Structure of Odd-A Ag Isotopes Studied via Algebraic Approaches
Abstract
1. Introduction
2. Nuclear Data and Systematics
2.1. Excited States
- The low excitation energy of the states which become the lowest-lying positive parity states around the middle of the isotopic chain.
- In several nuclei (including some in the middle of the mass chain), the sequence based on is interrupted at by nearly equidistant levels, connected via transitions (often interpreted as magnetic rotational band).
2.2. Transition Probabilities
2.3. Static Moments
3. Theoretical Approaches to the Structure of Odd- Ag
4. 103–115Ag IBFM-1 Calculations
4.1. IBM-1 Calculations of Even-A Cd Isotopes
4.2. IBFM-1 Calculations of Odd-A Ag Isotopes
5. Discussion
5.1. Structure of
5.2. Astrophysical Relevance
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iliadis, C. Nuclear Physics of Stars; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007. [Google Scholar]
- Chen, M.-H.; Li, L.-X.; Chen, Q.-H.; Hu, R.-C.; Liang, E.-W. Neutron star mergers as the dominant contributor to the production of heavy r-process elements. Mon. Not. R. Astron. Soc. 2024, 529, 1154–1160. [Google Scholar] [CrossRef]
- Aprahamian, A.; Sun, Y. Long live isomer research. Nat. Phys. 2005, 1, 81–82. [Google Scholar] [CrossRef]
- Misch, G.W.; Ghorui, S.K.; Banerjee, P.; Sun, Y.; Mumpower, M.R. Astromers: Nuclear Isomers in Astrophysics. Astrophys. J. 2021, 252, 2. [Google Scholar] [CrossRef]
- Arlandini, C.; Käppeler, F.; Wisshak, K.; Gallino, R.; Lugaro, M.; Busso, M.; Straniero, O. Neutron Capture in Low-Mass Asymptotic Giant Branch Stars: Cross Sections and Abundance Signatures. Astrophys. J. 1999, 525, 886–900. [Google Scholar] [CrossRef]
- Hansen, C.J.; Primas, F.; Hartman, H.; Kratz, K.L.; Wanajo, S.; Leibundgut, B.; Farouqi, K.; Hallmann, O.; Christlieb, N.; Nilsson, H. Silver and palladium help unveil the nature of a second r-process. Astron. Astrophys. 2012, 545, A31. [Google Scholar] [CrossRef]
- Wu, X.; Wang, L.; Shi, J.; Zhao, G.; Grupp, F. Palladium and silver abundances in stars with [Fe/H] > –2.6. Astron. Astrophys. 2015, 579, A8. [Google Scholar] [CrossRef][Green Version]
- Bisterzo, S.; Gallino, R.; Straniero, O.; Cristallo, S.; Käppeler, F. The s-process in low-metallicity stars—II. Interpretation of high-resolution spectroscopic observations with asymptotic giant branch models. Mon. Not. R. Astron. Soc. 2011, 418, 284–319. [Google Scholar] [CrossRef]
- National Nuclear Data Center (NNDC) Database. Available online: https://www.nndc.bnl.gov/ (accessed on 25 June 2025).
