Recent Developments and Perspectives on Optimization Design Methods for Analog Integrated Circuits
Abstract
:1. Introduction
2. Traditional Optimization Design Methods for Analog ICs
2.1. Heuristic Optimization Algorithms
2.2. RL Optimization Algorithm
2.3. Summary and Discussion
3. Efficient Optimization Design Methods for Analog ICs
3.1. GP Model
3.2. Neural Network Models
3.3. Graph Neural Networks
3.4. Summary and Discussion
4. Conclusions and Perspectives
4.1. Design Specifications Can Be Added in the Search Process
4.2. Comprehensive Global Circuit Model Should Be Trained
4.3. Lightweight Circuit Model with Small Training Data Should Be Built
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ICs | Integrated Circuits |
PSO | Particle Swarm Optimization |
GA | Genetic Algorithm |
RL | Reinforcement Learning |
CAD | Computer-Aided Design |
GP | Gaussian Process |
ANN | Artificial Neural Network |
GNN | Graph Neural Network |
NSGA | Non-dominated Sorting Genetic Algorithm |
MOGA | Multi-Objective Genetic Algorithm |
DE | Differential Evolution |
ABC | Artificial Bee Colony |
TSMCOA | Two-Stage Miller Compensation Operational Amplifier |
DC | Direct Current |
Op-Amp | Operational Amplifier |
LS | Line Sensitivity |
TC | Temperature Coefficient |
EP | Evolutionary Programming |
LDO | Low Dropout |
PSR | Power Supply Rejection |
DNN | Deep Neural Network |
BO | Bayesian Optimization |
PVT | Process–Voltage–Temperature |
DDPG | Deep Deterministic Policy Gradient |
RF | Radiofrequency |
DQN | Deep Q-Network |
SAR ADC | Successive Approximation Register Analog-to-Digital Converter |
OTA | Operational Trans-Conduct Amplifier |
TIA | Trans-Impedance Amplifier |
SPGP | Sparse Pseudo-Input Gaussian Process |
LoCoMOBO | Locally Constrained Multi-Objective BO |
MACE | Multi-Objective Acquisition Function Ensemble |
Weighted-Expectation Improved BO | |
DFO | Derivative-Free Optimization |
TuRBO | Trust-Region BO |
FOM | Figure of Merit |
NN | Neural Network |
PPNN | Proximal Projection Neural Network |
IPPNN | Inertial Proximal Projection Neural Network |
BGR | Bandgap Reference |
ESSAB | Efficient Surrogate Model-Assisted Sizing Method for High-Performance Analog Building Blocks |
EA | Evolutionary Algorithm |
GAT | Graph Attention Network |
PINN | Physics-Informed Neural Network |
References
- Yuan, X.; Yang, S.; Wang, W.; Sheng, Y.; Zhuang, X.; Yin, J. A Fault Diagnosis Method for Analog Circuits Based on Improved TQWT and Inception Model. Symmetry 2024, 16, 720. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, J.; Sun, D.; Su, G.; Wang, J. From Netlist to Manufacturable Layout: An Auto-Layout Algorithm Optimized for Radio Frequency Integrated Circuits. Symmetry 2023, 15, 1272. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, D.; Wang, X. A High-Efficiency Codesign Method for Bandgap Circuit by Submodule Optimization. Int. J. Circuit Theory Appl. 2024, 24, 1484. [Google Scholar]
- Zhang, C.; Zha, D.; Wang, L.; Mu, N. A Novel Analog Circuit Soft Fault Diagnosis Method Based on Convolutional Neural Network and Backward Difference. Symmetry 2021, 13, 1096. [Google Scholar] [CrossRef]
- Binkley, D.M.; Hopper, C.E.; Tucker, S.D.; Moss, B.C.; Rochelle, J.M. A CAD methodology for optimizing transistor current and sizing in analog CMOS design. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2003, 22, 225–237. [Google Scholar]
- Liao, T.; Zhang, L. Layout-dependent effects aware gm/iD-based many-objective sizing optimization for analog integrated circuits. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar]
