 4 δ 3 6 δ 2 + 1 4 ; G 4 ( δ ) = δ 4 2 δ 3 + δ .
In 2010, Srivastava et al. [5] found bounds for the coefficients q 2 and q 3 of functions in two interesting subfamilies of the function family Π . Motivated by this work, many researchers have studied new subfamilies of Π to obtain new bounds for the coefficients q 2 and q 3 , like Amourah et al. [11], Deniz [12], Tang et al. [13], Yousef et al. [14], and others.
For a univalent function Q, Fekete and Szegö [15] derived a sharp constraint of the functional q 3 ϑ q 2 2 with real ϑ ( 0 ϑ < 1 ) . Since then, the classical Fekete–Szegö problem or inequality has been defined as the problem of determining the sharp bounds for this functional of family functions A U F with any complex ϑ .
The novelty of this work is evident in that many authors have used several special functions in their articles; they have never used error functions in subfamilies of bi-univalent functions.
In this work, we construct two new and extensive subfamilies of bi-univalent functions using a particular special function, the imaginary error function and Euler polynomial, denoted by T ( ζ , ϵ , δ ) and J ( φ , δ ) , and find initial bounds for the coefficients q 2 and q 3 , as well as the Fekete–Szegö inequality. Also, a number of new corollaries are displayed.