- de-Shalit, A.; Talmi, I. Nuclear Shell Theory; Academic Press: New York, NY, USA; London, UK, 1963. [Google Scholar]
- Lalkovski, S.; Kisyov, S.; Yordanov, O. j − 1 Anomalous States and Electromagnetic Transition Rates in the Neutron Mid-shell Ag Nuclei. Acta Phys. Polon. B 2024, 55, 1-A2. [Google Scholar] [CrossRef]
- Blachot, J. Nuclear Data Sheets for A = 111. Nucl. Data Sheets 2009, 110, 1239–1407. [Google Scholar] [CrossRef]
- Talmi, I. Simple Models of Complex Nuclei. The Shell Model and the Interacting Boson Model; Harwood Academic Publishing: Reading, UK, 1993. [Google Scholar]
- Ferrer, R.; Bree, N.; Cocolios, T.E.; Darby, I.G.; De Witte, H.; Dexters, W.; Diriken, J.; Elseviers, J.; Franchoo, S.; Huyse, M.; et al. In-gas-cell laser ionization spectroscopy in the vicinity of 100Sn: Magnetic moments and mean-square charge radii of N = 50–54 Ag. Phys. Lett 2014, 728, 191. [Google Scholar] [CrossRef]
- Browne, E.; Tuli, J.K. Nuclear Data Sheets for A = 99. Nucl. Data Sheets 2017, 145, 25–340. [Google Scholar] [CrossRef]
- Dinger, U.; Eberz, J.; Huber, G.; Menges, R.; Kirchner, R.; Klepper, O.; Ku, T.; Marx, D. Nuclear moments and change in the charge radii of neutron-deficient silver isotopes. Nucl. Phys. A 1989, 503, 331–348. [Google Scholar] [CrossRef]
- de Frenne, D. Nuclear Data Sheets for A = 103. Nucl. Data Sheets 2009, 110, 2081–2256. [Google Scholar] [CrossRef]
- Ewbank, W.B.; Shugart, H.A. Hyperfine-Structure Measurements on Silver-105. Phys. Rev. 1963, 129, 1617. [Google Scholar] [CrossRef]
- Lalkovski, S.; Timar, J.; Elekes, Z. Nuclear Data Sheets for A = 105. Nucl. Data Sheets 2019, 161, 1–353. [Google Scholar] [CrossRef]
- Sahm, W.; Schwenk, A. Precision Measurements of Magnetic Moments of Nuclei with Weak NMR Signals. Z. Naturforschung A 1974, 29, 1763. [Google Scholar] [CrossRef]
- Blachot, J. Nuclear Data Sheets for A = 107. Nucl. Data Sheets 2008, 109, 1383–1526. [Google Scholar] [CrossRef]
- Berkes, I.; Hajjaji, O.E.; Hlimi, B.; Marest, G.; Coussement, R. Quadrupole moment of 107Agm determined by level mixing resonance on oriented nuclei. Phys. Rev. C 1986, 33, 390–391. [Google Scholar] [CrossRef]
- Berkes, I.; Hlimi, B.; Marest, G.; Sayouty, E.H.; Coussement, R.; Hardeman, F.; Put, P.; Scheveneels, G. Static quadrupole moments of 106Agm and 109Agm and the electric field gradient of Ag in Zn and Cd. Phys. Rev. C 1984, 30, 2026. [Google Scholar] [CrossRef]
- Kumar, S.; Chen, J.; Kondev, F.G. Nuclear Data Sheets for A = 109. Nucl. Data Sheets 2016, 137, 1–286. [Google Scholar] [CrossRef]
- Chan, Y.W.; Ewbank, W.B.; Nierenberg, W.A.; Shugart, H.A. Nuclear Spins and Hyperfine-Structure Separations of Silver-112 and Silver-113. Phys. Rev. 1964, 133, B1138. [Google Scholar] [CrossRef]
