From Complex to Quaternions: Proof of the Riemann Hypothesis and Applications to Bose–Einstein Condensates
Abstract
1. Introduction
2. Two Proof Approaches to Riemann’s Hypothesis
2.1. Basics of the Riemann Zeta Function, Xi Function, and Dirichlet Series
2.2. The Proof Method Based on Riemann’s Function
2.3. The Proof of RH Based on Symmetrized λ-Regularized Riemann’s Function
2.4. Summary of RH Proofs
3. Riemann’s Zeta Function and Bose–Einstein Condensation
3.1. Relations of Bose–Einstein and Fermi–Dirac Statistics to ζ(s) and η(s) Functions
3.2. Physics of Critical Points and λ-Regularization
- An inverse temperature λ ∝ 1/T when temperature dominates behavior.
- A scaled chemical potential, especially near condensation thresholds where μ → 0.
4. Quaternionic Zeta Function and Critical Hypersurfaces
4.1. Basics of the Quaternionic Framework
4.2. Physical Interpretation of Critical Points and λ-Regularization
4.3. Quaternionic Extension and Symmetry Breaking Beyond the Mermin–Wagner Theorem
5. Conclusions
6. Summary
- We constructed a λ-regularized, quaternion-valued zeta function that preserves critical-line or hypersurface symmetry.
- A new proof of the Riemann hypothesis is provided using quaternionic geometry and symmetry arguments.
- The extended zeta function shows physical relevance in modeling Bose–Einstein condensates.
- Oscillatory behavior in thermodynamic quantities near the critical temperature mirrors the spectral structure of the zeta zeros.
- This work bridges the gap between abstract number theory and quantum statistical physics, suggesting a unifying structure underlying both.
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riemann Zeta Function—Wikipedia. Available online: https://en.wikipedia.org/wiki/Riemann_zeta_function (accessed on 18 June 2025).
- Titchmarsh, E.C.; Heath-Brown, D.R. The Theory of the Riemann Zeta Function; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
- Ivic, A. The Riemann Zeta Function. In Theory and Applications; Dover Publications: Garden City, NY, USA, 2003. [Google Scholar]
- Hilbert, D. Mathematical problems. Bull. Am. Math. Soc. 1902, 8, 437–479. [Google Scholar] [CrossRef]
- Hardy, G.H.; Littlewood, J.E. The zeros of Riemann’s zeta function on the critical line. Math. Z. 1921, 10, 283–317. [Google Scholar] [CrossRef]
- Selberg, A. Collected Papers; Springer: Berlin/Heidelberg, Germany, 1989; Volume I and II. [Google Scholar]
- Speiser, A. Geometrisches zur Riemannschen Zetafunktion. Math. Ann. 1934, 110, 514–521. [Google Scholar] [CrossRef]
- Bober, J.W.; Hiary, G.A. New Computations of the Riemann Zeta Function on the Critical Line. Exp. Math. 2016, 27, 125–137. [Google Scholar] [CrossRef]
- Sabbagh, K.; Riemann, Z. The Greatest Unsolved Problem in Mathematics; Farrar, Straus and Giroux: New York, NY, USA, 2004. [Google Scholar]
- Sarnak, P. Riemann Hypothesis and Its Consequences. Bull. AMS 2004, 44, 393–462. [Google Scholar]
- Bailey, D.H.; Borwein, J.M. Experimental Mathematics and the Riemann Hypothesis. Mathematics 2018, 6, 86. [Google Scholar]
- Fujii, A.; Suzuki, M. Zero-free regions and the density of zeros of the Riemann zeta function. J. Math. Anal. Appl. 2020, 484, 123701. [Google Scholar]
- Burnol, J.-F. To the explicit formula and the Riemann Hypothesis. Proc. R. Soc. A 2021, 477, 20210245. [Google Scholar]
- Spector, D. Zeta Functions and Spectral Theory: A Physical Perspective. Entropy 2023, 25, 225. [Google Scholar]
- de Souza, L.A.M.; Morais Smith, C. Zeta function regularization and thermodynamic properties of ultracold bosons. Phys. Rev. A 2022, 106, 043308. [Google Scholar]
- Müller, T.; Schützhold, R. Analog gravity and zeta function regularization in ultracold gases. New J. Phys. 2019, 21, 123024. [Google Scholar]
- Elizalde, E. Applications of zeta function methods in physics: Recent developments. J. Phys. Conf. Ser. 2020, 1612, 012017. [Google Scholar]
- Tretkoff, P. Riemann’s zeta function: The principal tool in analytic number theory. Not. AMS 2022, 69, 356–367. [Google Scholar]