2. Bounds of the Subfamilies T ( ζ , ϵ , δ ) and J ( φ , δ )

At the beginning of this section, we should define the comprehensive subfamilies T ( ζ , ϵ , δ ) and J ( φ , δ ) using an error function subordinate to Euler polynomials.
Definition 1.
For Q T ( ζ , ϵ , δ ) , assume the following subordinations are satisfied:
( 1 ζ ) E Q μ ς ς + ζ E Q μ ς + ϵ ς E Q μ ς K ( δ , ς ) = k = 0 G k ( δ ) ς k k !
and
( 1 ζ ) E H μ ( ϖ ) ϖ + ζ E H μ ϖ + ϵ ϖ E H μ ϖ K ( δ , ϖ ) = k = 0 G k ( δ ) ϖ k k ! ,
where ζ 1 , ϵ 0 , 1 2 < δ 1 , ς , ϖ U and H = Q 1 .
Definition 2.
For Q J ( φ , δ ) , assume the following subordinations are satisfied:
E Q μ ς + ς e i φ + 1 2 E Q μ ς K ( δ , ς ) = k = 0 G k ( δ ) ς k k !
and
E H μ ϖ + ϖ e i φ + 1 2 E H μ ϖ K ( δ , ϖ ) = k = 0 G k ( δ ) ϖ k k ! ,
where π < φ π , 1 2 < δ 1 , ς , ϖ U and H = Q 1 .
Example 1.
If ζ = 1 in Definition 1, we obtain the subfamily T ( 1 , ϵ , δ ) , which satisfies the following requirements:
E Q μ ς + ϵ ς E Q μ ς K ( δ , ς ) = k = 0 G k ( δ ) ς k k !
and
E H μ ϖ + ϵ ϖ E H μ ϖ K ( δ , ϖ ) = k = 0 G k ( δ ) ϖ k k ! ,
where ϵ 0 , 1 2 < δ 1 , ς , ϖ U and H = Q 1 .
Example 2.
If ϵ = 0 in Definition 1, we obtain the subfamily T ( ζ , 0 , δ ) , which satisfies the following requirements:
( 1 ζ ) E Q μ ς ς + ζ E Q μ ς K ( δ , ς ) = k = 0 G k ( δ ) ς k k !
and
( 1 ζ ) E H μ ( ϖ ) ϖ + ζ E H μ ϖ K ( δ , ϖ ) = k = 0 G k ( δ ) ϖ k k ! ,
where ζ 1 , 1 2 < δ 1 , ς , ϖ U and H = Q 1 .
Example 3.
If φ = π in Definition 2, we obtain the subfamily J ( π , δ ) , which satisfies the following requirements:
E Q μ ς K ( δ , ς ) = k = 0 G k ( δ ) ς k k !
and
E H μ ϖ K ( δ , ϖ ) = k = 0 G k ( δ ) ϖ k k ! ,
where 1 2 < δ 1 , ς , ϖ U and H = Q 1 .
Example 4.
If φ = 0 in Definition 2, we obtain the subfamily J ( 0 , δ ) , which satisfies the following requirements:
E Q μ ς + ς E Q μ ς K ( δ , ς ) = k = 0 G k ( δ ) ς k k !
and
E H μ ϖ + ϖ E H μ ϖ K ( δ , ϖ ) = k = 0 G k ( δ ) ϖ k k ! ,
where 1 2 < δ 1 , ς , ϖ U and H = Q 1 .
Remark 2.