- Woodgate, G.K.; Hellwarth, R.W. Hyperfine Structure of Radioactive Silver . Proc. Phys. Soc. Sect. A 1956, 69, 581. [Google Scholar] [CrossRef]
- de Groote, R.P.; Nesterenko, D.A.; Kankainen, A.; Bissell, M.L.; Beliuskina, O.; Bonnard, J.; Campbell, P.; Canete, L.; Cheal, B.; Delafosse, C.; et al. Measurements of binding energies and electromagnetic moments of silver isotopes—A complementary benchmark of density functional theory. Phys. Lett. B 2024, 848, 138352. [Google Scholar] [CrossRef]
- Flowers, B.H. Studies in jj-Coupling. IV. The g9/2 - Shell. Proc. R. Soc. Lond. A 1952, 215, 398. [Google Scholar]
- Kisslinger, L.S. A note on coupling schemes in odd-mass nuclei. Nucl. Phys. 1966, 78, 341–352. [Google Scholar] [CrossRef]
- Zamick, L.; Escuderos, A. Seniority conservation and seniority violation in the g9/2 shell. Phys. Rev. C 2006, 73, 044302. [Google Scholar]
- Van Isacker, P.; Heinze, S. Seniority in quantum many-body systems. Ann. Phys. 2014, 349, 73–99. [Google Scholar] [CrossRef]
- Paar, V. Coupling of a three-particle (hole) valence-shell cluster to quadrupole vibrations (Alaga model): The Z = 50 region: Odd Ag and I isotopes; and the Z = 28 region: Odd Mn and Ga isotopes. Nucl. Phys. A 1973, 211, 29–76. [Google Scholar] [CrossRef]
- Popli, R.; Grau, J.A.; Popik, S.I.; Samuelson, L.E.; Rickey, F.A.; Simms, P.C. States in Ag populated by heapy-ion reactions and interpreted by a quasiparticle-plus-rotor model. Phys. Rev. C 1979, 20, 1350–1371. [Google Scholar] [CrossRef]
- Lalkovski, S.; Stefanova, E.A.; Kisyov, S.; Korichi, A.; Bazzacco, D.; Bergström, M.; Görgen, A.; Herskind, B.; Hübel, H.; Jansen, A.; et al. Structure of the neutron mid-shell nuclei 111,113Ag64,66. Phys. Rev. C 2017, 96, 044328. [Google Scholar] [CrossRef]
- Kisyov, S.; Lalkovski, S. Structure of the 115Ag Excited States From IBFM-1 Calculations. Acta Phys. Pol. B 2024, 55, 11-A4. [Google Scholar] [CrossRef]
- Lalkovski, S.; Kisyov, S. Evolution of the j − 1 anomalous states of the j−3 multiplets. Phys. Rev. C 2022, 106, 064319. [Google Scholar] [CrossRef]
- Zamick, L. The nuclear g9/2 shell—Comparison of our work with an old B.H. Flowers paper. arXiv 2022, arXiv:2210.01569. [Google Scholar]
- Wood, L.D.; Bolotin, H.H.; Morrison, I.; Bark, R.A.; Yamada, H.; Stuchbery, A.E. Gyromagnetic ratios of excited states in 107,109Ag. Nucl. Phys. A 1984, 427, 639–649. [Google Scholar] [CrossRef]
- Paar, V. The solution of the “I = j-1” anomaly for 107,109Ag in the Alaga model. Phys. Lett. B 1972, 39, 587–590. [Google Scholar] [CrossRef]
- Ludziejewski, J.; Kalshoven, A.W.B.; Hesselink, W.H.A.; Bron, J.; Van Poelgeest, A.; Verheul, H.; De Voigt, M.J.A. High-spin states in 103Ag and particle-core coupling at intermediate deformation. Nucl. Phys. A 1980, 344, 266–282. [Google Scholar] [CrossRef]
