Non-Minimal Einstein–Dirac-Axion Theory: Spinorization of the Early Universe Induced by Curvature
Abstract
:1. Introduction
2. The Formalism
2.1. Action Functional of the Non-Minimal Einstein–Dirac-Axion Theory
2.2. Auxiliary Mathematical Details Connected with the Spinor Field
2.2.1. Dirac Matrices and Tetrad Vectors
2.2.2. Definition and Properties of the Matrix
2.2.3. The Fock–Ivanenko Connection Coefficients
2.3. Non-Minimal Extension of the Action Functional
2.3.1. Geometric and Spinor Elements of the Lagrangian Decomposition
2.3.2. Non-Minimal Contributions to the Total Lagrangian
2.4. Master Equations
2.4.1. Master Equations for the Spinor Field
2.4.2. Master Equations for the Axion Field
2.4.3. Master Equations for the Gravity Field
3. Cosmological Application
3.1. Geometrical Aspects of the Model
3.2. Reduced Dirac Equations and Evolution of the Spinor Scalars
3.3. Reduced Equation of the Axion Dynamics
3.4. Key Equation for the Gravitational Dynamics
Short Resume
4. First Exactly Integrable Submodel
4.1. Evolution of the Spinor Scalar S and Pseudoscalars P,
4.2. Evolution of the Hubble Function
4.2.1. The Case
4.2.2. The Case
4.2.3. The Case
5. Second Exactly Integrable Model
5.1. Evolution of the Spinor Particle Number Density
5.2. Gravity Field Evolution
5.2.1. The Case
5.2.2. The Case
5.2.3. The Case
6. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2009, 505, 59–144. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Weinberg, S. Effective Field Theory for Inflation. Phys. Rev. D 2008, 77, 123541. [Google Scholar] [CrossRef]
- Weinberg, S. Effective Field Theory, Past and Future. Int. J. Mod. Phys. A 2016, 31, 1630007. [Google Scholar] [CrossRef]
- Burgess, C.P. Introduction to Effective Field Theory; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Brans, C.; Dicke, R.H. Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev. 1961, 124, 925. [Google Scholar] [CrossRef]
- Amendola, L. Cosmology with non-minimal derivative couplings. Phys. Lett. B 1993, 301, 175–182. [Google Scholar] [CrossRef]
- Capozziello, S.; Lambiase, G. Non-minimal derivative coupling and the recovering of cosmological constant. Gen. Rel. Grav. 1999, 31, 1005–1014. [Google Scholar] [CrossRef]
- Capozziello, S.; Lambiase, G.; Schmidt, H.-J. Non-minimal derivative couplings and inflation in generalized theories of gravity. Annalen Phys. 2000, 9, 39–48. [Google Scholar] [CrossRef]
- Prasanna, A.R. A new invariant for electromagnetic fields in curved space-time. Phys. Lett. A 1971, 37, 331–332. [Google Scholar] [CrossRef]
- Drummond, I.T.; Hathrell, S.J. QED vacuum polarization in a background gravitational field and its effect on the velocity of photons. Phys. Rev. D 1980, 22, 343. [Google Scholar] [CrossRef]
- Ni, W.-T. Equivalence principles and electromagnetism. Phys. Rev. Lett. 1977, 38, 301. [Google Scholar] [CrossRef]
- Peccei, R.D.; Quinn, H.R. CP conservation in the presence of pseudoparticles. Phys. Rev. Lett. 1977, 38, 1440. [Google Scholar] [CrossRef]
- Weinberg, S. A new light boson? Phys. Rev. Lett. 1978, 40, 223. [Google Scholar] [CrossRef]
- Wilczek, F. Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett. 1978, 40, 279. [Google Scholar] [CrossRef]
- Wilczek, F. Two applications of axion electrodynamics. Phys. Rev. Lett. 1987, 58, 1799. [Google Scholar] [CrossRef] [PubMed]
- Balakin, A.B.; Ni, W.-T. Non-minimal coupling of photons and axions. Class. Quant. Grav. 2010, 27, 055003. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Gravity Inflation with String-Corrected Axion Dark Matter. Phys. Rev. D 2019, 99, 064049. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K.; Popov, A.A. Propagation of Gravitational Waves in Chern-Simons Axion Einstein Gravity. Phys. Rev. D 2019, 100, 084009. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Bamba, K. Solutions of a slowly rotating Kerr flat-horizon black hole in dynamical Chern-Simons modified gravity. EPL 2023, 144, 29002. [Google Scholar] [CrossRef]
- Bamba, K.; Odintsov, S.D. Inflation and late-time cosmic acceleration in non-minimal Maxwell-F(R) gravity and the generation of large-scale magnetic fields. J. Cosmol. Astropart. Phys. 2008, 2008, 024. [Google Scholar] [CrossRef]
- Bamba, K.; Nojiri, S.; Odintsov, S.D. Inflationary cosmology and the late-time accelerated expansion of the universe in non-minimal Yang-Mills-F(R) gravity and non-minimal vector-F(R) gravity. Phys. Rev. D 2008, 77, 123532. [Google Scholar] [CrossRef]
- Cipriano, R.A.C.; Harko, T.; Lobo, F.S.N.; Pinto, M.A.S.; Rosa, J.L. Gravitationally induced matter creation in scalar-tensor f(R,TμνTμν) gravity. Phys. Dark Universe 2024, 44, 101463. [Google Scholar] [CrossRef]
- Goenner, H.F.M. Theories of gravitation with nonminimal coupling of matter and the gravitational field. Found. Phys. 1984, 14, 865–881. [Google Scholar] [CrossRef]
