Closed-Form Expressions for the Matrix Exponential
Abstract
:1. Introduction
2. Closed Form of the Matrix Exponential via the Solution of Differential Equations
3. Closed Form of the Matrix Exponential via the Solution of Algebraic Equations
4. Examples
4.1. The Foldy–Wouthuysen Transformation
4.2. Lorentz-Type Equations of Motion
4.3. The Jaynes–Cummings Hamiltonian
4.4. Bispinors and Lorentz Transformations
5. Conclusions
Conflicts of Interest
Acknowledgments
References
- Gantmacher, F.R. The Theory of Matrices; Chelsea Publishing Company: New York, NY, USA, 1960; p. 83. [Google Scholar]
- Dattoli, G.; Mari, C.; Torre, A. A simplified version of the Cayley-Hamilton theorem and exponential forms of the 2 × 2 and 3 × 3 matrices. Il Nuovo Cimento 1998, 180, 61–68. [Google Scholar]
- Cohen-Tannoudji, C.; Diu, B.; Laloë, F. Quantum Mechanics; John Wiley & Sons: New York, NY, USA, 1977; pp. 983–989. [Google Scholar]
- Sakurai, J.J. Modern Quantum Mechanics; Addison-Wesley: New York, NY, USA, 1980; pp. 163–168. [Google Scholar]
- Greiner, W.; Müller, B. Quantum Mechanics, Symmetries; Springer: New York, NY, USA, 1989; p. 68. [Google Scholar]
- Weigert, S. Baker-Campbell-Hausdorff relation for special unitary groups SU(N). J. Phys. A 1997, 30, 8739–8749. [Google Scholar]
- Dattoli, G.; Ottaviani, P.L.; Torre, A.; Vásquez, L. Evolution operator equations: Integration with algebraic and finite-difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory. Riv. Nuovo Cimento 1997, 20, 1–133. [Google Scholar]
- Dattoli, G.; Zhukovsky, K. Quark flavour mixing and the exponential form of the Kobayashi–Maskawa matrix. Eur. Phys. J. C 2007, 50, 817–821. [Google Scholar]
- Leonard, I. The matrix exponential. SIAM Rev. 1996, 38, 507–512. [Google Scholar]
- Untidt, T.S.; Nielsen, N.C. Closed solution to the Baker-Campbell-Hausdorff problem: Exact effective Hamiltonian theory for analysis of nuclear-magnetic-resonance experiments. Phys. Rev. E 2002, 65. [Google Scholar] [CrossRef]
- Moore, G. Orthogonal polynomial expansions for the matrix exponential. Linear Algebra Appl. 2011, 435, 537–559. [Google Scholar]
- Ding, F. Computation of matrix exponentials of special matrices. Appl. Math. Comput. 2013, 223, 311–326. [Google Scholar]
- Koch, C.T.; Spence, J.C.H. A useful expansion of the exponential of the sum of two non-commuting matrices, one of which is diagonal. J. Phys. A Math. Gen. 2003, 36, 803–816. [Google Scholar]
- Ramakrishna, V.; Zhou, H. On the exponential of matrices in su(4). J. Phys. A Math. Gen. 2006, 39, 3021–3034. [Google Scholar]
- Tudor, T. On the single-exponential closed form of the product of two exponential operators. J. Phys. A Math. Theor. 2007, 40, 14803–14810. [Google Scholar]
- Siminovitch, D.; Untidt, T.S.; Nielsen, N.C. Exact effective Hamiltonian theory. II. Polynomial expansion of matrix functions and entangled unitary exponential operators. J. Chem. Phys. 2004, 120, 51–66. [Google Scholar]
- Goldstein, H. Classical Mechanics, 2nd ed.; Addison-Wesley: New York, NY, USA, 1980; pp. 164–174. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipees in FORTRAN, The Art of Scientific Computing, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992; pp. 83–84. [Google Scholar]
- Bjorken, J.D.; Drell, S.D. Relativistic Quantum Mechanics; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Babusci, D.; Dattoli, G.; Sabia, E. Operational methods and Lorentz-type equations of motion. J. Phys. Math. 2011, 3, 1–17. [Google Scholar]
- Puri, R.R. Mathematical Methods of Quantum Optics; Springer: New York, NY, USA, 2001; pp. 8–53. [Google Scholar]
- Meystre, P.; Sargent, M. Elements of Quantum Optics, 2nd ed.; Springer: Berlin, Germany, 1999; pp. 372–373. [Google Scholar]
- Kim, Y.S.; Noz, M.E. Symmetries shared by the Poincaré group and the Poincaré sphere. Symmetry 2013, 5, 233–252. [Google Scholar]
© 2014 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
De Zela, F. Closed-Form Expressions for the Matrix Exponential. Symmetry 2014, 6, 329-344. https://doi.org/10.3390/sym6020329
De Zela F. Closed-Form Expressions for the Matrix Exponential. Symmetry. 2014; 6(2):329-344. https://doi.org/10.3390/sym6020329
Chicago/Turabian StyleDe Zela, F. 2014. "Closed-Form Expressions for the Matrix Exponential" Symmetry 6, no. 2: 329-344. https://doi.org/10.3390/sym6020329
APA StyleDe Zela, F. (2014). Closed-Form Expressions for the Matrix Exponential. Symmetry, 6(2), 329-344. https://doi.org/10.3390/sym6020329