- De-Shalit, A. Core Excitations in Nondeformed, Odd-A, Nuclei. Phys. Rev. 1961, 122, 1530. [Google Scholar] [CrossRef]
- Nilsson, S.; Ragnarsson, I. Shapes and Shells in Nuclear Structure; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Paar, V.; Heyde, K. On the nature of low-lying 7/2+ states in odd-A Tc, Rh and Ag nuclei. Phys. Lett. B 1986, 179, 1–3. [Google Scholar]
- Scholten, O. The Interacting Boson Model Approximation. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 1980. [Google Scholar]
- Kaup, U.; Vorwerk, R.; Hippe, D.; Schuh, H.W.; Von Brentano, P.; Scholten, O. A test of the interacting boson fermion model and its microscopic basis in transitional Tc and Ag nuclei. Phys. Lett. B 1981, 106, 439–442. [Google Scholar] [CrossRef]
- Zell, K.O.; Harter, H.; Hippe, D.; Schuh, H.W.; Von Brentano, P. High-Spin States in 99Tc. Z. Phys. A 1984, 316, 351–359. [Google Scholar] [CrossRef]
- De Gelder, P.; De Frenne, D.; Heyde, K.; Kaffrell, N.; Van Den Berg, A.M.; Blasi, N.; Harakeh, M.N.; Sterrenburg, W.A. Study of 103Tc and the onset of deformation around N = 60. Nucl. Phys. A 1983, 401, 397–414. [Google Scholar] [CrossRef]
- Vanhorenbeeck, J.; Duhamel, P.; Del Marmol, P.; Fettweis, P.; Heyde, K. Collective and shell-model excitations in 97Rh52. Nucl. Phys. A 1983, 408, 265–284. [Google Scholar] [CrossRef]
- Jolie, J.; van Isacker, P.; Heyde, K.; Moreau, J.; van Landeghem, G.; Waroquier, M.; Scholten, O. Miltulevel Description of the Rh Isotopes in the Interacting Boson-Fermion Model. Nucl. Phys. A 1985, 438, 15–28. [Google Scholar] [CrossRef]
- Iachello, F.; Scholten, O. Interacting Boson-Fermion Model of Collective States in Odd-A Nuclei. Phys. Rev. Lett. 1979, 43, 679–682. [Google Scholar] [CrossRef]
- Iachello, F.; van Isacker, P. The Interacting Boson-Fermion Model; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- von Brentano, P.; Gelberg, A.; Kaup, U. Description of Odd Medium Mass Nuclei in the Interacting Boson-Fermion Model. In Interacting Bose-Fermi Systems in Nuclei; Ettore Majorana International Science Series; Springer: Boston, MA, USA, 1981; Volume 10. [Google Scholar]
- Maino, G.; Mengoni, A. One-nucleon-transfer reactions for Ag isotopes in the interacting boson-fermion model. Phys. Rev. C 1988, 38, 2520–2525. [Google Scholar] [CrossRef]
- Rogowski, J.; Alstad, J.; Brant, S.; Daniels, W.R.; De Frenne, D.; Heyde, K.; Jacobs, E.; Kaffrell, N.; Paar, V.; Skarnemark, G.; et al. Intruder states in odd-mass Ag isotopes. Phys. Rev. C 1990, 42, 2733–2736. [Google Scholar] [CrossRef]
- Galindo, E.; Hausmann, M.; Jungclaus, A.; Kast, D.; Lieb, K.P.; Müller, G.A.; Yordanov, O.; Brant, S.; Vretenar, D.; Algora, A.; et al. Lifetime measurements of high-spin states in 101Ag and their interpretation in the interacting boson fermion plus broken pair model. Phys. Rev. C 2001, 64, 034304. [Google Scholar] [CrossRef]
- Iachello, F.; Arima, A. Boson Symmetries in Vibrational Nuclei. Phys. Lett. B 1974, 53, 309–312. [Google Scholar] [CrossRef]
- Arima, A.; Iachello, F. Collective Nuclear States as Representations of SU(6) Groups. Phys. Rev. Lett. 1975, 35, 1069–1072. [Google Scholar] [CrossRef]
- Casten, R.F.; Warner, D.D. The interacting Boson Approximation. Rev. Mod. Phys. 1988, 60, 389–468. [Google Scholar] [CrossRef]
- Pfeifer, W. An Introduction to the Interacting Boson Model of the Atomic Nucleus; vdf-Hochschulverlag AG an der ETH Zürich: Zürich, Switzerland, 1998. [Google Scholar]
- Bucurescu, D.; Cǎta, G.; Cutoiu, D.; Constantinescu, G.; Ivaşcu, M.; Zamfir, N.V. An Extended IBA Consistent-Q Formalism Applied to Ru and Pd Isotopes. Z. Phys. A 1986, 324, 387–392. [Google Scholar] [CrossRef]
- Kisyov, S.; Bucurescu, D.; Jolie, J.; Lalkovski, S. Algebraic approach to the structure of the low-lying states in A ≈ 100 Ru isotopes. Phys. Rev. C 2016, 93, 044308. [Google Scholar] [CrossRef]
- Lipas, P.O.; Toivonen, P.; Warner, D.D. IBA Consistent-Q Formalism Extended to the Vibrational Region. Phys. Lett. B 1985, 155, 295–298. [Google Scholar] [CrossRef]
- Scholten, O. The Program Package PHINT; Internal Report KVI-63; Kernfysisch Versneller Instituut: Groningen, The Netherlands, 1979. [Google Scholar]
- Scholten, O. The Program Package ODDA; KVI Internal Report No. 255; Kernfysisch Versneller Instituut: Groningen, The Netherlands, 1980. [Google Scholar]
- Reehal, B.S.; Sorensen, R.A. Electric Quadrupole Transitions in Odd-Mass Spherical Nuclei. Phys. Rev. C 1970, 2, 819. [Google Scholar] [CrossRef]
- Stone, N.J. Table of nuclear magnetic dipole and electric quadrupole moments. At. Data Nucl. Data Tables 2005, 90, 75–176. [Google Scholar] [CrossRef]
- Stone, N.J. Table of nuclear electric quadrupole moments. At. Data Nucl. Data Tables 2016, 111–112, 1–28. [Google Scholar] [CrossRef]
- Stone, N.J. Table of Recommended Nuclear Magnetic Dipole Moments; INDC(NDS)-0794; INDC International Nuclear Data Committee: Vienna, Austria, 2019. [Google Scholar]
- Lalkovski, S.; Bruce, A.M.; Jungclaus, A.; Górska, M.; Pfützner, M.; Cáceres, L.; Naqvi, F.; Pietri, S.; Podolyák, Z.; Simpson, G.S.; et al. Core-coupled states and split proton-neutron quasiparticle multiplets in 122–126Ag. Phys. Rev. C 2013, 87, 034308. [Google Scholar] [CrossRef]
- Prantzos, N.; Abia, C.; Cristallo, S.; Limongi, M.; Chieffi, A. Chemical evolution with rotating massive star yields II. A new assessment of the solar s- and r-process components. Mon. Not. R. Astron. Soc. 2020, 491, 1832–1850. [Google Scholar] [CrossRef]
- Németh, Z.; Käppeler, F.; Theis, C.; Belgya, T.; Yates, S.W. Nucleosynthesis in the Cd-In-Sn Region. Astrophys. J. 1994, 426, 357–365. [Google Scholar] [CrossRef]
- Rivero, F.; Brodeur, M.; Clark, J.A.; Liu, B.; Misch, G.W.; Mumpower, M.R.; Porter, W.S.; Ray, D.; Savard, G.; Sprouse, T.M.; et al. Astromeric nature of 119mAg unveiled through direct mass measurement. arXiv 2018, arXiv:2v44930.4052. [Google Scholar]
- Misch, G.W.; Mumpower, M.R. Astromers: Status and Prospects. Eur. Phys. J. Spec. Top. 2024, 233, 1075–1099. [Google Scholar] [CrossRef]
- Kim, Y.H.; Biswas, S.; Rejmund, M.; Navin, A.; Lemasson, A.; Bhattacharyya, S.; Caamaño, M.; Clément, E.; de France, G.; Jacquot, B. The impact of the intruder orbitals on the structure of neutron-rich Ag isotopes. Phys. Lett. B 2017, 772, 403–408. [Google Scholar] [CrossRef]
- Abramuk, A.; Kurpeta, J.; Urban, W.; Rząca-Urban, T.; Eronen, T.; Jokinen, A.; Kankainen, A.; Moore, I.D.; Penttilä, H.; Pomorski, M.; et al. Excited levels in 117Ag studied via β-decay and spontaneous fission. Phys. Rev. C 2025, 111, 034301. [Google Scholar] [CrossRef]
Isotope | Ei | ||||||
---|---|---|---|---|---|---|---|
[keV] | [keV] | [W.u.] | [W.u.] | ||||
107Ag | 93 | 44.3 (2) s | |||||
126 | 2.85 (10) ns | 93 | 0.018 (1) | 81 (29) | |||
773 | <15 ns | ||||||
991 | <15 ns | ||||||
1577 | |||||||
2054 | |||||||
3148 | |||||||
109Ag | 88 | 39.79 (21) s | |||||
133 | 2.60 (12) ns | 88 | 0.0165 (17) | 130 (120) | |||
773 | |||||||
931 | |||||||
1703 | |||||||
1894 | 0.57 (5) ps | 931 | 39 (4) | ||||
2567 | 0.39 (4) ps | 1894 | 0.08 (3) | 14 (+18 −14) | |||
2567 | 0.39 (4) ps | 1703 | 50 (20) | ||||
2841 | 0.82 (8) ps | 2567 | (0.39 7) | (4 +21 −4) |
Isotope | Q [b] | |||
---|---|---|---|---|
97Ag | 6.13 (12) [14] | 1.362 (27) | ||
99Ag | 5.81 (3) [15] | 1.291 (4) | ||
101Ag | 5.627 (11) [16] | 1.2504 (24) | +0.35 (5) [16] | |
103Ag | +4.47 (5) [17] | 1.277 (14) | +0.84 (9) [16] | |
105Ag | +0.1013 (13) [18] | 0.2026 (26) | ||
105Ag | +4.414 (13) [19] | 1.261 (4) | +0.85 (11) [16] | |
107Ag | −0.11352 (5) [20] | −0.22704 (1) | ||
107Ag | (+)4.398 (5) [21] | 1.2566 (14) | +0.98 (11) [22,23] | |
109Ag | −0.130696 (2) [20] | −0.261392 (4) | ||
109Ag | +4.400 (6) [24] | 1.2571 (17) | (+)1.02 (12) [22,23] | |
−0.146 (2) [25] | −0.292 (4) | |||
+0.159 (2) [26] | 0.318 (4) | |||
+4.447 (2) [27] | 1.2706 (6) | +1.03 (9) [27] | ||
−0.1704 (9) [27] | −0.3408 (18) | |||
+4.44223 (9) [27] | 1.26921 (3) | +1.04 (8) [27] | ||
117Ag | −0.1752 (8) [27] | −0.3504 (16) | ||
117Ag | +4.43897 (8) [27] | 1.26828 (2) | +1.05 (8) [27] | |
119Ag | −0.1707 (9) [27] | −0.3414 (18) | ||
119Ag | +4.434 (1) [27] | 1.2669 (3) | +0.93 (8) [27] | |
121Ag | +4.447 (1) [27] | 1.2706 (3) | +0.85 (8) [27] | |
121Ag | −0.1797 (4) [27] | −0.3594 (8) |
A | |||||
---|---|---|---|---|---|
104 | 0.68 | 0.0210 | −0.0030 | −0.411 | 0.125 |
106 | 0.68 | 0.0240 | −0.0060 | −0.268 | 0.109 |
108 | 0.71 | 0.0220 | −0.0075 | −0.246 | 0.100 |
110 | 0.72 | 0.0150 | −0.0095 | −0.224 | 0.097 |
112 | 0.66 | 0.0065 | −0.0050 | −0.089 | 0.103 |
114 | 0.63 | 0.0075 | −0.0050 | −0.089 | 0.103 |
116 | 0.69 | 0.0208 | −0.0045 | −0.411 | 0.095 |
103Ag | 105Ag | 107Ag | 109Ag | 111Ag | 113Ag | 115Ag | |
---|---|---|---|---|---|---|---|
3.16 | 3.12 | 3.14 | 3.15 | 3.14 | 3.14 | 3.40 | |
2.90 | 2.86 | 2.80 | 2.89 | 2.80 | 2.80 | 3.05 | |
1.91 | 1.77 | 1.73 | 1.69 | 1.73 | 1.73 | 1.57 | |
1.74 | 1.77 | 1.78 | 1.79 | 1.78 | 1.78 | 1.78 | |
2.68 | 2.71 | 2.69 | 2.69 | 2.69 | 2.69 | 2.46 | |
0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.95 | |
0.93 | 0.93 | 0.92 | 0.93 | 0.92 | 0.92 | 0.94 | |
0.81 | 0.77 | 0.75 | 0.73 | 0.75 | 0.75 | 0.64 | |
0.75 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | |
0.09 | 0.08 | 0.08 | 0.09 | 0.08 | 0.08 | 0.10 |
Isotope | |||
---|---|---|---|
103Ag | −0.30 | 0.20 | 3.8 |
105Ag | −0.34 | 0.24 | 3.9 |
107Ag | −0.36 | 0.24 | 3.8 |
109Ag | −0.30 | 0.20 | 4.0 |
−0.30 | 0.20 | 3.8 | |
−0.30 | 0.20 | 3.8 | |
−0.48 | 0.38 | 3.5 |
Isotope | [W.u.] | [W.u.] | [W.u.] | [W.u.] | ||
---|---|---|---|---|---|---|
103Ag | 0.009 | 24 | ||||
103Ag | 0.008 | 35 | ||||
103Ag | 7.1 | |||||
103Ag | 0.069 | 36 | ||||
105Ag | 0.0241 (10) | 53 (+21 −18) | 0.013 | 28 | ||
105Ag | 0.013 | 40 | ||||
105Ag | 7.8 | |||||
105Ag | 0.087 | 39 | ||||
105Ag | 0.00051 (+32 −16) | 0.079 | ||||
105Ag | 0.00014 (6) | 0.013 | ||||
105Ag | 0.71 (+49 −29) | 41 | ||||
105Ag | 0.0014 (+9 −7) | 0.046 | ||||
105Ag | 2.6 (+17 −9) | 46 | ||||
107Ag | 0.018 (1) | 81 (29) | 0.014 | 31 | ||
107Ag | 0.018 | 45 | ||||
107Ag | 8.2 | |||||
107Ag | 0.11 | 43 | ||||
107Ag | 0.12 (2) | 42 (4) | 0.039 | 34 | ||
107Ag | 43 (3) | 34 | ||||
107Ag | 0.033 (4) | 11.1 (13) | 0.0018 | 1.6 | ||
107Ag | 0.11 (3) | 0.5 (3) | 0.028 | 1.2 | ||
107Ag | 0.23 (8) | 0.014 | ||||
107Ag | 2.3 (4) | 0.70 | ||||
107Ag | 0.024 (4) | 4.2 (10) | 0.004 | 5.4 | ||
107Ag | 0.053 (7) | 9.5 (26) | 0.013 | 22 | ||
109Ag | 0.0165 (17) | 130 (120) | 0.0199 | 28 | ||
109Ag | 0.017 | 41 | ||||
109Ag | 7.6 | |||||
109Ag | 0.101 | 44 | ||||
109Ag | 39 (4) | 32 | ||||
109Ag | 50 (20) | 37 | ||||
109Ag | 0.08 (3) | 14 (+18 −14) | 0.029 | 20 | ||
109Ag | 20.4 (23) | 42 | ||||
109Ag | 0.39 (7) | 4 (+21 −4) | 0.41 | 9.0 | ||
109Ag | 0.117 (8) | 37 (4) | 0.035 | 33 | ||
109Ag | 40.5 (17) | 33.3 | ||||
109Ag | 0.0316 (21) | 4 (4) | 0.0013 | 1.1 | ||
109Ag | 0.18 (5) | 0.25 (14) | 0.03 | 0.73 | ||
109Ag | 0.26 (7) | 60 (30) | 0.012 | 31 | ||
109Ag | 0.14 (4) | 0.007 | ||||
109Ag | 2.6 (4) | 0.55 | ||||
109Ag | 0.034 (5) | 7.3 (18) | 0.005 | 6.3 | ||
109Ag | 0.089 (13) | 9 (5) | 0.014 | 26 | ||
109Ag | 68 (11) | 52 | ||||
0.028 | 27 | |||||
0.022 | 43 | |||||
0.102 | 51 | |||||
5.6 | ||||||
0.018 | 41 | |||||
0.018 | 59 | |||||
0.087 | 65 | |||||
5.0 | ||||||
0.004 | 59 | |||||
0.048 | 78 | |||||
0.187 | 72 | |||||
19 |
103Ag | 105Ag | 107Ag | 109Ag | 111Ag | 113Ag | 115Ag | |
---|---|---|---|---|---|---|---|
()exp [] | 0.1013 (10) | −0.11352 (5) | −0.1306906 (2) | −0.146 (2) | 0.159 (2) | −0.1704 (9) | |
()exp [] | 4.426 (2) | 4.408 (13) | 4.392 (5) | 4.394 (6) | 4.447 (2) | 4.4223 (9) | |
q ()exp [b] | 0.84 (9) | 0.85 (11) | 0.98 (11) | 1.02 (12) | 1.03 (9) | 1.04 (8) | |
()th [] | 0.004 | 0.005 | 0.009 | 0.005 | 0.009 | 0.011 | 0.013 |
()th [] | 4.893 | 4.824 | 4.761 | 4.852 | 4.810 | 4.711 | 4.188 |
q ()th [eb] | 0.465 | 0.562 | 0.667 | 0.555 | 0.631 | 0.844 | 1.298 |
[keV] | [%] | [%] | [%] | [%] | [%] | |
---|---|---|---|---|---|---|
103Ag | ||||||
0.0 | 0.0 | 0.0 | 0.0 | 97.80 | 2.20 | |
(9/2)+ | 27.54 | 0.0 | 0.0 | 0.0 | 98.93 | 1.07 |
134.45 | 1.96 | 3.95 | 94.09 | 0.0 | 0.0 | |
105Ag | ||||||
0.0 | 3.03 | 5.89 | 91.08 | 0.0 | 0.0 | |
25.468 | 0.0 | 0.0 | 0.0 | 97.58 | 2.42 | |
53.138 | 0.0 | 0.0 | 0.0 | 97.92 | 2.08 | |
107Ag | ||||||
0.0 | 3.44 | 7.20 | 89.36 | 0.0 | 0.0 | |
93.125 | 0.0 | 0.0 | 0.0 | 97.53 | 2.47 | |
(9/2)+ | 125.59 | 0.0 | 0.0 | 0.0 | 97.38 | 2.62 |
109Ag | ||||||
0.0 | 2.44 | 4.62 | 92.94 | 0.0 | 0.0 | |
88.0337 | 0.0 | 0.0 | 0.0 | 97.39 | 2.61 | |
132.762 | 0.0 | 0.0 | 0.0 | 98.02 | 1.98 | |
0.0 | 2.98 | 6.32 | 90.70 | 0.0 | 0.0 | |
59.82 | 0.0 | 0.0 | 0.0 | 97.42 | 2.58 | |
130.28 | 0.0 | 0.0 | 0.0 | 97.91 | 2.09 | |
0.0 | 3.64 | 7.75 | 88.61 | 0.0 | 0.0 | |
43.5 | 0.0 | 0.0 | 0.0 | 97.25 | 2.75 | |
139.30 | 0.0 | 0.0 | 0.0 | 97.14 | 2.86 | |
0.0 | 7.25 | 13.61 | 79.14 | 0.0 | 0.0 | |
41.16 | 0.0 | 0.0 | 0.0 | 97.29 | 2.71 | |
166.56 | 0.0 | 0.0 | 0.0 | 95.18 | 4.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kisyov, S.; Lalkovski, S. Structure of Odd-A Ag Isotopes Studied via Algebraic Approaches. Symmetry 2025, 17, 1276. https://doi.org/10.3390/sym17081276
Kisyov S, Lalkovski S. Structure of Odd-A Ag Isotopes Studied via Algebraic Approaches. Symmetry. 2025; 17(8):1276. https://doi.org/10.3390/sym17081276
Chicago/Turabian StyleKisyov, Stanimir, and Stefan Lalkovski. 2025. "Structure of Odd-A Ag Isotopes Studied via Algebraic Approaches" Symmetry 17, no. 8: 1276. https://doi.org/10.3390/sym17081276
APA StyleKisyov, S., & Lalkovski, S. (2025). Structure of Odd-A Ag Isotopes Studied via Algebraic Approaches. Symmetry, 17(8), 1276. https://doi.org/10.3390/sym17081276