The Almost Periodic Rigidity of Crystallographic Bar-Joint Frameworks
1. Introduction
2. Crystal Frameworks and the RUM Spectrum
Definition 1
- local if u(v, k) ≠ 0 for at least one and at most finitely many (v, k) ∈ Fv × ℤd;
- strictly periodic if u(v, k) = u(v, 0) for all (v, k) ∈ Fv × ℤd;
- supercell periodic if u(v, k) = u(v, 0) for each motif vertex v ∈ Fv and for all k in a full rank subgroup of ℤd of the form m1ℤ × ⋯ × mdℤ.
2.1. The Symbol Function and Rigidity Matrix
Definition 2
Definition 3
2.2. The RUM Spectrum
Theorem 1
- (i)
- R( )u = 0;
- (ii)
- Φ (ω̅)b = 0.
Corollary 1
- (i)
- The -periodic real infinitesimal flexes of are trivial;
- (ii)
- The -periodic complex infinitesimal flexes of are trivial;
- (iii)
- The periodic rigidity matrix Φ (1,…, 1) has rank equal to d|Fv| − d.
3. Almost Periodic Rigidity
3.1. Almost Periodic Sequences
Theorem 2
Theorem 3
3.2. Almost Periodic Rigidity
Definition 4
- An integral vector, l in ℤd, is an ε-translation vector for h if.
- The velocity field, h, is Bohr almost periodic if for every ∊ > 0, the set of ∊-translation vectors, l, is relatively dense in ℝd.
Lemma 1
Proof
Lemma 2
Proof
Theorem 4
- (i)
- Every almost periodic infinitesimal flex of is trivial;
- (ii)
- Every strictly periodic infinitesimal flex of is trivial, and Ω( ) = {1̂}.
Proof
Proposition 5
4. Gallery of Crystal Frameworks
Example 1
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7
Example 8
Example 9
Example 10
Further Work
Acknowledgments
Conflicts of Interest
References
- Ross, E. The rigidity of periodic body-bar frameworks on the fixed torus. Phil. Trans. R. Soc. A 2014, 372. [Google Scholar] [CrossRef]
- Borcea, C.S.; Streinu, I. Periodic frameworks and flexibility. Proc. R. Soc. A 2010, 466, 2633–2649. [Google Scholar]
- Borcea, C.S.; Streinu, I. Frameworks with crystallographic symmetry. Phil. Trans. R. Soc. A 2014, 372. [Google Scholar] [CrossRef]
- Connelly, R.; Shen, J.D.; Smith, A.D. Ball packings with periodic constraints. Available online: http://arxiv.org/abs/1301.0664 (accessed on 18 April 2014).
- Malestein, J.; Theran, L. Generic combinatorial rigidity of periodic frameworks. Adv. Math. 2013, 233, 291–331. [Google Scholar]
- Owen, J.C.; Power, S.C. Infinite bar-joint frameworks, crystals and operator theory. N. Y. J. Math. 2011, 17, 445–490. [Google Scholar]
- Power, S.C. Crystal frameworks, symmetry and affinely periodic flexes. Available online: http://arxiv.org/pdf/1103.1914v3.pdf (accessed on 18 April 2014).
- Power, S.C. Polynomials for crystal frameworks and the rigid unit mode spectrum. Phil. Trans. R. Soc. A 2014, 372. [Google Scholar] [CrossRef]
- Ross, E.; Schulze, B.; Whiteley, W. Finite motions from periodic frameworks with added symmetry. Int. J. Solids Struct. 2011, 48, 1711–1729. [Google Scholar]
- Dove, M.T.; Pryde, A.K.A.; Heine, V.; Hammonds, K.D. Exotic distributions of rigid unit modes in the reciprocal spaces of framework aluminosilicates. J. Phys. Condens. Matter 2007, 19. [Google Scholar] [CrossRef]
- Giddy, A.P.; Dove, M.T.; Pawley, G.S.; Heine, V. The determination of rigid unit modes as potential soft modes for displacive phase transitions in framework crystal structures. Acta Crystallogr. 1993, A49, 697–703. [Google Scholar]
- Wegner, F. Rigid-unit modes in tetrahedral crystals. J. Phys. Condens. Matter 2007, 19, 406–218. [Google Scholar]
- Kapko, V.; Dawson, C.; Rivin, I.; Treacy, M.M.J. Density of Mechanisms within the Flexibility Window of Zeolites. Phys. Rev. Lett. 2011, 107. [Google Scholar] [CrossRef]
- Power, S.C. Crystal frameworks, matrix-valued functions and rigidity operators, Operator Theory: Advances and Applications. In Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation: 22nd International Workshop in Operator Theory and Its Application; Springer: Birkhäuser Basel, Switzerland, 2014; Volume 236. [Google Scholar]
- Partington, J.R. Linear operators and linear systems. An analytical approach to control theory. In London Mathematical Society Student Texts, 60; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Besicovitch, A.S.; Bohr, H. Almost periodicity and general trigonometric series. Acta Math. 1931, 57, 203–292. [Google Scholar]
- Besicovitch, A.S. Almost Periodic Functions; Dover Publications, Inc.: New York, NY, USA, 1955. [Google Scholar]
- Bochner, S.; von Neumann, J. Almost periodic functions in groups. II. Trans. Amer. Math. Soc. 1935, 37, 21–50. [Google Scholar]
- Levitan, B.M.; Zhikov, V.V. Almost Periodic Functions and Differential Equations; Cambridge University Press: Cambridge, UK, 1982; Longdon, L. W., Translator. [Google Scholar]
- Loomis, L.H. An Introduction to Abstract Harmonic Analysis; D. Van Nostrand Company, Inc.: New York, NY, USA, 1953. [Google Scholar]
- Šubin, M.A. Almost periodic functions and partial differential operators. Russ. Math. Surv. 1978, 33. [Google Scholar] [CrossRef]
- Kitson, D.; Power, S.C. The rigidity of infinite graphs. Available online: http://arxiv.org/abs/1310.1860 (accessed on 18 April 2014).
Motif | Translation group | Crystal framework |
---|---|---|
Motif | Translation group | Crystal framework |
---|---|---|
Motif | Translation group | Crystal framework |
---|---|---|
Motif | Translation group | Crystal framework |
---|---|---|
Motif | Translation group | Crystal framework |
---|---|---|
Motif | Translation group | Crystal framework |
---|---|---|
Motif | Translation group | Crystal framework |
---|---|---|
Motif | Translation group | Crystal framework |
---|---|---|
Motif | Translation group | Crystal framework |
---|---|---|
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Badri, G.; Kitson, D.; Power, S.C. The Almost Periodic Rigidity of Crystallographic Bar-Joint Frameworks. Symmetry 2014, 6, 308-328. https://doi.org/10.3390/sym6020308
Badri G, Kitson D, Power SC. The Almost Periodic Rigidity of Crystallographic Bar-Joint Frameworks. Symmetry. 2014; 6(2):308-328. https://doi.org/10.3390/sym6020308
Chicago/Turabian StyleBadri, Ghada, Derek Kitson, and Stephen C. Power. 2014. "The Almost Periodic Rigidity of Crystallographic Bar-Joint Frameworks" Symmetry 6, no. 2: 308-328. https://doi.org/10.3390/sym6020308
APA StyleBadri, G., Kitson, D., & Power, S. C. (2014). The Almost Periodic Rigidity of Crystallographic Bar-Joint Frameworks. Symmetry, 6(2), 308-328. https://doi.org/10.3390/sym6020308