All the previous subfamilies mentioned are inspired by subfamilies used by many researchers when R e Q ( ς ) > α . From this, we can determine that R e Q ( ς ) > 0 , which is the condition for the function Q to be univalent in the open disk U . For instance, the family R e ( 1 ζ ) Q ( ς ) ς + ζ Q ( ς ) + ϵ ς Q ( ς ) > α was studied by Frasin et al. [16], R e Q ( ς ) + ϵ ς Q ( ς ) > α was studied by Ponnusamy [17], and R e Q ( ς ) > α was studied by Ezrohi [18].
Lemma 1
([19]). Let X ( ς ) F be given by
X ( ς ) = 1 + m 1 ς + m 2 2 ς + , R e X ( ς ) > 0 , ς U ,
m n 2 for each n N .
In the next Theorems, we estimate the initial coefficient q 2 , q 3 and solve the Fekete–Szegö problem for the subfamilies T ( ζ , ϵ , δ ) and J ( φ , δ ) , respectively.
Theorem 1.
Let Q Π be given by (1) in the subfamily T ( ζ , ϵ , δ ) , where ζ 1 ,   ϵ 0 , 1 2 < δ 1 , ς , ϖ U and H = Q 1 . Then,
q 2 D ( ϵ , ζ , δ ) ,
q 3 2 δ 1 2 ( μ + 1 ) 2 4 2 ϵ + ζ + 1 2 + ( 2 δ 1 ) ( 2 μ + 1 ) 6 ϵ + 2 ζ + 1
and
q 3 ϑ q 2 2 2 ( 2 δ 1 ) ( 2 μ + 1 ) 6 ϵ + 2 ζ + 1 if 0 1 ϑ D ( ϵ , ζ , δ ) < ( 2 δ 1 ) ( 2 μ + 1 ) 6 ϵ + 2 ζ + 1 , 2 1 ϑ D ( ϵ , ζ , δ ) if 1 ϑ D ( ϵ , ζ , δ ) ( 2 δ 1 ) ( 2 μ + 1 ) 6 ϵ + 2 ζ + 1 ,
where
D ( ϵ , ζ , δ ) = 2 δ 1 3 ( 2 μ + 1 ) ( μ + 1 ) 2 6 ϵ + 2 ζ + 1 ( μ + 1 ) 2 2 δ 1 2 4 2 ϵ + ζ + 1 2 ( 2 μ + 1 ) δ 2 3 δ + 1 .
Proof. 
Since Q ( ς ) = ς + k = 2 q k ς k T ( ζ , σ , δ ) , from (12) and (13), we have
( 1 ζ ) E Q μ ς ς + ζ E Q μ ς + ϵ ς E Q μ ς K ( δ , ς )
and
( 1 ζ ) E H μ ( ϖ ) ϖ + ζ E H μ ϖ + ϵ ϖ E H μ ϖ K ( δ , ϖ ) .
We define the functions s 1 , s 2 : U U , with s 1 ( 0 ) = s 2 ( 0 ) = 0 and | s 1 ( ς ) | < 1 ,   | s 2 ( ϖ ) | < 1 for all ς , ϖ U . So, we can define ρ , σ F as
ρ ( ς ) = s 1 ( ς ) + 1 1 s 1 ( ς ) = 1 + ρ 1 ς + ρ 2 ς 2 + ρ 3 ς 3 + , | ρ k | 2 , ς U .
s 1 ( ς ) = ρ ( ς ) 1 ρ ( ς ) + 1 = ρ 1 2 ς + ρ 2 2 ρ 1 2 4 ς 2 + 1 2 ρ 3 ρ 1 ρ 2 + ρ 1 3 4 ς 3 +
and
σ ( ϖ ) = s 2 ( ϖ ) + 1 1 s 2 ( ϖ ) = 1 + σ 1 ϖ + σ 2 ϖ 2 + σ 3 ϖ 3 + , | σ k | 2 , ϖ U .
s 2 ( ϖ ) = σ ( ϖ ) 1 σ ( ϖ ) + 1 = σ 1 2 ϖ + σ 2 2 σ 1 2 4 ϖ 2 + 1 2 σ 3 σ 1 σ 2 + σ 1 3 4 ϖ 3 + .