- Hehl, F.W.; Obukhov, Y.N. How does the electromagnetic field couple to gravity, in particular to metric, nonmetricity, torsion, and curvature? Lect. Notes Phys. 2001, 562, 479–504. [Google Scholar]
- Bronnikov, K.A.; Grinyok, S. Instability of wormholes with a non-minimally coupled scalar field. Grav. Cosmol. 2001, 7, 297–300. [Google Scholar]
- Itin, Y.; Hehl, F.W. Maxwell’s field coupled non-minimally to quadratic torsion: Induced axion field and birefringence of the vacuum. Phys. Rev. D 2003, 68, 127701. [Google Scholar] [CrossRef]
- Balakin, A.B.; Lemos, J.P.S. Non-minimal coupling for the gravitational and electromagnetic fields: A general system of equations. Class. Quant. Grav. 2005, 22, 1867. [Google Scholar] [CrossRef]
- Balakin, A.B.; Zayats, A.E. Non-minimal Wu-Yang monopole. Phys. Lett. B 2007, 644, 294–298. [Google Scholar] [CrossRef]
- Balakin, A.B.; Dehnen, H.; Zayats, A.E. Non-minimal Einstein-Yang-Mills-Higgs theory: Associated, color and color-acoustic metrics for the Wu-Yang monopole model. Phys. Rev. D 2007, 76, 124011. [Google Scholar] [CrossRef]
- Puetzfeld, D.; Obukhov, Y.N. Equations of motion in gravity theories with non-minimal coupling: A loophole to detect torsion macroscopically? Phys. Rev. D 2013, 88, 064025. [Google Scholar] [CrossRef]
- Puetzfeld, D.; Obukhov, Y.N. Covariant equations of motion for test bodies in gravitational theories with general non-minimal coupling. Phys. Rev. D 2013, 87, 044045. [Google Scholar] [CrossRef]
- Balakin, A.B.; Lemos, J.P.S.; Zayats, A.E. Regular non-minimal magnetic black holes in spacetimes with a cosmological constant. Phys. Rev. D 2016, 93, 024008. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Saridakis, E.N.; Tsoukalas, M. Cosmological models in modified gravity theories with extended non-minimal derivative couplings. Phys. Rev. D 2017, 95, 044019. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Capozziello, S.; Odintsov, S.D.; Oikonomou, V.K. Novel stellar astrophysics from extended gravity. Europhys. Lett. 2021, 134, 59001. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Saridakis, E.N. Gravitationally Induced Particle Production through a Non-minimal Torsion-Matter Coupling. Universe 2021, 7, 227. [Google Scholar] [CrossRef]
- Varela, M.B.; Bertolami, O. Gravitational wave polarizations in non-minimally coupled gravity. Phys. Rev. D 2025, 111, 024014. [Google Scholar] [CrossRef]
- Saha, B. Non-minimally coupled nonlinear spinor field in Bianchi type-I cosmology. Eur. Phys. J. Plus 2019, 134, 491. [Google Scholar] [CrossRef]
- Ramazanoglu, F.M. Spontaneous growth of spinor fields in gravity. Phys. Rev. D 2018, 98, 044011. [Google Scholar] [CrossRef]
- Minamitsuji, M. Stealth spontaneous spinorization of relativistic stars. Phys. Rev. D 2020, 102, 044048. [Google Scholar] [CrossRef]
- Balakin, A.B.; Efremova, A.O. Dynamic aether as a trigger for spontaneous spinorization in early Universe. Universe 2023, 9, 481. [Google Scholar] [CrossRef]
- Saha, B. Nonlinear spinor field in cosmology. Phys. Rev. D 2004, 69, 124006. [Google Scholar] [CrossRef]
- Saha, B. Spinor field in Bianchi type-I universe: Regular solutions. Phys. Rev. D 2001, 64, 123501. [Google Scholar] [CrossRef]
- Saha, B.; Boyadjiev, T. Bianchi type I cosmology with scalar and spinor fields. Phys. Rev. D 2004, 69, 124010. [Google Scholar] [CrossRef]
- Fock, V.; Iwanenko, D. Geometrie quantique lineaire et deplacement parallele. Comptes Rendus Acad. Sci. 1929, 188, 1470. [Google Scholar]
- Balakin, A.B.; Efremova, A.O. Interaction of the axionic dark matter, dynamic aether, spinor and gravity fields as an origin of oscillations of the fermion effective mass. Eur. Phys. J. C 2021, 81, 674. [Google Scholar] [CrossRef]
- Balakin, A.B.; Shakirzyanov, A.F. Is the axionic dark matter an equilibrium system? Universe 2020, 6, 192. [Google Scholar] [CrossRef]
- de Haro, J.; Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K.; Pan, S. Finite-time Cosmological Singularities and the Possible Fate of the Universe. Phys. Rep. 2023, 1034, 1–114. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balakin, A.B.; Efremova, A.O. Non-Minimal Einstein–Dirac-Axion Theory: Spinorization of the Early Universe Induced by Curvature. Symmetry 2025, 17, 663. https://doi.org/10.3390/sym17050663
Balakin AB, Efremova AO. Non-Minimal Einstein–Dirac-Axion Theory: Spinorization of the Early Universe Induced by Curvature. Symmetry. 2025; 17(5):663. https://doi.org/10.3390/sym17050663
Chicago/Turabian StyleBalakin, Alexander B., and Anna O. Efremova. 2025. "Non-Minimal Einstein–Dirac-Axion Theory: Spinorization of the Early Universe Induced by Curvature" Symmetry 17, no. 5: 663. https://doi.org/10.3390/sym17050663
APA StyleBalakin, A. B., & Efremova, A. O. (2025). Non-Minimal Einstein–Dirac-Axion Theory: Spinorization of the Early Universe Induced by Curvature. Symmetry, 17(5), 663. https://doi.org/10.3390/sym17050663