Improving Domain Transfer with Consistency-Regularized Joint Distribution Alignment for Medical Image Classification
Abstract
:1. Introduction
- We propose a new Consistency-regularized Joint Distribution Alignment (C-JDA) framework to tackle the domain adaptation challenge for medical image classification tasks.
- Unlike traditional alignment methods that rely on complex architectures or adversarial training, our JDA framework provides a closed-form solution, ensuring greater stability and computational efficiency. This formulation enhances interpretability and facilitates seamless transfer across diverse domain adaptation scenarios.
- We adopt various data augmentation techniques to enhance the reliability of the target pseudo-label, which in turn improves the joint distribution alignment and results in state-of-the-art performance on multiple medical image benchmarks.
2. Related Work
3. Methods
3.1. Joint Distribution Alignment
3.2. Consistency Regularization
3.3. Training Procedure
Algorithm 1 Pseudo-code of the proposed C-JDA. |
Input: Source dataset with labels {, }, target dataset {}, mini-batch size B, learning rate ; Output: , ;
|
4. Experiment
4.1. Data Augmentations
4.2. Datasets
4.2.1. For the Colon Disease Classification Task
4.2.2. For the Classification Task of Diabetic Retinopathy (DR)
4.3. Experimental Setup
4.4. Experimental Results and Analysis
4.5. Experimental Analysis
4.5.1. Feature Visualization
4.5.2. Ablation Study
4.5.3. Parameter Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mendelson, D.S.; Rubin, D.L. Imaging informatics: Essential tools for the delivery of imaging services. Acad. Radiol. 2013, 20, 1195–1212. [Google Scholar] [PubMed]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [PubMed]
- Li, X.; Li, C.; Rahaman, M.M.; Sun, H.; Li, X.; Wu, J.; Yao, Y.; Grzegorzek, M. A comprehensive review of computer-aided whole-slide image analysis: From datasets to feature extraction, segmentation, classification and detection approaches. Artif. Intell. Rev. 2022, 55, 4809–4878. [Google Scholar]
- Cruz Castañeda, W.A.; Bertemes Filho, P. Improvement of an Edge-IoT Architecture Driven by Artificial Intelligence for Smart-Health Chronic Disease Management. Sensors 2024, 24, 7965. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Gu, Z.; Liu, W.; Luo, W.; Cheng, J.; Gao, S.; Liu, J. Multi-cell multi-task convolutional neural networks for diabetic retinopathy grading. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 2724–2727. [Google Scholar]
- Apou, G.; Schaadt, N.S.; Naegel, B.; Forestier, G.; Schönmeyer, R.; Feuerhake, F.; Wemmert, C.; Grote, A. Detection of lobular structures in normal breast tissue. Comput. Biol. Med. 2016, 74, 91–102. [Google Scholar] [CrossRef]
- Dai, D.; Dong, C.; Xu, S.; Yan, Q.; Li, Z.; Zhang, C.; Luo, N. Ms RED: A novel multi-scale residual encoding and decoding network for skin lesion segmentation. Med. Image Anal. 2022, 75, 102293. [Google Scholar]
- Zhang, Y. A survey of unsupervised domain adaptation for visual recognition. arXiv 2021, arXiv:2112.06745. [Google Scholar]
- Zhou, K.; Liu, Z.; Qiao, Y.; Xiang, T.; Loy, C.C. Domain generalization: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 4396–4415. [Google Scholar]
- Ben-David, S.; Blitzer, J.; Crammer, K.; Pereira, F. Analysis of representations for domain adaptation. Adv. Neural Inf. Process. Syst. 2006, 19, 1–8. Available online: https://proceedings.neurips.cc/paper_files/paper/2006/file/b1b0432ceafb0ce714426e9114852ac7-Paper.pdf (accessed on 23 March 2025).
- Dou, Q.; Ouyang, C.; Chen, C.; Chen, H.; Heng, P.A. Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss. arXiv 2018, arXiv:1804.10916. [Google Scholar]
- Kouw, W.M.; Loog, M. A review of domain adaptation without target labels. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 766–785. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Zou, Y.; Hoffman, J.; Fei-Fei, L.F. Label efficient learning of transferable representations acrosss domains and tasks. Adv. Neural Inf. Process. Syst. 2017, 30, 1–13. Available online: https://proceedings.neurips.cc/paper_files/paper/2017/file/a8baa56554f96369ab93e4f3bb068c22-Paper.pdf (accessed on 23 March 2025).
- Bousmalis, K.; Silberman, N.; Dohan, D.; Erhan, D.; Krishnan, D. Unsupervised pixel-level domain adaptation with generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3722–3731. [Google Scholar]
- Long, M.; Cao, Y.; Cao, Z.; Wang, J.; Jordan, M.I. Transferable representation learning with deep adaptation networks. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 3071–3085. [Google Scholar] [CrossRef] [PubMed]
- Cicek, S.; Soatto, S. Unsupervised domain adaptation via regularized conditional alignment. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1416–1425. [Google Scholar]
- Guan, H.; Liu, M. Domain Adaptation for Medical Image Analysis: A Survey. IEEE Trans. Biomed. Eng. 2022, 69, 1173–1185. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Saenko, K. Deep coral: Correlation alignment for deep domain adaptation. In Proceedings of the Computer Vision–ECCV 2016 Workshops, Amsterdam, The Netherlands, 8–10 and 15–16 October 2016; Proceedings, Part III 14. Springer: Berlin/Heidelberg, Germany, 2016; pp. 443–450. [Google Scholar]
- Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial discriminative domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7167–7176. [Google Scholar]
- Pei, Z.; Cao, Z.; Long, M.; Wang, J. Multi-adversarial domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- Damodaran, B.B.; Kellenberger, B.; Flamary, R.; Tuia, D.; Courty, N. Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 447–463. [Google Scholar]
- Si, S.; Tao, D.; Geng, B. Bregman divergence-based regularization for transfer subspace learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 929–942. [Google Scholar] [CrossRef]
- Baktashmotlagh, M.; Har, M.; Salzmann, M. Distribution-matching embedding for visual domain adaptation. J. Mach. Learn. Res. 2016, 17, 1–30. [Google Scholar]
- Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; March, M.; Lempitsky, V. Domain-adversarial training of neural networks. J. Mach. Learn. Res. 2016, 17, 1–35. [Google Scholar]
- Gretton, A.; Borgwardt, K.M.; Rasch, M.J.; Schölkopf, B.; Smola, A. A kernel two-sample test. J. Mach. Learn. Res. 2012, 13, 723–773. [Google Scholar]
- Wu, J.; Fang, Y. Dual-view global and local category-attentive domain alignment for unsupervised conditional adversarial domain adaptation. Neural Netw. 2025, 185, 107129. [Google Scholar] [CrossRef]
- Gong, M.; Zhang, K.; Liu, T.; Tao, D.; Glymour, C.; Schölkopf, B. Domain adaptation with conditional transferable components. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; PMLR: New York, NY, USA, 2016; pp. 2839–2848. [Google Scholar]
- Deng, Z.; Luo, Y.; Zhu, J. Cluster alignment with a teacher for unsupervised domain adaptation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9944–9953. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhuang, F.; Wang, J.; Ke, G.; Chen, J.; Bian, J.; Xiong, H.; He, Q. Deep subdomain adaptation network for image classification. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 1713–1722. [Google Scholar] [CrossRef]
- Hu, L.; Kan, M.; Shan, S.; Chen, X. Unsupervised domain adaptation with hierarchical gradient synchronization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 4043–4052. [Google Scholar] [CrossRef]
- Li, Z.; Weng, S.; Xia, Y.; Yu, H.; Yan, Y.; Yin, P. Cross-domain damage identification based on conditional adversarial domain adaptation. Eng. Struct. 2024, 321, 118928. [Google Scholar]
- Zhang, J.; Li, W.; Ogunbona, P. Joint geometrical and statistical alignment for visual domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5150–5158. [Google Scholar] [CrossRef]
- Long, M.; Wang, J.; Ding, G.; Sun, J.; Yu, P.S. Transfer feature learning with joint distribution adaptation. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 2200–2207. [Google Scholar] [CrossRef]
- Chen, S.; Harandi, M.; Jin, X.; Yang, X. Semi-supervised domain adaptation via asymmetric joint distribution matching. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 5708–5722. [Google Scholar]
- Chen, S.; Harandi, M.; Jin, X.; Yang, X. Domain adaptation by joint distribution invariant projections. IEEE Trans. Image Process. 2020, 29, 8264–8277. [Google Scholar] [CrossRef]
- Courty, N.; Flamary, R.; Habrard, A.; Rakotomamonjy, A. Joint distribution optimal transportation for domain adaptation. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Chen, S.; Hong, Z.; Harandi, M.; Yang, X. Domain neural adaptation. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 8630–8641. [Google Scholar]
- Liu, S.; Yamada, M.; Collier, N.; Sugiyama, M. Change-point detection in time-series data by relative density-ratio estimation. Neural Netw. 2013, 43, 72–83. [Google Scholar]
- Mao, X.; Li, Q.; Xie, H.; Lau, R.Y.; Wang, Z.; Paul Smolley, S. Least squares generative adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2794–2802. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [PubMed]
- Ahn, E.; Kumar, A.; Fulham, M.; Feng, D.; Kim, J. Unsupervised domain adaptation to classify medical images using zero-bias convolutional auto-encoders and context-based feature augmentation. IEEE Trans. Med. Imaging 2020, 39, 2385–2394. [Google Scholar]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016, 316, 2402–2410. [Google Scholar]
- Kather, J.N.; Krisam, J.; Charoentong, P.; Luedde, T.; Herpel, E.; Weis, C.A.; Gaiser, T.; Marx, A.; Valous, N.A.; Ferber, D.; et al. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS Med. 2019, 16, e1002730. [Google Scholar]
- Zheng, S.; Yang, X.; Wang, Y.; Ding, M.; Hou, W. Unsupervised Cross-Modality Domain Adaptation Network for X-Ray to CT Registration. IEEE J. Biomed. Health Inform. 2021, 26, 2637–2647. [Google Scholar]
- Hayat, M.; Ahmad, N.; Nasir, A.; Tariq, Z.A. Hybrid Deep Learning EfficientNetV2 and Vision Transformer (EffNetV2-ViT) Model for Breast Cancer Histopathological Image Classification. IEEE Access 2024, 12, 184119–184131. [Google Scholar]
- Chen, S.; Wu, H.; Liu, C. Domain invariant and agnostic adaptation. Knowl.-Based Syst. 2021, 227, 107192. [Google Scholar]
- Qi, Q.; Lin, X.; Chen, C.; Xie, W.; Huang, Y.; Ding, X.; Liu, X.; Yu, Y. Curriculum feature alignment domain adaptation for epithelium-stroma classification in histopathological images. IEEE J. Biomed. Health Inform. 2020, 25, 1163–1172. [Google Scholar]
- Gao, Y.; Zhang, Y.; Cao, Z.; Guo, X.; Zhang, J. Decoding brain states from fMRI signals by using unsupervised domain adaptation. IEEE J. Biomed. Health Inform. 2019, 24, 1677–1685. [Google Scholar] [PubMed]
- Jin, Q.; Cui, H.; Sun, C.; Meng, Z.; Wei, L.; Su, R. Domain adaptation based self-correction model for COVID-19 infection segmentation in CT images. Expert Syst. Appl. 2021, 176, 114848. [Google Scholar]
- Imtiaz, M.N.; Khan, N. Cross-database and cross-channel electrocardiogram arrhythmia heartbeat classification based on unsupervised domain adaptation. Expert Syst. Appl. 2024, 244, 122960. [Google Scholar]
- Zhao, X.; Wang, X. Unsupervised domain adaptation based fracture segmentation method for core CT images. Expert Syst. Appl. 2025, 264, 125857. [Google Scholar]
- Berthelot, D.; Carlini, N.; Cubuk, E.D.; Kurakin, A.; Sohn, K.; Zhang, H.; Raffel, C. Remixmatch: Semi-supervised learning with distribution alignment and augmentation anchoring. arXiv 2019, arXiv:1911.09785. [Google Scholar]
- Lee, D.H. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Proceedings of the Workshop on Challenges in Representation Learning, ICML, Atlanta, GA, USA, 17–19 June 2013; Volume 3, p. 896. [Google Scholar]
- Cubuk, E.D.; Zoph, B.; Mane, D.; Vasudevan, V.; Le, Q.V. Autoaugment: Learning augmentation strategies from data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 113–123. [Google Scholar] [CrossRef]
- Sohn, K.; Berthelot, D.; Carlini, N.; Zhang, Z.; Zhang, H.; Raffel, C.A.; Cubuk, E.D.; Kurakin, A.; Li, C.L. Fixmatch: Simplifying semi-supervised learning with consistency and confidence. Adv. Neural Inf. Process. Syst. 2020, 33, 596–608. [Google Scholar]
- Xu, Z.; Wang, Y.; Lu, D.; Yu, L.; Yan, J.; Luo, J.; Ma, K.; Zheng, Y.; Tong, R.K.y. All-around real label supervision: Cyclic prototype consistency learning for semi-supervised medical image segmentation. IEEE J. Biomed. Health Inform. 2022, 26, 3174–3184. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Ge, Z.; Bonnington, C.P.; Zhou, J. Progressive transfer learning and adversarial domain adaptation for cross-domain skin disease classification. IEEE J. Biomed. Health Inform. 2019, 24, 1379–1393. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Chen, W.; Peng, T.; Wang, Y.; Jin, M. Hard Sample Aware Noise Robust Learning for Histopathology Image Classification. IEEE Trans. Med. Imaging 2022, 41, 881–894. [Google Scholar] [CrossRef]
- Tzeng, E.; Hoffman, J.; Zhang, N.; Saenko, K.; Darrell, T. Deep domain confusion: Maximizing for domain invariance. arXiv 2014, arXiv:1412.3474. [Google Scholar]
- Long, M.; Cao, Z.; Wang, J.; Jordan, M.I. Conditional adversarial domain adaptation. Adv. Neural Inf. Process. Syst. 2018, 31. [Google Scholar]
- Saito, K.; Watanabe, K.; Ushiku, Y.; Harada, T. Maximum classifier discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3723–3732. [Google Scholar] [CrossRef]
- Long, M.; Zhu, H.; Wang, J.; Jordan, M.I. Deep transfer learning with joint adaptation networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; PMLR: New York, NY, USA, 2017; pp. 2208–2217. [Google Scholar]
- Xu, R.; Li, G.; Yang, J.; Lin, L. Larger Norm More Transferable: An Adaptive Feature Norm Approach for Unsupervised Domain Adaptation. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1426–1435. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, X.; Long, M.; Wang, J. Minimum class confusion for versatile domain adaptation. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XXI 16. Springer: Berlin/Heidelberg, Germany, 2020; pp. 464–480. [Google Scholar]
- Xiao, Z.; Wang, H.; Jin, Y.; Feng, L.; Chen, G.; Huang, F.; Zhao, J. SPA: A graph spectral alignment perspective for domain adaptation. Adv. Neural Inf. Process. Syst. 2023, 36, 37252–37272. Available online: https://proceedings.neurips.cc/paper_files/paper/2023/file/754e80f98b2a141942f45a0eeb258a3c-Paper-Conference.pdf (accessed on 23 March 2025).
- Xie, Z.; Duan, P.; Liu, W.; Kang, X.; Li, S. Prototype-based Inter-Intra Domain Alignment Network for Unsupervised Cross-Scene Hyperspectral Image Classification. In Proceedings of the IGARSS 2024—2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 7795–7798. [Google Scholar] [CrossRef]
Transformation | Description | Parameter | Range |
---|---|---|---|
Autocontrast | Maximizes the image contrast by converting the darkest (lightest) | - | - |
pixel to black (white). | |||
Brightness | Adjusts the image brightness randomly, where returns | B | [0.05, 0.95] |
a black image, and returns the original image. | |||
Color | Adjusts the color balance of the image at random, where | C | [0.05, 0.95] |
returns a black and white image, and returns the original image. | |||
Contrast | Controls the image contrast at random, where | C | [0.05, 0.95] |
returns a gray image, and returns the original image. | |||
Equalize | Equalizes the image histogram. | - | - |
Identity | Returns the original image. | - | - |
Posterize | Reduces every image pixel to bits. | [4, 8] | |
Rotate | Rotates the image by degrees. | [−30, 30] | |
Sharpness | Adjusts the image sharpness at random, where returns | S | [0.05, 0.95] |
a blurred image, and returns the original image. | |||
Shear_x | Shears the image along the horizontal axis with rate . | [−0.3, 0.3] | |
Shear_y | Shears the image along the vertical axis with rate . | [−0.3, 0.3] | |
Solarize | Inverts all image pixels above a threshold value of . | [0, 1] | |
Translate_x | Translates the image horizontally by pixels. | [−0.3, 0.3] | |
Translate_y | Translates the image vertically by pixels. | [−0.3, 0.3] |
Methods | Accuracy (%) | F1 Score (%) | Recall (%) | Precision (%) |
---|---|---|---|---|
ADDA | 79.34 | 80.37 | 79.34 | 81.68 |
AFN | 74.12 | 76.12 | 74.12 | 79.20 |
CDAN | 80.55 | 80.99 | 80.55 | 81.71 |
DANN | 79.25 | 79.16 | 79.25 | 79.73 |
DDC | 80.46 | 81.07 | 80.46 | 81.96 |
DNA | 84.10 | 84.27 | 84.10 | 84.46 |
DSAN | 80.74 | 80.74 | 80.74 | 83.10 |
JAN | 81.16 | 81.74 | 81.16 | 82.63 |
MCC | 81.77 | 81.67 | 81.77 | 83.03 |
MCD | 79.86 | 82.02 | 79.86 | 84.75 |
PIDAN | 82.70 | 83.47 | 82.70 | 84.11 |
SPA | 83.86 | 83.79 | 83.86 | 83.75 |
Source_only | 70.44 | 71.30 | 70.44 | 74.97 |
Our model | 87.41 | 87.26 | 87.41 | 87.52 |
Methods | Accuracy (%) | F1 Score (%) | Recall (%) | Precision (%) |
---|---|---|---|---|
ADDA | 89.53 | 89.52 | 89.53 | 89.67 |
AFN | 91.01 | 90.97 | 91.01 | 91.58 |
CDAN | 92.63 | 92.63 | 92.63 | 92.77 |
DANN | 94.22 | 94.21 | 94.22 | 94.28 |
DDC | 88.23 | 88.19 | 88.23 | 88.19 |
DNA | 91.64 | 91.64 | 91.64 | 91.65 |
DSAN | 89.46 | 89.46 | 89.46 | 89.53 |
JAN | 89.64 | 89.64 | 89.64 | 89.64 |
MCC | 94.53 | 94.53 | 94.53 | 94.54 |
MCD | 88.51 | 88.50 | 88.51 | 88.68 |
PIDAN | 93.58 | 93.58 | 93.58 | 93.59 |
SPA | 90.87 | 90.87 | 90.87 | 90.89 |
Source_only | 85.23 | 85.21 | 85.23 | 85.35 |
Our model | 96.93 | 96.93 | 96.93 | 96.98 |
Accuracy (%) | F1 Score (%) | Precision (%) | Recall (%) | |||
---|---|---|---|---|---|---|
√ | 75.71 | 77.19 | 75.71 | 80.86 | ||
√ | √ | 84.10 | 84.27 | 84.10 | 84.46 | |
√ | √ | 84.61 | 84.90 | 84.61 | 85.22 | |
√ | √ | √ | 87.41 | 87.26 | 87.41 | 87.52 |
Accuracy (%) | F1 Score (%) | Precision (%) | Recall (%) | |||
---|---|---|---|---|---|---|
√ | 88.61 | 88.61 | 88.61 | 88.65 | ||
√ | √ | 91.64 | 91.64 | 91.64 | 91.65 | |
√ | √ | 93.09 | 93.09 | 93.09 | 93.11 | |
√ | √ | √ | 96.93 | 96.93 | 96.93 | 96.98 |
Parameters | Value | Accuracy | F1 Score | Precision | Recall |
---|---|---|---|---|---|
1 | 96.93 | 96.93 | 96.93 | 96.98 | |
0.5 | 96.65 | 96.65 | 96.65 | 96.73 | |
0.1 | 96.86 | 96.86 | 96.86 | 96.92 | |
0.05 | 95.34 | 95.34 | 95.34 | 95.36 | |
0.01 | 95.31 | 95.31 | 95.31 | 95.32 | |
1 | 96.93 | 96.93 | 96.93 | 96.98 | |
0.5 | 96.58 | 96.58 | 96.58 | 96.63 | |
0.1 | 96.47 | 96.47 | 96.47 | 96.53 | |
0.05 | 93.79 | 93.79 | 93.79 | 93.79 | |
0.01 | 93.58 | 93.58 | 93.58 | 93.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, R.; Liu, C.; Ji, X. Improving Domain Transfer with Consistency-Regularized Joint Distribution Alignment for Medical Image Classification. Symmetry 2025, 17, 515. https://doi.org/10.3390/sym17040515
Zhang J, Li R, Liu C, Ji X. Improving Domain Transfer with Consistency-Regularized Joint Distribution Alignment for Medical Image Classification. Symmetry. 2025; 17(4):515. https://doi.org/10.3390/sym17040515
Chicago/Turabian StyleZhang, Jiacheng, Rui Li, Cheng Liu, and Xiang Ji. 2025. "Improving Domain Transfer with Consistency-Regularized Joint Distribution Alignment for Medical Image Classification" Symmetry 17, no. 4: 515. https://doi.org/10.3390/sym17040515
APA StyleZhang, J., Li, R., Liu, C., & Ji, X. (2025). Improving Domain Transfer with Consistency-Regularized Joint Distribution Alignment for Medical Image Classification. Symmetry, 17(4), 515. https://doi.org/10.3390/sym17040515