Using (18) and (19), we obtain
K ( δ , s 1 ( ς ) ) = G 0 ( δ ) + G 1 ( δ ) 2 ρ 1 ς + G 1 ( δ ) 2 ρ 2 ρ 1 2 2 + G 2 ( δ ) 8 ρ 1 2 ς 2 + G 1 ( δ ) 2 ρ 3 ρ 1 ρ 2 + ρ 1 3 4 + G 2 ( δ ) 4 ρ 1 ρ 2 ρ 1 3 2 + G 3 ( δ ) 48 ρ 1 3 ς 3 +
and
K ( δ , s 2 ( ϖ ) ) = G 0 ( δ ) + G 1 ( δ ) 2 σ 1 ϖ + G 1 ( δ ) 2 σ 2 σ 1 2 2 + G 2 ( δ ) 8 σ 1 2 ϖ 2 + G 1 ( δ ) 2 σ 3 σ 1 σ 2 + σ 1 3 4 + G 2 ( δ ) 4 σ 1 σ 2 σ 1 3 2 + G 3 ( δ ) 48 σ 1 3 ϖ 3 + .
From (16), (17) and (20), (21), we obtain
2 ϵ + ζ + 1 μ + 1 q 2 = G 1 ( δ ) 2 ρ 1 ,
6 ϵ + 2 ζ + 1 2 ( 2 μ + 1 ) q 3 = G 1 ( δ ) 2 ρ 2 ρ 1 2 2 + G 2 ( δ ) 8 ρ 1 2 ,
2 ϵ + ζ + 1 μ + 1 q 2 = G 1 ( δ ) 2 σ 1 ,
and
6 ϵ + 2 ζ + 1 2 ( 2 μ + 1 ) 2 q 2 2 q 3 = G 1 ( δ ) 2 σ 2 σ 1 2 2 + G 2 ( δ ) 8 σ 1 2 .
Upon adding the Equation (22) to (24) and performing some calculations, we obtain
ρ 1 = σ 1
and
8 2 ϵ + ζ + 1 2 ( μ + 1 ) 2 q 2 2 = G 1 2 ( δ ) ( ρ 1 2 + σ 1 2 ) .
q 2 2 = G 1 2 ( δ ) ( ρ 1 2 + σ 1 2 ) ( μ + 1 ) 2 8 2 ϵ + ζ + 1 2 .
Adding the Equation (23) to (25) gives
4 6 ϵ + 2 ζ + 1 2 μ + 1 q 2 2 = 2 G 1 ( δ ) ( ρ 2 + σ 2 ) + ( ρ 1 2 + σ 1 2 ) 1 2 G 2 ( δ ) G 1 ( δ ) .
According to (26), we obtain
4 6 ϵ + 2 ζ + 1 2 μ + 1 q 2 2 = 2 G 1 ( δ ) ( ρ 2 + σ 2 ) + ρ 1 2 G 2 ( δ ) 2 G 1 ( δ ) .
From Equations (26) and (27), we obtain
ρ 1 2 = 4 2 ϵ + ζ + 1 2 q 2 2 G 1 2 ( δ ) ( μ + 1 ) 2 .
By replacing ρ 1 2 in Equation (29), we obtain
q 2 2 = G 1 3 ( δ ) ρ 2 + σ 2 ( 2 μ + 1 ) ( μ + 1 ) 2 4 6 ϵ + 2 ζ + 1 ( μ + 1 ) 2 G 1 2 ( δ ) 2 ϵ + ζ + 1 2 ( 2 μ + 1 ) G 2 ( δ ) 2 G 1 ( δ ) .
Applying (11) and Lemma 1, we obtain
q 2 2 δ 1 3 ( 2 μ + 1 ) ( μ + 1 ) 2 6 ϵ + 2 ζ + 1 ( μ + 1 ) 2 2 δ 1 2 4 2 ϵ + ζ + 1 2 ( 2 μ + 1 ) δ 2 3 δ + 1 = D ( ϵ , ζ , δ ) ,
where
D ( ϵ , ζ , δ ) = 2 δ 1 3 ( 2 μ + 1 ) ( μ + 1 ) 2 6 ϵ + 2 ζ + 1 ( μ + 1 ) 2 2 δ 1 2 4 2 ϵ + ζ + 1 2 ( 2 μ + 1 ) δ 2 3 δ + 1 .
Subtracting (25) from (23), and in view of (26), we obtain
q 3 = q 2 2 + G 1 ( δ ) ρ 2 σ 2 ( 2 μ + 1 ) 2 6 ϵ + 2 ζ + 1 .
Substituting the value of q 2 2 from (28) and using (26), we have