- Huang, K. Chapter 12: Quantum Statistics of Ideal Gases. In Statistical Mechanics, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1987; pp. 237–276. [Google Scholar]
- Weng, L. Zeta functions and geometry. In New Zeta Functions and Differential Operators; World Scientific: Singapore, 2017. [Google Scholar]
- Odake, S.; Sasaki, R. Spectral zeta functions and quantum mechanics. Nucl. Phys. B 2020, 954, 115002. [Google Scholar]
- Bagarello, F. Quantum mechanics, symmetries, and zeta functions. Phys. Scr. 2022, 97, 045203. [Google Scholar]
- Keating, J.P.; Snaith, N.C. Random matrix theory and ζ(1/2 + it). Commun. Math. Phys. 2000, 214, 57–89. [Google Scholar] [CrossRef]
- Pathria, R.K.; Beale, P.D. Bose-Einstein condensation in ideal gases. In Statistical Mechanics, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2011; Chapter 7; pp. 175–185. [Google Scholar]
- Pethick, C.J.; Smith, H. Bose–Einstein Condensation in Dilute Gases; Cambridge University Press: Cambridge, UK, 2008; Chapter 7. [Google Scholar]
- Sangwine, S.J.; Ell, T.A. (Eds.) Quaternion and Clifford Fourier Transforms and Wavelets; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Cawagas, R.E. On the structure and zero divisors of the Cayley-Dickson sedenion algebra, Disc. Math. Gen. Algebra App. 2004, 24, 251–265. [Google Scholar]
- Dray, T.; Manogue, C.A. Octonions, E8, and Particle Physics. J. Phys. Conf. Ser. 2010, 254, 012005. [Google Scholar]
- Selariu, M.E.; Arghirescu, D. The Sedenions and the Theoretical Physics. Gen. Sci. J. 2015, 237, 1–13. [Google Scholar]
- Elizalde, E. Applications of Zeta-Function Regularization in Quantum Statistics and Field Theory: Ten Physical Applications of Spectral Zeta Functions; Lecture Notes in Physics Monographs; Springer: Berlin/Heidelberg, Germany, 1995; Volume 35, pp. 1–150. [Google Scholar]
- França, G.R.; LeClair, A. On the Riemann Hypothesis and quantum mechanics. J. Phys. A Math. Theor. 2016, 49, 365202. [Google Scholar]
Feature | Mathematical Role | Physical Interpretation |
---|---|---|
x = 1 | Pole of ζ(s) | BEC threshold, divergence in density of states |
x = 1/2 | Critical line of RH | Quantum phase boundary (spectral instability) |
λ (regularization) | Enables convergence | Fugacity (chemical potential control) |
ζ(s) | Dirichlet series | Bose–Einstein statistics (boson partition function) |
η(s) | Alternating Dirichlet series | Fermi–Dirac statistics (fermion partition function) |
Framework | Symmetry | Order Parameter | Condensation at T > 0 |
---|---|---|---|
Complex (Standard BEC) | U(1) (Abelian) | Magnitude times phase: psi = |psi| × exp(i theta) | Forbidden in 2D (M-W theorem) |
Quaternionic Extension | SU(2) (Non-Abelian) | Quaternion: q = x + a e1 + b e2+ c e3, | Allowed via extended symmetry |
Pole | Pole at s = 1 → BEC onset | Higher-Dimensional Analog | Critical Temperature Threshold |
---|---|---|---|
Zeros | Yang–Lee-type zeros | Critical hypersurfaces | Phase transitions and entanglement |
Thermodynamic role | Partition function behavior | Multi-mode phase behavior | Condensate classification |
Interpretation | Scalar BEC, standard QFT | SU(2) spinor condensates | Quantum field applications |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J. From Complex to Quaternions: Proof of the Riemann Hypothesis and Applications to Bose–Einstein Condensates. Symmetry 2025, 17, 1134. https://doi.org/10.3390/sym17071134
Tang J. From Complex to Quaternions: Proof of the Riemann Hypothesis and Applications to Bose–Einstein Condensates. Symmetry. 2025; 17(7):1134. https://doi.org/10.3390/sym17071134
Chicago/Turabian StyleTang, Jau. 2025. "From Complex to Quaternions: Proof of the Riemann Hypothesis and Applications to Bose–Einstein Condensates" Symmetry 17, no. 7: 1134. https://doi.org/10.3390/sym17071134
APA StyleTang, J. (2025). From Complex to Quaternions: Proof of the Riemann Hypothesis and Applications to Bose–Einstein Condensates. Symmetry, 17(7), 1134. https://doi.org/10.3390/sym17071134