- Jung, S.; Lee, J. Yield-aware Pareto front extraction for discrete hierarchical optimization of analog circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2014, 33, 1117–1130. [Google Scholar]
- Li, X.; Gopalakrishnan, P.; Xu, Y.; Pileggi, L.T. Robust analog/RF circuit design with projection-based performance modeling. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2007, 26, 2–15. [Google Scholar] [CrossRef]
- Barros, M.; Guilherme, J.; Horta, N. Analog circuits optimization based on evolutionary computation techniques. Integr. VLSI J. 2010, 43, 136–155. [Google Scholar]
- Kim, J.; Vandenberghe, L.; Yang, C.-K.K. Convex piecewise-linear modeling method for circuit optimization via geometric programming. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2010, 29, 1823–1827. [Google Scholar]
- Liu, B.; Fernández, F.V.; Gielen, G.G.E. Efficient and accurate statistical analog yield optimization and variation-aware circuit sizing based on computational intelligence techniques. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2011, 30, 793–805. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, H.; Bi, Z.; Yan, C.; Zhou, D.; Su, Y.; Zeng, X. Smart-MSP: A self-adaptive multiple starting point optimization approach for analog circuit synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2018, 37, 531–544. [Google Scholar] [CrossRef]
- Lyu, W.; Yang, F.; Yan, C.; Zhou, D.; Zeng, X. Batch Bayesian Optimization via multi-objective acquisition ensemble for automated analog circuit design. In Proceedings of the 35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden, 10–15 July 2018; pp. 3306–3314. [Google Scholar]
- Liu, J.; Hassanpourghadi, M.; Zhang, Q.; Su, S.; Chen, M.S. Transfer learning with Bayesian Optimization-aided sampling for efficient AMS circuit modeling. In Proceedings of the 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD), San Diego, CA, USA, 2–5 November 2020; pp. 1–9. [Google Scholar]
- Wolfe, G.; Vemuri, R. Extraction and use of neural network models in automated synthesis of operational amplifiers. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2003, 22, 198–212. [Google Scholar] [CrossRef]
- Hassanpourghadi, M.; Su, S.; Rasul, R.A.; Liu, J.; Zhang, Q.; Chen, M.S. Circuit connectivity inspired neural network for analog mixed-signal functional modeling. In Proceedings of the 2021 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 5–9 December 2021; pp. 505–510. [Google Scholar]
- Kwon, H.; Kim, D.; Kim, Y.H.; Kang, S. Variation-aware SRAM cell optimization using deep neural network-based sensitivity analysis. IEEE Trans. Circuits Syst. I Reg. Pap. 2021, 68, 1567–1577. [Google Scholar] [CrossRef]
- Rosa, J.P.S.; Guerra, D.J.D.; Horta, N.C.G.; Martins, R.M.F.; Lourenço, N.C.C. Using ANNs to Size Analog Integrated Circuits; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Rayas-Sanchez, J.E. EM-based optimization of microwave circuits using artificial neural networks: The state-of-the-art. IEEE Trans. Microw. Theory Technol. 2004, 52, 420–435. [Google Scholar] [CrossRef]
- Wang, H.; Wang, K.; Yang, J.; Shen, L.; Sun, N.; Lee, H.-S.; Han, S. GCN-RL Circuit Designer: Transferable Transistor Sizing with Graph Neural Networks and Reinforcement Learning. In Proceedings of the 2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 19–23 December 2020; pp. 1–6. [Google Scholar]
- Lee, H.-J.; Lee, K.-J.; Choi, Y.; Lee, K.; Kang, S.; Sim, J.-Y. Trans-Net: Knowledge-Transferring Analog Circuit Optimizer with a Netlist-Based Circuit Representation. In Proceedings of the 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE), Valencia, Spain, 25–27 March 2024; pp. 1–2. [Google Scholar]
- Kunal, K.; Dhar, T.; Madhusudan, M.; Poojary, J.; Sharma, A.; Xu, W.; Burns, S.M.; Hu, J.; Harjani, R.; Sapatnekar, S.S. GANA: Graph Convolutional Network Based Automated Netlist Annotation for Analog Circuits. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2020; pp. 55–60. [Google Scholar]
- Prajapati, P.P.; Shah, M.V. Two stage CMOS operational amplifier design using particle swarm optimization algorithm. In Proceedings of the IEEE UP Section Conference on Electrical Computer and Electronics (UPCON), Allahabad, India, 4–6 December 2015; pp. 1–5. [Google Scholar]
- Rashid, R.; Nambath, N. Area Optimization of Two Stage Miller Compensation Op-Amp in 65 nm Using Hybrid PSO. IEEE Trans. Circuits Nd Syst. II Express Briefs 2022, 69, 199–203. [Google Scholar]
- Dendouga, A.; Oussalah, S.; Thienpont, D.; Lounis, A. Program for the optimization of an OTA for front end electronics based on multi objective genetic algorithms. In Proceedings of the 2014 29th International Conference on Microelectronics Proceedings, Algiers, Algeria, 21–24 December 2014; pp. 443–446. [Google Scholar]
- Harsha, M.V.; Harish, B.P. An Integrated MaxFit Genetic Algorithm-SPICE Framework for 2-Stage Op-Amp Design Automation. In Proceedings of the 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Hong Kong, China, 9–11 July 2018; pp. 170–174. [Google Scholar]
- Wong, Y.C.; Radzi, F.; Hamid, N.A. A transistor sizing tool for optimization of analog CMOS circuits: TSOp. Int. J. Eng. Technol. 2015, 7, 140–146. [Google Scholar]
- Das, P.; Jajodia, B. Design Automation of Two-Stage Operational Amplifier Using Multi-Objective Genetic Algorithm and SPICE Framework. In Proceedings of the International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 20–22 February 2022; pp. 166–170. [Google Scholar]
- Huang, H.; Zeng, Y.; Liao, J.; Chen, R.; Tan, H.-Z. Performance optimization for the CMOS voltage reference circuit based on NSGA-II. In Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Chengdu, China, 26–30 October 2018; pp. 82–85. [Google Scholar]
- Sasikumar, A.; Muthaiah, R. Operational amplifier circuit sizing based on NSGA-II and particle swarm optimization. In Proceedings of the International Conference on Networks & Advances in Computational Technologies (NetACT), Tamil Nadu, India, 20–22 July 2017; pp. 64–68. [Google Scholar]
- Nam, D.; Seo, Y.D.; Park, L.-J.; Park, C.H.; Kim, B. Parameter optimization of an on-chip voltage reference circuit using evolutionary programming. IEEE Trans. Evol. Comput. 2001, 5, 414–421. [Google Scholar]
- Lopez-Arredondo, J.; Tlelo-Cuautle, E.; Trejo-Guerra, R. Optimizing an LDO voltage regulator by evolutionary algorithms considering tolerances of the circuit elements. In Proceedings of the Latin-American Test Symposium (LATS), Puerto Vallarta, Mexico, 25–27 March 2015; pp. 1–5. [Google Scholar]
- Settaluri, K.; Haj-Ali, A.; Huang, Q.; Hakhamaneshi, K.; Nikolic, B. AutoCkt: Deep Reinforcement Learning of Analog Circuit Designs. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2020; pp. 490–495. [Google Scholar]
- Shi, W.; Wang, H.; Gu, J.; Liu, M.; Pan, D.Z.; Han, S.; Sun, N. RobustAnalog: Fast Variation-Aware Analog Circuit Design Via Multi-task RL. In Proceedings of the ACM/IEEE 4th Workshop on Machine Learning for CAD (MLCAD), Snowbird, UT, USA, 12–13 September 2022; pp. 35–41. [Google Scholar]
- Tang, C.; Ye, Z.; Wang, Y. Parametric Circuit Optimization with Reinforcement Learning. In Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Hong Kong, China, 8–11 July 2018; pp. 197–202. [Google Scholar]
- Budak, A.F.; Bhansali, P.; Liu, B.; Sun, N.; Pan, D.Z.; Kashyap, C.V. DNN-Opt: An RL Inspired Optimization for Analog Circuit Sizing using Deep Neural Networks. In Proceedings of the ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 5–9 December 2021; pp. 1219–1224. [Google Scholar]
- Somayaji, N.S.K.; Hu, H.; Li, P. Prioritized Reinforcement Learning for Analog Circuit Optimization with Design Knowledge. In Proceedings of the ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 5–9 December 2021; pp. 1231–1236. [Google Scholar]
- Zhao, Z.; Zhang, L. Analog Integrated Circuit Topology Synthesis with Deep Reinforcement Learning. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2022, 41, 5138–5151. [Google Scholar] [CrossRef]
- Yang, K.-E.; Tsai, C.-Y.; Shen, H.-H.; Chiang, C.-F.; Tsai, F.-M.; Wang, C.-A.; Ting, Y.; Yeh, C.-S.; Lai, C.-T. Trust-Region Method with Deep Reinforcement Learning in Analog Design Space Exploration. In Proceedings of the ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 5–9 December 2021; pp. 1225–1230. [Google Scholar]
- Gao, J.; Cao, W.; Zhang, X. RoSE: Robust Analog Circuit Parameter Optimization with Sampling-Efficient Reinforcement Learning. In Proceedings of the ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 9–13 July 2023; pp. 1–6. [Google Scholar]
- Choi, M.; Choi, Y.; Lee, K.; Kang, S. Reinforcement Learning-based Analog Circuit Optimizer using gm/ID for Sizing. In Proceedings of the ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 9–13 July 2023; pp. 1–6. [Google Scholar]
- Zuo, W.; Liu, L.; Li, F.; Huang, Y.; Zhang, L.; Wan, J. RLCkt: An Analog Circuit Automatic Sizing Sage Based on Reinforcement Learning. In Proceedings of the China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 26–27 June 2023; pp. 1–4. [Google Scholar]
- Lee, W.; Song, I. Machine-Learning-Based Design Automation for Optimizing Analog/RF Circuit Applications. In Proceedings of the IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC), Beijing, China, 3–5 November 2023; pp. 187–191. [Google Scholar]
- Choi, Y.; Park, S.; Choi, M.; Lee, K.; Kang, S. MA-Opt: Reinforcement Learning-Based Analog Circuit Optimization Using Multi-Actors. IEEE Trans. Circuits Syst. I Regul. Pap. 2024, 71, 2045–2056. [Google Scholar] [CrossRef]
- Bao, J.; Zhang, J.; Huang, Z.; Bi, Z.; Feng, X.; Zeng, X.; Lu, Y. Multiagent Based Reinforcement Learning (MA-RL): An Automated Designer for Complex Analog Circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2024, 43, 4398–4411. [Google Scholar] [CrossRef]
- He, B.; Zhang, S.; Yang, F.; Yan, C.; Zhou, D.; Zeng, X. An Efficient Bayesian Optimization Approach for Analog Circuit Synthesis via Sparse Gaussian Process Modeling. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2020; pp. 67–72. [Google Scholar]
- Lyu, W.; Xue, P.; Yang, F.; Yan, C.; Hong, Z.; Zeng, X.; Zhou, D. An Efficient Bayesian Optimization Approach for Automated Optimization of Analog Circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 1954–1967. [Google Scholar] [CrossRef]
- Zhang, S.; Lyu, W.; Yang, F.; Yan, C.; Zhou, D.; Zeng, X. Bayesian Optimization Approach for Analog Circuit Synthesis Using Neural Network. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy, 25–29 March 2019; pp. 1463–1468. [Google Scholar]
- Yu, X. Hierarchical Optimization based on Partial Performance Tradeoff Modeling Method for Large Scale Analog Circuits. In Proceedings of the International Symposium of Electronics Design Automation (ISEDA), Xi’an, China, 10–13 May 2024; pp. 149–154. [Google Scholar]
- Lee, J.; Park, J.; Kim, S.; Jeong, H. Bayesian Learning Automated SRAM Circuit Design for Power and Performance Optimization. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 70, 4949–4961. [Google Scholar] [CrossRef]
- Touloupas, K.; Sotiriadis, P.P. LoCoMOBO: A Local Constrained Multiobjective Bayesian Optimization for Analog Circuit Sizing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2022, 41, 2780–2793. [Google Scholar]
- Fu, X.; Yan, C.; Bi, Z.; Yang, F.; Zhou, D.; Zeng, X. A Batch Bayesian Optimization Approach For Analog Circuit Synthesis Based on Multi-Points Selection Criterion. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 27 May–1 June 2022; pp. 2886–2890. [Google Scholar]
- Gu, T.; Li, W.; Zhao, A.; Bi, Z.; Li, X.; Yang, F.; Yan, C.; Hu, W.; Zhou, D.; Cui, T.; et al. BBGP-sDFO: Batch Bayesian and Gaussian Process Enhanced Subspace Derivative Free Optimization for High-Dimensional Analog Circuit Synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2024, 43, 417–430. [Google Scholar] [CrossRef]
- Dong, P.; Lyu, R.; Wang, C.; Chen, J.; Jiang, L.; Lan, C.; Bi, Z.; Yan, C. Automated Design of Analog Circuits Based on Parallel Trust Region Bayesian Optimization. In Proceedings of the International Symposium of Electronics Design Automation (ISEDA), Xi’an, China, 10–13 May 2024; pp. 187–192. [Google Scholar]
- Devi, S.; Tilwankar, G.; Zele, R. Automated Design of Analog Circuits using Machine Learning Techniques. In Proceedings of the International Symposium on VLSI Design and Test (VDAT), Surat, India, 16–18 September 2021; pp. 1–6. [Google Scholar]
- Yang, Y.; Yin, X.; Chen, D.; Li, D.; Yang, Y. The High-Efficiency Optimization Design Method for Two-Stage Miller Compensated Operational Amplifier. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 2029–2033. [Google Scholar] [CrossRef]
- Wu, J.; He, X.; Niu, Y.; Huang, T.; Yu, J. Circuit Implementation of Proximal Projection Neural Networks for Composite Optimization Problems. IEEE Trans. Ind. Electron. 2024, 71, 1948–1957. [Google Scholar] [CrossRef]
- Fayazi, M.; Taba, M.T.; Afshari, E.; Dreslinski, R. AnGeL: Fully-Automated Analog Circuit Generator Using a Neural Network Assisted Semi-Supervised Learning Approach. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 70, 4516–4529. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Li, Y.; Zhou, R.; Lin, Z. An Artificial Neural Network Assisted Optimization System for Analog Design Space Exploration. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2020, 39, 2640–2653. [Google Scholar]
- Budak, A.F.; Gandara, M.; Shi, W.; Pan, D.Z.; Sun, N.; Liu, B. An Efficient Analog Circuit Sizing Method Based on Machine Learning Assisted Global Optimization. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2022, 41, 1209–1221. [Google Scholar]
- Chen, D.; Yang, Y.; Wang, X.; Li, D.; Xin, G.; Yang, Y. A High-Efficiency Modelling Method for Analog Integrated Circuits. Chip 2025, 100135. [Google Scholar] [CrossRef]
- Elsiginy, A.; Azab, E.; Elmahdy, M. Comparative Study of Evolutionary Algorithms for a Hybrid Analog Design Optimization with the use of Deep Neural Networks. In Proceedings of the International Conference on Microelectronics (ICM), Aqaba, Jordan, 14–17 December 2020; pp. 1–4. [Google Scholar]
- Singhal, A.; Goyal, P.; Agarwal, H. Artificial Neural Network Driven Optimization for Analog Circuit Performance. In Proceedings of the IEEE Latin American Electron Devices Conference (LAEDC), Guatemala City, Guatemala, 8–10 May 2024; pp. 1–4. [Google Scholar]
- Zargaran-Yazd, A.; Sudhakaran, S. Using deep neural networks to model nonlinear circuit blocks in wireline links. In Proceedings of the 2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), San Jose, CA, USA, 15–18 October 2017; pp. 1–3. [Google Scholar]
- Wang, Y.; Xin, J.; Fang, J.; Chen, X.; Liu, H.; Qin, Q.; Chai, C.; Lu, Y.; Hao, J.; Xiao, J.; et al. Topology Generic DC-Model for Accelerating Analog Circuit Optimization. In Proceedings of the International Symposium of Electronics Design Automation (ISEDA), Nanjing, China, 8–11 May 2023; pp. 65–70. [Google Scholar]
- Wei, Y.; Wang, S.; Li, Y. Graph Theory Based Machine Learning for Analog Circuit Design. In Proceedings of the International Conference on Automation and Computing (ICAC), Birmingham, UK, 30 August–1 September 2023; pp. 1–6. [Google Scholar]
- Hong, X.; Lin, T.; Shi, Y.; Gwee, B.H. ASIC Circuit Netlist Recognition Using Graph Neural Network. In Proceedings of the IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Singapore, 15 September–15 October 2021; pp. 1–5. [Google Scholar]
- Hung, S.-C.; Banerjee, S.; Chaudhuri, A.; Kim, J.; Lim, S.K.; Chakrabarty, K. Transferable Graph Neural Network-Based Delay-Fault Localization for Monolithic 3-D ICs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2023, 42, 4296–4309. [Google Scholar] [CrossRef]
- Saravanan, V.; Saeed, S.M. Noise Adaptive Quantum Circuit Mapping Using Reinforcement Learning and Graph Neural Network. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2024, 43, 1374–1386. [Google Scholar] [CrossRef]
- Hakhamaneshi, K.; Nassar, M.; Phielipp, M.; Abbeel, P.; Stojanovic, V. Pretraining Graph Neural Networks for Few-Shot Analog Circuit Modeling and Design. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2023, 42, 2163–2173. [Google Scholar] [CrossRef]
- Liu, M.; Turner, W.J.; Kokai, G.F.; Khailany, B.; Pan, D.Z.; Ren, H. Parasitic-Aware Analog Circuit Sizing with Graph Neural Networks and Bayesian Optimization. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 1–5 February 2021; pp. 1372–1377. [Google Scholar]
- Xie, Z.; Liang, R.; Xu, X.; Hu, J.; Chang, C.-C.; Pan, J.; Chen, Y. Preplacement Net Length and Timing Estimation by Customized Graph Neural Network. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2022, 41, 4667–4680. [Google Scholar] [CrossRef]
Circuit | Proposed Method | Convergence | Optimal Parameters | Optimal Results | |
---|---|---|---|---|---|
[24] | TSMCOA (65 nm) | Hybrid PSO | <50 | W1-7, Ibias | A = 0.22 μm2 |
[23] | TSMCOA (0.18 μm) | PSO | W1-7, Ibias | P = 0.184 mW A = 28.52 μm2 | |
[26] | TSMCOA (0.18 μm) | MaxFit GA | <50 | W1-8, L1-8, Ibias, Cc | P = 0.166 mW A = 262 μm2 |
[28] | TSMCOA (0.18 μm) | MOGAS | W1-8, L1-8 | P = 0.22 mW A = 150.55 μm2 | |
[27] | Cascaded Amplifier (0.25 μm) | GA (TSOp) | 50 | W1-4, L1-4 | I = 1.634 μA |
Op-Amp (0.25 μm) | GA (TSOp) | 50 | W1-6, L1-6 | I = 5.21 nA | |
[32] | LDO (0.18 μm) | NSGA-II | WP, Co, RESR, Cc, Ibias | PSRDC = −95.8 dB PSR100KHz = −70.91 dB PSR1MHz = −61.88 dB | |
[29] | Voltage Reference Circuits (0.18 μm) | NSGA-II | <200 | MC, MS1-3, PM0-3, M1-6 | LS = 510 ppm/V TC = 6.3 ppm/°C |
[30] | TSMCOA (0.18 μm) | PSO and NSGA-II | W1-8, L1-8, CL | P = 2.5 mW |
Algorithm | Optimization Circuit | Success Rate | Runtime | Simulation Time | |
---|---|---|---|---|---|
[44] | MA-opt | Two-Stage OTA; | 10/10; | 0.91 h; | <200 |
Three-Stage TIA; | 10/10; | 0.78 h; | |||
LDO Regulator | 10/10 | 1.14 h | |||
[36] | DNN-opt | Two-Stage OTA; | 8/10; | 0.54 h; | 132 |
Three-Stage TIA; | 4/10; | 0.46 h; | |||
LDO Regulator | 7/10 | 0.75 h | |||
[33] | AutoCkt | Transimpedance Amplifier; | 487/500 | 30 | |
Two-Stage OTA | 963/1000 | ||||
[42] | RLCkt | Two-Stage OTA | 986/1000 | 4.5 h | <500 |
[45] | MA-RL | Gain Boost Amplifier; | 9/10; | <1000 | |
Delay Locked Loop; | 9/10; | ||||
SAR ADC | 9/10 | ||||
[38] | DRN-opt | OTA | 9/10 | 3.25 h | 800 |
Algorithm | Optimization Circuits | Success | FOM | Training Data | |
---|---|---|---|---|---|
[46] | SPGP | Three-Stage Amplifier; | 12/12; | 27.08; | 515; |
Voltage-Controlled Oscillator | 12/12 | 3.78 | 136 | ||
[47] | WEIBOGP | 60 GHz Inductor; | 12/12; | 15.17; | 98; |
Power Amplifier; | 12/12; | 60.29; | 82; | ||
Low-Power Three-Stage Amplifier; | 12/12; | 27.87; | 798; | ||
Voltage Controlled Oscillator; | 12/12 | 3.81 | 181 | ||
Charge Pump | 12/12 | 3.95 | 790 | ||
[48] | NNGP | Two-Stage Operational Amplifier; | 10/10; | 88.17; | 86; |
Charge Pump | 12/12 | 3.48 | 562 | ||
[50] | LoCoMOBOGP | Three-Stage Amplifier; | 7983; | 73; | |
Four-Stage Amplifier; | 4721; | 79; | |||
Low-Noise Amplifier | 44.2 | 144 | |||
[52] | Two steps BOGP | Two-Stage Operational Amplifier; | 12/12; | 90.44; | 26; |
Low-Power Three-Stage Amplifier; | 12/12; | 29.31; | 45; | ||
Charge Pump Circuit | 12/12 | 3.33 | 29 | ||
[53] | BBGP-sDFO | Voltage-Controlled Oscillator; | 10/10; | 4.03; | 144; |
Charge Pump; | 10/10; | 4.74; | 85; | ||
Ac-Coupled Instrumentation Amplifier; | 10/10; | 11.16; | 389; | ||
Operational Transconductance Amplifier | 10/10 | 10.5 | 340 | ||
[54] | TuRBO | Trans-Impedance Amplifier; | 0.0052; | 374; | |
Ring Amplifier; | 0.051; | 399; | |||
AC-Coupled Instrumentation Amplifier | 0.0072 | 407 |
Algorithm | Circuit Structure | Accuracy | Dataset | Modeling Time | |
---|---|---|---|---|---|
[55] | Gm/Id-ANN | Two-Stage Single-Ended Op-Amp | R2 = 93% | 7361 | |
[56] | ANN-PSO | Two-Stage Operational Amplifier | R2 = 99.9% | 21,875 | 63 s |
[59] | ANN-GA | Two-Stage Rail-to-Rail Op-Amp; | R2 = 99.5% | 632 | 9 min 44 s |
Fifth-Order CBPF; | |||||
OPA Circuit of the Fifth-Order CBPF | |||||
[61] | CNN-IC | Two-Stage Operational Amplifier | R2 = 99.9% | 5832 | 2 min |
BGR Circuits | R2 = 99% | 7776 | 5 min | ||
[62] | DNN-ADC | Pipelined ADC | 2048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Su, J.; Lai, X.; Chen, D.; Li, D.; Yang, Y. Recent Developments and Perspectives on Optimization Design Methods for Analog Integrated Circuits. Symmetry 2025, 17, 529. https://doi.org/10.3390/sym17040529
Yang Y, Su J, Lai X, Chen D, Li D, Yang Y. Recent Developments and Perspectives on Optimization Design Methods for Analog Integrated Circuits. Symmetry. 2025; 17(4):529. https://doi.org/10.3390/sym17040529
Chicago/Turabian StyleYang, Yunqi, Jiaming Su, Xiaoran Lai, Dongdong Chen, Di Li, and Yintang Yang. 2025. "Recent Developments and Perspectives on Optimization Design Methods for Analog Integrated Circuits" Symmetry 17, no. 4: 529. https://doi.org/10.3390/sym17040529
APA StyleYang, Y., Su, J., Lai, X., Chen, D., Li, D., & Yang, Y. (2025). Recent Developments and Perspectives on Optimization Design Methods for Analog Integrated Circuits. Symmetry, 17(4), 529. https://doi.org/10.3390/sym17040529