q 3 = G 1 2 ( δ ) ρ 1 2 ( μ + 1 ) 2 4 2 ϵ + ζ + 1 2 + G 1 ( δ ) ρ 2 σ 2 ( 2 μ + 1 ) 2 6 ϵ + 2 ζ + 1 .
Applying (11) and Lemma 1, we obtain
q 3 G 1 2 ( δ ) ρ 1 2 ( μ + 1 ) 2 4 2 ϵ + ζ + 1 2 + G 1 ( δ ) ρ 2 + σ 2 ( 2 μ + 1 ) 2 6 ϵ + 2 ζ + 1 2 δ 1 2 ( μ + 1 ) 2 4 2 ϵ + ζ + 1 2 + ( 2 δ 1 ) ( 2 μ + 1 ) 6 ϵ + 2 ζ + 1 .
From (32), we have
q 3 ϑ q 2 2 = G 1 ( δ ) ρ 2 σ 2 ( 2 μ + 1 ) 2 6 ϵ + 2 ζ + 1 + ( 1 ϑ ) q 2 2 .
Using (11) after the triangular inequality, we arrive at
q 3 ϑ q 2 2 G 1 ( δ ) ρ 2 + σ 2 ( 2 μ + 1 ) 2 6 ϵ + 2 ζ + 1 + 1 ϑ q 2 2 ( 2 δ 1 ) ( 2 μ + 1 ) 6 ϵ + 2 ζ + 1 + 1 ϑ D ( ϵ , ζ , δ ) .
If
1 ϑ D ( ϵ , ζ , δ ) ( 2 δ 1 ) ( 2 μ + 1 ) 6 ϵ + 2 ζ + 1
we obtain
q 3 ϑ q 2 2 2 ( 2 δ 1 ) ( 2 μ + 1 ) 6 ϵ + 2 ζ + 1 ,
and if
1 ϑ D ( ϵ , ζ , δ ) ( 2 δ 1 ) ( 2 μ + 1 ) 6 ϵ + 2 ζ + 1
we obtain
q 3 ϑ q 2 2 2 1 ϑ D ( ϵ , ζ , δ ) .
which are the Theorem 1 assertions. □
Theorem 2.
Let Q Π of the form (1) in the subfamily J ( φ , δ ) , where π < φ π , 1 2 < δ 1 , ς , ϖ U and H = Q 1 . Then,
q 2 Y ( φ , δ ) ,
q 3 2 δ 1 2 ( μ + 1 ) 2 4 e i φ + 3 2 + ( 2 δ 1 ) ( 2 μ + 1 ) 3 e i φ + 2
and
q 3 ϑ q 2 2 2 ( 2 δ 1 ) ( 2 μ + 1 ) 3 e i φ + 2 if 0 1 ϑ Y ( φ , δ ) < ( 2 δ 1 ) ( 2 μ + 1 ) 3 e i φ + 2 , 2 1 ϑ Y ( φ , δ ) if 1 ϑ Y ( φ , δ ) ( 2 δ 1 ) ( 2 μ + 1 ) 3 e i φ + 2 ,
where
Y ( φ , δ ) = 2 2 δ 1 3 ( 2 μ + 1 ) ( μ + 1 ) 2 2 3 e i φ + 2 ( μ + 1 ) 2 2 δ 1 2 4 e i φ + 3 2 ( 2 μ + 1 ) δ 2 3 δ + 1 .
Proof. 
Since Q ( ς ) = ς + k = 2 q k ς k J ( φ , δ ) , from Equations (14), (15), (20), and (21), we can write
E Q μ ς + ς e i φ + 1 2 E Q μ ς K ( δ , ς )
and
E H μ ϖ + ϖ e i φ + 1 2 E H μ ϖ K ( δ , ϖ ) .
From Equations (34) and (35), and the functions K ( δ , ς ) and K ( δ , ϖ ) , respectively, which are given by (20) and (21), we have
e i φ + 3 μ + 1 q 2 = G 1 ( δ ) 2 ρ 1 ,
3 e i φ + 2 2 ( 2 μ + 1 ) q 3 = G 1 ( δ ) 2 ρ 2 ρ 1 2 2 + G 2 ( δ ) 8 ρ 1 2 ,
e i φ + 3 μ + 1 q 2 = G 1 ( δ ) 2 σ 1 ,
and
3 e i φ + 2 2 ( 2 μ + 1 ) 2 q 2 2 q 3 = G 1 ( δ ) 2 σ 2 σ 1 2 2 + G 2 ( δ ) 8 σ 1 2 .
We obtain the findings provided by Theorem 2 using the same method used to prove Theorem 1. □

3. Some Corollaries

By specializing the parameters in our main results for the previous section, we obtain some corollaries, for example:
Corollary 1.
Let Q T ( 1 , ϵ , δ ) , where ϵ 0 , 1 2 < δ 1 , ς , ϖ U . Then,
q 2 D ( ϵ , 1 , δ ) ,
q 3 2 δ 1 2 ( μ + 1 ) 2 16 ϵ + 1 2 + ( 2 δ 1 ) ( 2 μ + 1 ) 3 ( 2 ϵ + 1 )
and
q 3 ϑ q 2 2 2 ( 2 δ 1 ) ( 2 μ + 1 ) 3 ( 2 ϵ + 1 ) if 0 1 ϑ D ( ϵ , 1 , δ ) < ( 2 δ 1 ) ( 2 μ + 1 ) 3 ( 2 ϵ + 1 ) , 2 1 ϑ D ( ϵ , 1 , δ ) if 1 ϑ D ( ϵ , 1 , δ ) ( 2 δ 1 ) ( 2 μ + 1 ) 3 ( 2 ϵ + 1 ) ,
where
D ( ϵ , 1 , δ ) = 2 δ 1 3 ( 2 μ + 1 ) ( μ + 1 ) 2 3 ( 2 ϵ + 1 ) ( μ + 1 ) 2 2 δ 1 2 16 ϵ + 1 2 ( 2 μ + 1 ) δ 2 3 δ + 1 .
Corollary 2.
Let Q T ( ζ , 0 , δ ) , where ζ 1 , 1 2 < δ 1 , ς , ϖ U . Then,
q 2 D ( 0 , ζ , δ ) ,
q 3 2 δ 1 2 ( μ + 1 ) 2 4 ζ + 1 2 + ( 2 δ 1 ) ( 2 μ + 1 ) 2 ζ + 1
and
q 3 ϑ q 2 2 2 ( 2 δ 1 ) ( 2 μ + 1 ) 2 ζ + 1 if 0 1 ϑ D ( 0 , ζ , δ ) < ( 2 δ 1 ) ( 2 μ + 1 ) 2 ζ + 1 , 2 1 ϑ D ( 0 , ζ , δ ) if 1 ϑ D ( 0 , ζ , δ ) ( 2 δ 1 ) ( 2 μ + 1 ) 2 ζ + 1 ,
where
D ( 0 , ζ , δ ) = 2 δ 1 3 ( 2 μ + 1 ) ( μ + 1 ) 2 2 ζ + 1 ( μ + 1 ) 2 2 δ 1 2 4 ζ + 1 2 ( 2 μ + 1 ) δ 2 3 δ + 1 .
Corollary 3.
Let Q J ( π , δ ) where 1 2 < δ 1 ,   ς , ϖ U .Then,
q 2 Y ( π , δ ) ,
q 3 2 δ 1 2 ( μ + 1 ) 2 16 + ( 2 δ 1 ) ( 2 μ + 1 ) 3
and
q 3 ϑ q 2 2 2 ( 2 δ 1 ) ( 2 μ + 1 ) 3 if 0 1 ϑ Y ( π , δ ) < ( 2 δ 1 ) ( 2 μ + 1 ) 3 , 2 1 ϑ Y ( π , δ ) if 1 ϑ Y ( π , δ ) ( 2 δ 1 ) ( 2 μ + 1 ) 3 ,
where
Y ( π , δ ) = 2 δ 1 3 ( 2 μ + 1 ) ( μ + 1 ) 2 3 ( μ + 1 ) 2 2 δ 1 2 16 ( 2 μ + 1 ) δ 2 3 δ + 1 .
Corollary 4.
Let Q J ( 0 , δ ) where 1 2 < δ 1 ,   ς , ϖ U . Then,
q 2 Y ( 0 , δ ) ,
q 3 2 δ 1 2 ( μ + 1 ) 2 64 + ( 2 δ 1 ) ( 2 μ + 1 ) 9
and
q 3 ϑ q 2 2 2 ( 2 δ 1 ) ( 2 μ + 1 ) 9 if 0 1 ϑ Y ( 0 , δ ) < ( 2 δ 1 ) ( 2 μ + 1 ) 9 , 2 1 ϑ Y ( 0 , δ ) if 1 ϑ Y ( 0 , δ ) ( 2 δ 1 ) ( 2 μ + 1 ) 9 ,
where
Y ( 0 , δ ) = 2 2 δ 1 3 ( 2 μ + 1 ) ( μ + 1 ) 2 2 9 ( μ + 1 ) 2 2 δ 1 2 64 ( 2 μ + 1 ) δ 2 3 δ + 1 .

4. Conclusions

Numerous distinguished mathematicians have recently researched special functions since they are used in so many different mathematical and scientific fields. The aim of this study is to define new subfamilies of analytical functions using error functions subordinate to Euler polynomials. For functions in the subfamilies T ( ζ , ϵ , δ ) and J ( φ , δ ) , we obtained the initial bounds for the coefficients q 2 and q 3 , and the Fekete–Szegö inequality. The upper bounds for | q 2 | , | q 3 | and q 3 ϑ q 2 2 are still an open problem for | q k | , k 3 . Using the linear operator E Q μ given in (9) could inspire researchers to find new bounds for the coefficients q 2 and q 3 , and the Fekete–Szegö inequality for different subfamilies of normalized analytic functions with negative coefficients defined in the open unit disk U .

Author Contributions

Conceptualization, B.F.; methodology, J.S.; validation and formal analysis, T.A.-H.; investigation and resources, J.S.; data curation, B.F. and T.A.-H.; writing—review and editing, B.F. and T.A.-H.; visualization and supervision, T.A.-H. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

The data are contained within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Alzer, H. Error functions inequalities. Adv. Comput. Math. 2010, 33, 349–379. [Google Scholar] [CrossRef]
  2. Coman, D. The radius of starlikeness for error function. Stud. Univ. Babes Bolyal Math. 1991, 36, 13–16. [Google Scholar]
  3. Elbert, A.; Laforgia, A. The zeros of the complementary error function. Numer. Algorithms 2008, 49, 153–157. [Google Scholar] [CrossRef]
  4. Rapport sur deux mémoires d’analyse du professeur Bürmann, Lagrange, Joseph-Louis and Legendre, Adrien-Marie, Mémoires de l’Institut National des Sciences et Arts. Sci. Math. Phys. 1799, 2, 13–17.
  5. Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
  6. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas; Graphs and Matematical Tables; Dorer Publications Inc.: New York, NY, USA, 1965. [Google Scholar]
  7. Ramachandran, C.; Vanitha, L.; Kanas, S. Certain results on q-starlike and q-convex error functions. Math. Slovaca. 2018, 68, 361–368. [Google Scholar] [CrossRef]
  8. Mohammed, N.H.; Cho, N.E.; Adegani, E.A.; Bulboaca, T. Geometric properties of normalized imaginary error function. Stud. Univ. Babes Bolyai Math. 2022, 67, 455–462. [Google Scholar] [CrossRef]
  9. Srivastava, H.M. Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Camb. Philos. Soc. 2000, 129, 77–84. [Google Scholar] [CrossRef]
  10. Kac, V.; Cheung, P. Quantum Calculus. In Universitext; Springer: New York, NY, USA, 2002. [Google Scholar]
  11. Amourah, A.; Frasin, B.A.; Seoudy, T.M. An Application of Miller-Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials. Mathematics 2022, 10, 2462. [Google Scholar] [CrossRef]
  12. Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [Google Scholar] [CrossRef]
  13. Tang, H.; Deng, G.; Li, S. Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions. J. Inequal. Appl. 2013, 2013, 317. [Google Scholar] [CrossRef]
  14. Yousef, F.; Al-Hawary, T.; Murugusundaramoorthy, G. Fekete-Szegö functional problems for some subclasses of bi-univalent functions defined by Frasin differential operator. Afr. Mat. 2019, 30, 495–503. [Google Scholar] [CrossRef]
  15. Fekete, M.; Szegö, G. Eine Bemerkung Ãber ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 1, 85–89. [Google Scholar] [CrossRef]
  16. Frasin, B.A.; Al-Hawary, T.; Amourah, A.; Salah, J.; Al-Refai, O. Inclusive Subclasses of Bi-univalent Functions Specified by Euler Polynomials. Eur. J. Pure Appl. Math. 2024, 17, 2538–2549. [Google Scholar] [CrossRef]
  17. Ponnusamy, S. Differential subordination and starlike functions. Complex Var. Theory Appl. 1992, 19, 185–194. [Google Scholar] [CrossRef]
  18. Ezrohi, T.G. Certain estimates in special classes of univalent functions in the unit circle | z | < 1 . Doporidi. Akad. Nauk. Ukrain RSR 1965, 2, 984–988. [Google Scholar]
  19. Pommerenke, C. Univalent Functions; Vandenhoeck and Rupercht: Gttingen, Germany, 1975. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Al-Hawary, T.; Frasin, B.; Salah, J. Comprehensive Subfamilies of Bi-Univalent Functions Defined by Error Function Subordinate to Euler Polynomials. Symmetry 2025, 17, 256. https://doi.org/10.3390/sym17020256

AMA Style

Al-Hawary T, Frasin B, Salah J. Comprehensive Subfamilies of Bi-Univalent Functions Defined by Error Function Subordinate to Euler Polynomials. Symmetry. 2025; 17(2):256. https://doi.org/10.3390/sym17020256

Chicago/Turabian Style

Al-Hawary, Tariq, Basem Frasin, and Jamal Salah. 2025. "Comprehensive Subfamilies of Bi-Univalent Functions Defined by Error Function Subordinate to Euler Polynomials" Symmetry 17, no. 2: 256. https://doi.org/10.3390/sym17020256

APA Style

Al-Hawary, T., Frasin, B., & Salah, J. (2025). Comprehensive Subfamilies of Bi-Univalent Functions Defined by Error Function Subordinate to Euler Polynomials. Symmetry, 17(2), 256. https://doi.org/10.3390/sym17020256

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop