Origin of Talc and Fe-Ti-V Mineralization in the Kletno Deposit (the Śnieżnik Massif, SW Poland)
Abstract
:1. Introduction
2. Geological Setting and Description of the Deposit
3. Materials and Methods
4. Field Observations
5. Petrography and Mineral Chemistry
5.1. Serpentinite
5.2. Talc Schist
5.3. Chlorite schist
5.4. Hornblendite and Epidote Hornblendite
5.5. Thick Dolomite Veins
5.6. Metagabbro and Metadiabase
5.7. Marble
5.8. Paragneiss and Mica Schist
5.9. Syenite Veins
6. Bulk Rock Chemical and Stable Isotope Compositions
6.1. Bulk Rock Chemical Compositions
6.2. Stable Isotopes Ratios
7. Discussion
7.1. Provenance and Evolution of Igneous and Metaigneous Rocks
7.2. Mineralization Origin and the Fluid Source
8. Summary
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Compass Press. Mapa Turystyczna Masyw Śnieżnika Góry Bialskie, 4th ed.; Compass Press: Kraków, Poland, 2007. [Google Scholar]
- Kasprzak, M.; Sobczyk, A.; Kostka, S.; Haczek, A. Surface geophysical surveys and LiDAR DTM analysis combined with underground cave mapping—An efficient tool for karst system exploration: Jaskinia Niedźwiedzia case study (Sudetes, SW Poland). In Geomorphometry for Geosciences; Jasiewicz, J., Zwoliński, Z., Mitasova, H., Hengl, H.T., Eds.; Adam Mickiewicz University in Poznań—Institute of Geoecology and Geoinformation, International Society for Geomorphometry: Poznań, Poland, 2015; pp. 75–78. [Google Scholar]
- Banaś, M.; Mochnacka, K. The two uranium deposits in the Polish part of the Sudety Mountains. In Vein Type Uranium Deposits (Report of the Working Group on Uranium Geology Organized by the International Atomic Energy Agency, International Atomic Energy Agency–Technical Document), 361; Fuchs, H., Ed.; International Atomic Energy Agency: Wien, Austria, 1986; pp. 335–357. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/17/039/17039125.pdf?r=1&r=1 (accessed on 7 May 2019).
- Banaś, M.; Mochnacka, K. Formation of skarns and other calc-silicate rocks from the Sudetes. Ann. Soc. Geol. Pol. 1988, 58, 469–479. Available online: http://www.asgp.pl/sites/default/files/volumes/58_3-4_469_479.pdf (accessed on 7 May 2019).
- Bederke, E. Ein Profil durch das Grundgebirge der Grafschaft Glatz. Sonderdruck aus der Geologischen Rundschau 1943, 34, 6–9. [Google Scholar] [CrossRef]
- Wierzchołowski, B. Ultramafic rocks of the neighbourhood of Bielice (eastern Sudeten). Arch. Mineral. 1958, 22, 401–441. (In Polish) [Google Scholar]
- Kasza, L. Geology of the upper basin of Biała Lądecka stream. Geol. Sudet. 1964, 1, 119–167. (In Polish). Available online: https://geojournals.pgi.gov.pl/gs/article/view/15586/13179 (accessed on 8 May 2019).
- Frąckiewicz, W.; Teisseyre, H. Szczegółowa Mapa Geologiczna Sudetów, 1:25 000, Arkusz Międzygórze; Wydawnictwa Geologiczne: Warszawa, Poland, 1976. [Google Scholar]
- Frąckiewicz, W.; Teisseyre, H. Objaśnienia do Szczegółowej Mapy Geologicznej Sudetów, 1:25 000, Arkusz Międzygórze; Wydawnictwa Geologiczne: Warszawa, Poland, 1977. [Google Scholar]
- Smulikowski, K.; Smulikowski, W.; Bakun-Czubarow, N. Serpentinite stock from the vicinity of Mount Śnieżnik (Sudetes). Arch. Mineral. 1977, 33, 5–37. [Google Scholar]
- Pędziwiatr, A. Serpentinite in the Śnieżnik Massif: Petrology and ecological impact. Geosci. Rec. 2015, 1–2, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Kierczak, J.; Pędziwiatr, A.; Waroszewski, J.; Modelska, M. Mobility of Ni, Cr and Co in serpentine soils derived on various ultrabasic bedrocks under temperate climate. Geoderma 2016, 268, 78–91. [Google Scholar] [CrossRef]
- Halls, C.; Zhao, R. Listvenite and related rocks: Perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland. Miner. Depos. 1995, 30, 303–313. [Google Scholar] [CrossRef]
- Mazur, S.; Turniak, K.; Szczepański, J.; McNaughton, N.J. Vestiges of Saxothuringian crust in the Central Sudetes, Bohemian Massif: Zircon evidence of a recycled subducted slab provenance. Gondwana Res. 2015, 27, 825–839. [Google Scholar] [CrossRef]
- Dubińska, E.; Bylina, P.; Kozłowski, A.; Dörr, W.; Nejbert, K.; Schastok, J.; Kulicki, C. U-Pb dating of serpentinization: Hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, SW Poland). Chem. Geol. 2004, 203, 183–203. [Google Scholar] [CrossRef]
- Kryza, R.; Pin, C. The Central-Sudetic ophiolites (SW Poland): Petrogenetic issues, geochronology and palaeotectonic implications. Gondwana Res. 2010, 17, 292–305. [Google Scholar] [CrossRef]
- Wojtulek, P.M.; Schulz, B.; Delura, K.; Dajek, M. Formation of chromitites and ferrogabbros in ultramafic and mafic members of the Variscan Ślęża ophiolite (SW Poland). Ore Geol. Rev. 2019, 106, 97–112. [Google Scholar] [CrossRef]
- Jastrzębski, M.; Żelaźniewicz, A.; Nowak, I.; Murtezi, M.; Larionov, A.N. Protolith age and provenance of metasedimentary rocks in Variscan allochthon units: U-Pb SHRIMP zircon data from the Orlica-Śnieżnik Dome, West Sudetes. Geol. Mag. 2010, 147, 416–433. [Google Scholar] [CrossRef]
- Mazur, S.; Szczepański, J.; Turniak, K.; McNaughton, N.J. Location of the Rheic suture in the eastern Bohemian Massif: Evidence from detrital zircon data. Terra Nova 2012, 24, 199–206. [Google Scholar] [CrossRef]
- Jastrzębski, M. The tectonometamorphic evolution of the marbles in the Lądek-Śnieżnik Metamorphic Unit, West Sudetes. Geol. Sudet. 2005, 37, 1–26. Available online: https://geojournals.pgi.gov.pl/gs/article/view/13720/12168 (accessed on 6 May 2019).
- Ilnicki, S.; Szczepański, J.; Pin, C. From back-arc to rifted margin: Geochemical and Nd isotopic records in Neoproterozoic?-Cambrian metabasites of the Bystrzyckie and Orlickie Mountains (Sudetes, SW Poland). Gondwana Res. 2013, 23, 1104–1121. [Google Scholar] [CrossRef]
- Pin, C.; Kryza, R.; Oberc-Dziedzic, T.; Mazur, S.; Turniak, K.; Waldhausrová, J. The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of the Bohemian Massif: A review based on Sm-Nd isotope and geochemical data. Geol. Soc. Am. 2007, 423, 209–229. [Google Scholar] [CrossRef]
- Turniak, K.; Mazur, S.; Wysoczański, R. SHRIMP zircon geochronology and geochemistry of the Orlica-Śnieżnik gneisses (Variscan belt of Central Europe) and their tectonic implications. Geodin. Acta 2000, 13, 293–312. [Google Scholar] [CrossRef]
- Skrzypek, E.; Lehmann, J.; Szczepański, J.; Anczkiewicz, R.; Štípská, P.; Schulmann, K.; Kröner, A.; Białek, D. Time-scale of deformation and intertectonic phases revealed by P-T-D-t relationships in the orogenic middle crust of the Orlica-Śnieżnik Dome, Polish/Czech Central Sudetes. J. Metamorph. Geol. 2014, 32, 981–1003. [Google Scholar] [CrossRef]
- Muszer, A. Charakterystyka okruszcowania skał północnej i środkowej części Gór Złotych na tle budowy geologicznej. In Prace Geologiczno-Mineralogiczne; Acta Universitatis Wratislaviensis 1944; Wydawn. Uniwersytetu Wrocławskiego: Wrocław, Poland, 1997; Volume 59, pp. 1–130. [Google Scholar]
- Gil, G. Mineral chemistry of the As-bearing ore minerals from Złoty Stok nephrites—Preliminary results. Mineral. Spec. Pap. 2011, 38, 92–93. Available online: http://www.ptmin.agh.edu.pl/mpsp30/Vol38_2011.pdf (accessed on 2 May 2019).
- Gil, G. Petrographic and microprobe study of nephrites from Lower Silesia (SW Poland). Geol. Q. 2013, 57, 395–404. [Google Scholar] [CrossRef] [Green Version]
- Mikulski, S.Z.; Wierchowiec, J. Placer scheelite and gold from alluvial sediments as indicators of primary mineralisation – examples from SW Poland. Geol. Q. 2013, 57, 503–514. [Google Scholar] [CrossRef] [Green Version]
- Mikulski, S.Z.; Williams, I.S.; Bagiński, B. Early Carboniferous (Viséan) emplacement of the collisional Kłodzko-Złoty Stok granitoids (Sudetes, SW Poland): Constraints from geochemical data and zircon U-Pb ages. Int. J. Earth Sci. (Geol. Rundsch.) 2013, 102, 1007–1027. [Google Scholar] [CrossRef]
- Péterdi, B.; Szakmány, G.; Judik, K.; Dobosi, G.; Kasztovszky, Z.; Szilágyi, V.; Maróti, B.; Bendő, Z.; Gil, G. Petrographic and geochemical investigation of a stone adze made of nephrite from the Balatonőszöd—Temetői dűlő site (Hungary), with a review of the nephrite occurrences in Europe (especially in Switzerland and in the Bohemian Massif). Geol. Q. 2014, 58, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Gil, G.; Barnes, J.D.; Boschi, C.; Gunia, P.; Raczyński, P.; Szakmány, G.; Bendő, Z.; Péterdi, B. Nephrite from Złoty Stok (Sudetes, SW Poland): Petrological, geochemical, and isotopic evidence for a dolomite-related origin. Can. Mineral. 2015, 53, 533–556. [Google Scholar] [CrossRef]
- Mikulski, S.Z.; Speczik, S. The auriferous ore mineralisation and its zonal distribution around the Variscan Kłodzko-Złoty Stok granitoid pluton in the Sudetes (SW Poland)—An overview. Geol. Q. 2016, 60, 650–674. [Google Scholar] [CrossRef] [Green Version]
- Korybska-Sadło, I.; Gil, G.; Gunia, P.; Horszowski, M.; Sitarz, M. Raman and FTIR spectra of nephrites from the Złoty Stok and Jordanów Śląski (the Sudetes and Fore-Sudetic Block, SW Poland). J. Mol. Struct. 2018, 1166, 40–47. [Google Scholar] [CrossRef]
- Mikulski, S.Z.; Williams, I.S. Zircon U-Pb ages of granitoid apophyses in the western part of the Kłodzko-Złoty Stok Granite Pluton (SW Poland). Geol. Q. 2014, 58, 251–262. [Google Scholar] [CrossRef] [Green Version]
- Oberc-Dziedzic, T.; Kryza, R.; Pin, C. Variscan granitoids related to shear zones and faults: Examples from the Central Sudetes (Bohemian Massif) and the Middle Odra Fault Zone. Int. J. Earth Sci. (Geol. Rundsch.) 2015, 104, 1139–1166. [Google Scholar] [CrossRef] [Green Version]
- Jokubauskas, P.; Bagiński, B.; Macdonald, R.; Krzemińska, E. Multiphase magmatic activity in the Variscan Kłodzko-Złoty Stok intrusion, Polish Sudetes: Evidence from SHRIMP U-Pb zircon ages. Int. J. Earth Sci. 2018, 107, 1623–1639. [Google Scholar] [CrossRef] [Green Version]
- Białek, D. SHRIMP U-Pb zircon geochronology of the Jawornik granitoids (West Sudetes, Poland). Geol. Sudet. 2014, 42, 4. Available online: http://gs.ing.pan.pl/42_PDF/GS42_003-103.pdf (accessed on 3 December 2019).
- Białek, D.; Werner, T. Geochemistry and geochronology of the Javornik Granodiorite and its geodynamic significance in the Eastern Variscan Belt. GeoLines 2004, 17, 22–23. Available online: http://geolines.gli.cas.cz/fileadmin/volumes/volume17/G17-022.pdf (accessed on 3 December 2019).
- Turniak, K.; Mazur, S.; Domańska-Siuda, J.; Szuszkiewicz, A. SHRIMP U-Pb zircon dating for granitoids from the Strzegom-Sobótka Massif, SW Poland: Constraints on the initial time of Permo-Mesozoic lithosphere thinning beneath Central Europe. Lithos 2014, 208–209, 415–429. [Google Scholar] [CrossRef]
- Mikulski, S.Z.; Williams, I.S.; Turniak, K.; Bagiński, B. Preliminary results of SHRIMP zircon study of granite from the Kudowa-Olešnice granitoid massif (Sudetes). Mineral. Spec. Pap. 2011, 38, 140–141. Available online: http://www.ptmin.agh.edu.pl/mpsp30/Vol38_2011.pdf (accessed on 2 May 2019).
- Żelaźniewicz, A.; Nowak, I.; Larionov, A.; Presnyakov, S. Syntectonic Lower Ordovician migmatite and post-tectonic Upper Viséan syenite in the western limb of the Orlica-Śnieżnik Dome, West Sudetes: U-Pb SHRIMP data from zircons. Geol. Sudet. 2006, 38, 63–80. Available online: https://geojournals.pgi.gov.pl/gs/article/view/13756/12194 (accessed on 2 May 2019).
- Parry, M.; Štípská, P.; Schulmann, K.; Hrouda, F.; Ježek, J.; Kröner, A. Tonalite sill emplacement at an oblique plate boundary: Northeastern margin of the Bohemian Massif. Tectonophysics 1997, 280, 61–81. [Google Scholar] [CrossRef]
- Mazur, S.; Aleksandrowski, P.; Kryza, R.; Oberc-Dziedzic, T. The Variscan orogen in Poland. Geol. Q. 2006, 50, 89–118. Available online: https://gq.pgi.gov.pl/article/view/7400/6050 (accessed on 2 May 2019).
- Allmendinger, R.W.; Cardozo, N.C.; Fisher, D. Structural Geology Algorithms: Vectors & Tensors; Cambridge University Press: Cambridge, UK, 2013; p. 289. [Google Scholar] [CrossRef]
- Cardozo, N.; Allmendinger, R.W. Spherical projections with OSXStereonet. Comput. Geosci. 2013, 51, 193–205. [Google Scholar] [CrossRef]
- Foster, M.D. Interpretation of the composition and a classification of the chlorites. In US Geological Survey Professional Paper; U.S. Government Publishing Office: Washington, DC, USA, 1962; Volume 414-A, pp. 1–33. [Google Scholar] [CrossRef] [Green Version]
- Esteban, J.J.; Cuevas, J.; Tubía, J.M.; Liati, A.; Seward, D.; Gebauer, D. Timing and origin of zircon-bearing chlorite schists in the Ronda peridotites (Betic Cordilleras, Southern Spain). Lithos 2007, 99, 121–135. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Oberti, R.; Harlow, G.E.; Maresch, W.V.; Martin, R.F.; Schumacher, J.C.; Welch, M.D. Nomenclature of the amphibole supergroup. Am. Mineral. 2012, 97, 2031–2048. [Google Scholar] [CrossRef]
- Leake, B.E.; Woolley, A.R.; Arps, C.E.S.; Birch, W.D.; Gilbert, C.M.; Grice, J.D.; Hawthorne, F.C.; Kato, A.; Kisch, H.J.; Krivovichev, V.G.; et al. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Can. Mineral. 1997, 35, 219–246. Available online: https://pubs.geoscienceworld.org/canmin/article-abstract/35/1/219/12862/nomenclature-of-amphiboles-report-of-the?redirectedFrom=fulltext (accessed on 10 May 2019).
- Sharp, Z.D.; Atudorei, V.; Durakiewicz, T. A rapid method for determination of hydrogen and oxygen isotope ratios from water and hydrous minerals. Chem. Geol. 2001, 178, 197–210. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Reference Sheet for Reference Materials; International Atomic Energy Agency: Wien, Austria, 2007; pp. 1–5. Available online: https://nucleus.iaea.org/rpst/Documents/RS_NBS22_USGS24_IAEA-CH-3-6-7.pdf (accessed on 21 December 2019).
- United States Geological Survey, Reston Stable Isotope Laboratory. Report of Stable Isotopic Composition, Reference Materials USGS57 and USGS58 (Hydrogen in Biotite and Muscovite); United States Geological Survey: Reston, VA, USA, 2019; pp. 1–3. Available online: https://isotopes.usgs.gov/lab/referencematerials/USGS57-USGS58.pdf (accessed on 21 December 2019).
- Spötl, C.; Vennemann, T.W. Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Commun. MassSpectrom. 2003, 17, 1004–1006. [Google Scholar] [CrossRef] [PubMed]
- Sharp, Z.D. A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim. Cosmochim. Acta 1990, 54, 1353–1357. [Google Scholar] [CrossRef]
- Valley, J.W.; Kitchen, N.; Kohn, M.J.; Niendorf, C.R.; Spicuzza, M.J. UWG-2, a garnet standard for oxygen isotope ratios: Strategies for high precision and accuracy with laser heating. Geochim. Cosmochim. Acta 1995, 59, 5223–5231. [Google Scholar] [CrossRef]
- Wicks, F.J.; Whittaker, E.J.W. Serpentine textures and serpentinization. Can. Mineral. 1977, 15, 459–488. Available online: https://pubs.geoscienceworld.org/canmin/article-abstract/15/4/459/11203/serpentine-textures-and-serpentinization?redirectedFrom=fulltext (accessed on 9 May 2019).
- Wiszniewska, J.; Petecki, Z. Geologic and geophysical estimation of the prospect for ore deposit of the occurrences of primary and placer titanium minerals in the Ślęża Massif ophiolite, area, the Sudetes Mts (SW Poland). Prz. Geol. 2016, 64, 650–656, (In Polish with English Summary). Available online: https://www.pgi.gov.pl/dokumenty-pig-pib-all/publikacje-2/przeglad-geologiczny/2016/wrzesien-5/3923-geologiczno-geofizyczna-ocena-perspektyw/file.html (accessed on 31 May 2019).
- De Hoog, J.C.M.; Janák, M.; Vrabec, M.; Froitzheim, N. Serpentinised peridotites from an ultrahigh-pressure terrane in the Pohorje Mts. (Eastern Alps, Slovenia): Geochemical constraints on petrogenesis and tectonic setting. Lithos 2009, 109, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Craddock, P.R.; Warren, J.M.; Dauphas, N. Abyssal peridotites reveal the near-chondritic Fe isotopic composition of the Earth. Earth Planet. Sc. Lett. 2013, 365, 63–76. [Google Scholar] [CrossRef]
- Adams, C.J.; Beck, R.J.; Campbell, H.J. Characterisation and origin of New Zealand nephrite jade using its strontium isotopic signature. Lithos 2007, 97, 307–322. [Google Scholar] [CrossRef]
- Barnes, J.D.; Paulick, H.; Sharp, Z.D.; Bach, W.; Beaudoin, G. Stable isotope (δ18O, δD, δ37Cl) evidence for multiple fluid histories in mid-Atlantic abyssal peridotites (ODP Leg 209). Lithos 2009, 110, 83–94. [Google Scholar] [CrossRef]
- Ling, X.-X.; Schmädicke, E.; Li, Q.-L.; Gose, J.; Wu, R.-H.; Wang, S.-Q.; Liu, Y.; Tang, G.-Q.; Li, X.-H. Age determination of nephrite by in-situ SIMS U-Pb dating syngenetic titanite: A case study of the nephrite deposit from Luanchuan, Henan, China. Lithos 2015, 220–223, 289–299. [Google Scholar] [CrossRef]
- Mikulski, S.Z.; Speczik, S. Organic and inorganic geochemistry of gold mineralisation at the Zloty Stok, SouthwestPoland. Appl. Earth Sci. (Trans. Inst. Min. Metall. B) 2008, 117, 149–159. [Google Scholar] [CrossRef]
- Ganino, C.; Harris, C.; Arndt, N.T.; Prevec, S.A.; Howarth, G.H. Assimilation of carbonate country rock by the parent magma of the Panzhihua Fe-Ti-V deposit (SW China): Evidence from stable isotopes. Geosci. Front. 2013, 4, 547–554. [Google Scholar] [CrossRef]
- Ganino, C.; Arndt, N.T.; Zhou, M.-F.; Gaillard, F.; Chauvel, C. Interaction of magma with sedimentary wall rock and magnetite ore genesis in the Panzhihua mafic intrusion, SW China. Miner. Depos. 2008, 43, 677–694. [Google Scholar] [CrossRef] [Green Version]
- Boskabadi, A.; Pitcairn, I.K.; Broman, C.; Boyce, A.; Teagle, D.A.H.; Cooper, M.J.; Azer, M.K.; Stern, R.J.; Mohamed, F.H.; Majka, J. Carbonate alteration of ophiolitic rocks in the Arabian-Nubian Shield of Egypt: Sources and compositions of the carbonating fluid and implications for the formation of Au deposits. Int. Geol. Rev. 2017, 59, 391–419. [Google Scholar] [CrossRef]
- Dupuis, C.; Beaudoin, G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner. Depos. 2011, 46, 319–335. [Google Scholar] [CrossRef]
- Boschi, C.; Früh-Green, G.L.; Delacour, A.; Karson, J.A.; Kelley, D.S. Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30°N). Geochem. Geophy. Geosyst. 2006, 7, Q01004. [Google Scholar] [CrossRef]
Lithology | Sample | Description | Composition | Accessory Minerals |
---|---|---|---|---|
The culmination of the Żmijowiec Rib (a newly recognized ore prospect) | ||||
Serpentinite | KL-4, KL-4A, KL-4B, KL-4C | Green, blue or black antigorite serpentinite with non-pseudomorphic texture; fine serpentine needles (chrysotile or fibrous antigorite) sparse in the matrix; chromite occurs as rounded, broken grains with carbonate and tremolite infill of cracks; chrysotile veins are being cut by tremolite veins, whereas both type of veins are being cut by calcite (few tens of μm thick) and dolomite (<3 μm thick) veins; in places, tremolite and carbonate veins contain talc; some pyrrhotite grains contain pentlandite exsolution lamellae | Antigorite, chrysotile, calcite, tremolite, chromite | Dolomite, magnetite, ilmenite, pyrrhotite, pentlandite, iron sulfide (pyrite or marcasite), nickeline |
Talc schist | KL-13 | Dark green or yellowish to brown-colored, fine-grained talc rock with the well-developed foliation or schistosity; penninite nests are being replaced by amphibole needles or short prisms, or talc blades; Fe, Ni-oxides and hydroxides, with variable Cr, Al and Si admixture, likely form pseudomorphs after Cr-spinel, these pseudomorphs probably formed under hypergenic or low-temperature hydrothermal conditions | Talc, penninite, tremolite (both tremolite and actinolite), anthophyllite | Ilmenite, Fe, Ni-oxides/hydroxides |
Chlorite schist | KL-5, KL-5A | Greenish-gray well-foliated rock; a few tens of μm in size ilmenite grains, with subhedral or skeletal habit, are often arranged in aggregates; up to ca. 10 mm in size, euhedral magnetite likely postdates ilmenite, within this magnetite, chlorite, ilmenite and bornite inclusions are present; the yougest phase observed is chrysotile | Chlorite (clinochlore and subordinate penninite), ilmenite, magnetite | Chrysotile, zircon, bornite |
Hornblendite and epidote hornblendite | KL-1, KL-1D, KL-11 | Gray to green or black, with a yellowish-creamy carbonate intercalations up to ~5 mm in size; amphibole crystals up to 10 mm long, these amphiboles composition vary significantly between samples and in sample-scale, some amphibole crystals are zoned, i.e., tremolite core enveloped by pargasite, and then, in places, by an outern-most magnesio-hastingsite or pargasite rim; some epidote-clinozoisite crystals show zoning or contain allanite inclusions; fragmented or corroded almandine-grossular garnet crystals are often enclosed in amphiboles, ilmenite or calcite, whereas andradite-grossular garnet occurs as the fine, relic inclusions within epidote-clinozoisite crystals; some magnetite crystals contain ilmenite exsolution lamellae, whereas other are being mantled by a thin, Mn-rich ilmenite rims; chalcopyrite contains minute galena inclusions, while apatite is rich in chlorite inclusions | Amphiboles (pargasite and ferro-pargasite, subordinate ferro-sadanagaite, magnesio-hastingsite and tremolite–resembling actinolite), epidote-clinozoisite solid-solution, chlorite (ripidolite and brunsvigite), diopside, titanite, saponite, almandine-grossular garnet, ilmenite, magnetite, calcite | Andradite-grossular garnet, opal, zircon, apatite, chalcopyrite, galena |
Dolomite vein | KL-3, KL-3A, KL-3B, KL-3C | Creamy, yellowish or brownish, cryptocrystalline to coarse-grained dolomite veins; clinochlore occurs as individual blades, aggregates and the fine-grained nests–monomineral and chlorite-carbonate nests, in places gradual transitions from chlorite nests to fine-grained carbonate nests; chlorite nests, resembling habit of dolomite crystal, are interpreted as pseudomorphs; small, euhedral carbonate crystals present in the chlorite nests, whereas fine-grained chlorite-carbonate nests contain minute magnetite or apatite; apatite crystals often contains calcite inclusions, ilmenite encloses magnetite and zircon, while magnetite contains clinochlore, carbonate and talc inclusions, as well as ilmenite exsolution lamellae | Dolomite, calcite, chlorite (clinochlore), talc, ilmenite, magnetite | Apatite, hematite, zircon, thorite |
Metagabbro (KL-2) and metadiabase (KL-6) | KL-2, KL-6 | Bright to dark gray, fine- to medium-grained, in places ophitic or subophitic; chlorite occurs as fine-grained nests or coarser blades, the latter often enclosed within clinozoisite crystals, chlorites are apparently replaced by amphibole and clinozoisite, in places, chlorite nests are replaced by fine-fibrous amphiboles (resembling nephrite under the microscope, i.e., nephritic texture); rutile occurs in the chlorite aggregates, whereas fine labradorite relics in the muscovite aggregates | Clinozoisite, chlorite (clinochlore and subordinate sheridanite), amphiboles (pargasite, magnesio-hornblende and tremolite–resembling actinolite), muscovite, titanite | Plagioclase (labradorite), rutile, carbonate, barite |
Paragneiss | KL-10 | Grayish, well-foliated and locally banded gneiss (some bands contain both felsic and mafic minerals, whereas other bands mafic minerals only); in places, rotated and fractured, feldspar or quartz porphyroblasts occur; magnetite and hematite contain ilmenite exsolution lamellae; allanite contains ilmenite, apatite and monazite inclusions, whereas feldspar porphyroblasts contain ilmenite, quartz and minute feldspar inclusions | Quartz, K-feldspar, plagioclase (albite and oligoclase), muscovite, biotite, F-apatite, magnetite, hematite | Ilmenite, allanite, monazite |
Mica schist | KL-14 | Reddish-gray, medium-grained rock with a well-developed schistosity; coarse garnet is often enveloped by biotite or muscovite, garnet also contains biotite, quartz, ilmenite and apatite inclusions | Quartz, feldspar, muscovite, biotite, garnet | Apatite, ilmenite, magnetite |
Syenite | KL-9 | Creamy to pink, coarse-grained, in places pegmatitic syenite; K-feldspar crystals show polysynthetic twinnings of microcline type, albite contains K-feldspar exsolution lamellae, some feldspars are altered to kaolinite or saussurite; quartz contains feldspar or minute quartz inclusions; muscovite is arranged in stacks or acicular, fan-shaped prisms; ilmenite contains exsolution lamellae and rims of rutile; ilmenite-apatite aggregates are present, in which apatite is mantled by discontinuous rims of zircon grains | Quartz, K-feldspar, plagiocalse (albite), muscovite, chlorite (brunsvigite and subordinate ripidolite), apatite, ilmenite, magnetite | Titanite, zircon, rutile |
The Kleśnica stream valley in the Kletno village (the well-known Kletno deposit) | ||||
Calcite marble | KL-12, KL-12A, KL-12F | White, gray or creamy, medium-grained marble; foliation is defined by the presence of parallel fine-grained and medium-grained layers, as well as quartz-free and quartz-bearing layers, in these layers quartz occurs as rounded grains–smaller than calcite; a later quartz-calcite veins cut the rock; pyrite usually occurs as regular (subhedral) or framboidal (partially-replaced by calcite) crystals, and as hexagonal pseudomorphs (probably after pyrrhotite or troilite) | Calcite, quartz, saponite, chlorite | Cl-apatite, pyrite |
Oxide/ | Serpentinite | Talc Schist | Chlorite Schist | Hornblendites | Dolomite Vein | Metabasite | Marble | Gneiss | Mica Schist | Syenite | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Element | KL-4 | KL-4C | KL-13 | KL-5 | KL-1 | KL-1D | KL-11 | KL-3 | KL-3C | KL-2 | KL-6 | KL-12 | KL-12F | KL-10 | KL-14 | KL-9 |
SiO2 (wt. %) | 43.88 | 43.84 | 50.86 | 30.59 | 28.23 | 32.72 | 38.59 | 0.76 | 0.72 | 42.06 | 15.28 | 15.21 | 48.61 | 41.87 | 62.84 | |
Al2O3 | 2.27 | 2.28 | 6.23 | 12.22 | 12.28 | 14.26 | 11.37 | 0.01 | 0.15 | 21.83 | 0.08 | 0.15 | 19.32 | 29.97 | 18.97 | |
Fe2O3total | 6.53 | 7.14 | 6.27 | 15.98 | 20.12 | 15.15 | 14.19 | 4.04 | 10.18 | 4.36 | 0.07 | 0.06 | 12.3 | 11.76 | 1.3 | |
MgO | 33.90 | 33.1 | 26.55 | 28.14 | 9.09 | 11.78 | 11.73 | 18.79 | 17.18 | 10.80 | 1.53 | 1.47 | 2.35 | 2.01 | 0.23 | |
CaO | 0.28 | 0.24 | 1.84 | 0.02 | 15.30 | 15.42 | 15.14 | 30.22 | 28 | 15.74 | 46.52 | 46.12 | 1.55 | 0.50 | 0.33 | |
Na2O | <0.01 | <0.01 | 0.02 | <0.01 | 0.90 | 1.03 | 0.9 | <0.01 | <0.01 | 0.63 | <0.01 | <0.01 | 1.22 | 1.23 | 1.71 | |
K2O | <0.01 | <0.01 | <0.01 | <0.01 | 0.35 | 0.21 | 0.17 | <0.01 | <0.01 | 0.39 | <0.01 | <0.01 | 7.72 | 6.54 | 13.21 | |
TiO2 | 0.03 | 0.01 | 0.09 | 1.42 | 3.42 | 1.03 | 0.91 | <0.01 | 1.38 | 0.21 | 0.057 | <0.01 | <0.01 | 2.95 | 1.33 | 0.45 |
P2O5 | <0.01 | <0.01 | <0.01 | <0.01 | 0.23 | 0.15 | 0.13 | <0.01 | 0.16 | <0.01 | <0.002 | 0.01 | <0.01 | 0.87 | 0.22 | 0.11 |
MnO | 0.04 | 0.07 | 0.07 | 0.10 | 0.24 | 0.20 | 0.2 | 0.55 | 0.46 | 0.10 | 0.02 | 0.02 | 0.06 | 0.58 | 0.008 | |
LOI | 12.00 | 12.2 | 7.0 | 10.90 | 9.20 | 7.60 | 6.3 | 45.2 | 41.3 | 3.50 | 36.4 | 36.90 | 2.8 | 3.6 | 0.6 | |
Total | 98.93 | 98.88 | 98.93 | 99.37 | 99.36 | 99.55 | 99.63 | 99.57 | 99.53 | 99.62 | 99.91 | 99.93 | 99.75 | 99.61 | 99.758 | |
TOT/C | 0.18 | 0.11 | 0.03 | 0.03 | 1.93 | 1.29 | 0.81 | 13.07 | 12.05 | 0.03 | 10.87 | 10.76 | 0.02 | 0.45 | 0.03 | |
TOT/S | 0.07 | 0.08 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 |
Cr (ppm) | 2004.7 | 2470 | 2449.5 | 88.9 | <13.7 | <13.7 | <13.7 | <13.7 | 54.7 | 109.5 | 115.9 | <13.7 | <13.7 | <13.7 | 150.5 | 4.5 |
Ba | 1 | <1 | 4 | 2 | 7 | 9 | 9 | <1 | <1 | 21 | 3 | 3 | 5 | 422 | 941 | 847 |
Ni | 1747 | 1876 | 1835 | 183 | 62 | 63 | 66 | 50 | 101 | 172 | 146.8 | 1.1 | <0.1 | 26 | 64 | 3.3 |
Sc | 9 | 6 | 9 | 28 | 48 | 60 | 82 | 8 | 21 | 25 | 14.8 | <1 | <1 | 10 | 25 | 1 |
Be | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 2 | 0.2 | <1 | <1 | 3 | 6 | 3 |
Co | 87.3 | 94.8 | 79.9 | 94.0 | 77.5 | 53.9 | 57.6 | 16.7 | 29.5 | 27.8 | 22.1 | <0.2 | <0.2 | 19.4 | 36.9 | 2.3 |
Cs | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.4 | 0.06 | <0.1 | <0.1 | 3.1 | 7.6 | 0.7 |
Ga | 1.1 | 1.4 | 7.4 | 6.7 | 12.2 | 13.8 | 12.1 | <0.5 | <0.5 | 13.2 | 5.3 | <0.5 | <0.5 | 27.4 | 38.5 | 7.5 |
Hf | <0.1 | <0.1 | 0.2 | 0.7 | 0.7 | 1.7 | 1.7 | <0.1 | 2 | 1.0 | <0.02 | <0.1 | <0.1 | 13.6 | 5.7 | 1.2 |
Nb | <0.1 | <0.1 | 0.6 | 3.2 | 3.1 | 3.0 | 2.5 | <0.1 | 3.1 | 1.0 | <0.02 | <0.1 | <0.1 | 133.1 | 22.9 | 16.8 |
Rb | <0.1 | 0.3 | 0.7 | <0.1 | 1.0 | 0.6 | 0.9 | <0.1 | <0.1 | 13.0 | 2.5 | <0.1 | <0.1 | 97.7 | 219.6 | 87.4 |
Sn | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 0.1 | <1 | <1 | 4 | 6 | 0.2 |
Sr | 6.9 | 3.2 | 4.6 | <0.5 | 268.9 | 182.5 | 119.4 | 730 | 440 | 1021.8 | 189.6 | 163.0 | 154.8 | 121.1 | 106.7 | 815 |
Ta | <0.1 | <0.1 | <0.1 | 0.2 | 0.3 | 0.2 | 0.2 | <0.1 | <0.1 | 0.1 | <0.05 | <0.1 | <0.1 | 8.1 | 1.8 | 1.4 |
Th | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | 0.6 | 0.5 | <0.2 | <0.2 | 0.3 | <0.1 | <0.2 | <0.2 | 12.2 | 28.0 | 1.1 |
U | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.2 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.1 | 1 | 3.9 | 0.1 |
V | 54 | 54 | 73 | 463 | 2055 | 836 | 765 | <8 | 270 | 142 | 62 | <8 | <8 | 120 | 166 | 16 |
W | 0.6 | <0.5 | <0.5 | 0.7 | 0.9 | <0.5 | 0.9 | <0.5 | <0.5 | <0.5 | <0.1 | <0.5 | <0.5 | 0.6 | 2.4 | <0.1 |
Zr | 1.0 | 2.2 | 9.9 | 22.7 | 22.0 | 55.9 | 51.9 | 0.2 | 70.9 | 34.3 | 0.4 | 0.7 | 0.9 | 586.9 | 206.7 | 56.6 |
Y | 0.8 | 1.1 | 1.1 | 0.9 | 8.9 | 20.3 | 29 | 15.3 | 13 | 10.0 | 3.38 | 1.3 | 1.5 | 39.8 | 55.1 | 6 |
La | 0.3 | 0.4 | 0.7 | 0.3 | 3.5 | 6.7 | 6.2 | 6.2 | 3.3 | 3.7 | 0.9 | 0.7 | 0.9 | 84.8 | 83.7 | 6.2 |
Ce | 0.4 | 0.8 | 0.9 | 0.7 | 7.2 | 14.4 | 14.7 | 12.7 | 8.1 | 7.3 | 1.5 | 0.8 | 1.4 | 184.5 | 151.8 | 16.4 |
Pr | 0.04 | 0.05 | 0.11 | 0.06 | 0.94 | 1.83 | 2.1 | 1.44 | 1.01 | 0.90 | 0.11 | 0.17 | 19.44 | 17.87 | 1.74 | |
Nd | <0.3 | <0.3 | 0.5 | <0.3 | 4.7 | 8.2 | 10 | 6.1 | 4.7 | 4.1 | 0.5 | 0.6 | 72 | 65.5 | 7.2 | |
Sm | 0.05 | <0.05 | 0.13 | <0.05 | 1.11 | 2.22 | 2.87 | 1.31 | 1.39 | 1.02 | 0.08 | 0.10 | 12.41 | 12.09 | 1.4 | |
Eu | <0.02 | <0.02 | 0.02 | <0.02 | 0.74 | 1.01 | 0.67 | 0.67 | 0.62 | 0.59 | 0.03 | 0.04 | 3.87 | 2.96 | 0.69 | |
Gd | 0.08 | 0.11 | 0.20 | 0.13 | 1.56 | 3.08 | 3.93 | 1.85 | 1.99 | 1.35 | 0.18 | 0.18 | 10.68 | 10.88 | 1.43 | |
Tb | 0.01 | 0.02 | 0.03 | 0.02 | 0.26 | 0.57 | 0.78 | 0.32 | 0.37 | 0.25 | 0.02 | 0.03 | 1.55 | 1.64 | 0.21 | |
Dy | 0.11 | 0.16 | 0.21 | 0.16 | 1.65 | 3.75 | 5.15 | 2.18 | 2.29 | 1.82 | 0.18 | 0.19 | 8.12 | 9.23 | 1.23 | |
Ho | <0.02 | 0.04 | 0.05 | 0.03 | 0.34 | 0.82 | 1.17 | 0.58 | 0.53 | 0.38 | 0.04 | 0.03 | 1.53 | 1.92 | 0.22 | |
Er | 0.07 | 0.12 | 0.11 | 0.11 | 1.06 | 2.43 | 3.47 | 1.67 | 1.57 | 1.07 | 0.11 | 0.13 | 4.49 | 5.84 | 0.64 | |
Tm | <0.01 | 0.02 | 0.02 | <0.01 | 0.15 | 0.33 | 0.49 | 0.26 | 0.21 | 0.15 | 0.01 | <0.01 | 0.61 | 0.80 | 0.09 | |
Yb | 0.08 | 0.13 | 0.13 | 0.10 | 0.93 | 2.16 | 2.94 | 2 | 1.5 | 0.98 | 0.09 | 0.08 | 3.91 | 4.89 | 0.51 | |
Lu | 0.01 | 0.02 | 0.02 | 0.01 | 0.15 | 0.35 | 0.45 | 0.31 | 0.27 | 0.15 | 0.01 | <0.01 | 0.55 | 0.73 | 0.07 | |
Mo | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.01 | <0.1 | <0.1 | <0.1 | 0.4 | <0.01 |
Cu | 10.7 | 28.3 | 1.9 | 2.8 | 173.7 | 0.4 | 0.7 | 0.3 | 0.5 | 67.4 | 91.79 | 0.5 | 0.4 | 2 | 12.4 | 2.32 |
Pb | 0.3 | 0.5 | 0.3 | <0.1 | 4.8 | 2.6 | 1.6 | 5 | 4.7 | 2.6 | 3.88 | 7.1 | 7.3 | 1 | 6.7 | 1.6 |
Zn | 25 | 25 | 18 | 32 | 53 | 35 | 36 | 7 | 10 | 10 | 19.1 | 8 | 6 | 89 | 54 | 10.5 |
As | 84.6 | 3.3 | 5.7 | 0.7 | 0.6 | 0.6 | <0.5 | 1.8 | 1.3 | <0.5 | 0.2 | <0.5 | <0.5 | <0.5 | 1.3 | 0.2 |
Cd | <0.1 | <0.1 | <0.1 | <0.1 | 0.1 | <0.1 | <0.1 | 0.1 | 0.2 | <0.1 | 0.05 | <0.1 | <0.1 | <0.1 | <0.1 | <0.01 |
Sb | 0.6 | 0.4 | <0.1 | <0.1 | <0.1 | 0.1 | 0.3 | 0.1 | 0.2 | <0.1 | 0.06 | 0.2 | 0.2 | <0.1 | <0.1 | 0.04 |
Bi | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.02 | <0.1 | <0.1 | <0.1 | 0.6 | 0.04 |
Ag | <0.1 | <0.1 | <0.1 | <0.1 | 0.3 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.12 | <0.1 | <0.1 | <0.1 | <0.1 | <0.002 |
Hg | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.005 | <0.01 | <0.01 | <0.01 | <0.01 | <0.005 |
Tl | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.02 | <0.1 | <0.1 | <0.1 | 0.6 | <0.02 |
Se | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.1 | <0.5 | <0.5 | <0.5 | <0.5 | <0.1 |
Li | 28.1 | 2.8 | ||||||||||||||
Te | 0.02 | <0.02 | ||||||||||||||
Ge | <0.1 | <0.1 | ||||||||||||||
In | 0.03 | <0.02 | ||||||||||||||
B | <20 | 1 | ||||||||||||||
F | 146 | 79 | 330 | 30 | 49 | 39 | 49 | 45 | 66 | 75 | 103 | 1498 | 825 | 156 | ||
Cl | <50 | <100 | <200 | <190 | <35 | <80 | <130 | <75 | ||||||||
Au (ppb) | 0.9 | 1.8 | 0.7 | 0.8 | 9.9 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.7 | <0.5 | <0.5 | 0.9 | 3.3 | 1.1 |
Re | <1 | <1 | ||||||||||||||
Pd | <10 | <10 | ||||||||||||||
Pt | <2 | <2 |
Sample | δ18O Silicate (‰) | Mineral | δ18O Carbonate (‰) | δ13C (‰) | Mineral | δD Bulk (‰) * |
---|---|---|---|---|---|---|
Kletno | ||||||
Serpentinite | ||||||
KL-4 | 9.8 | Serpentine | −60 | |||
KL-4C | 9.4 | Serpentine | −64 | |||
Talc schist | ||||||
KL-13 | −62 | |||||
Chlorite schist | ||||||
KL-5 | 9.3 | Chlorite | −54 | |||
Hornblendite and epidote hornblendite | ||||||
KL-1 | 9.3 | Amphibole | −71 | |||
KL-1D | 8.8 | Amphibole | −66 | |||
KL-11 | 16.0 | −8.3 | Calcite | −71 | ||
Dolomite vein | ||||||
KL-3 | 12.8 | −7.2 | Dolomite | |||
KL-3C | 13.9 | −7.7 | Dolomite | |||
Metagabbro and metadiabase | ||||||
KL-2 | 9.2 | Amphibole | −73 | |||
KL-6 | 9.1 | Amphibole | ||||
Marble | ||||||
KL-12 | 23.2 | +0.1 | Calcite | |||
Paragneiss | ||||||
KL-10 | −79 | |||||
Mica schist | ||||||
KL-14 | −62 | |||||
Syenite | ||||||
KL-9 | −99 | |||||
Nasławice | ||||||
Dolomite vein | ||||||
NS-1 | 13.0 | +2.8 | Dolomite |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil, G.; Gunia, P.; Barnes, J.D.; Szymański, M.; Jokubauskas, P.; Kalbarczyk-Gil, A.; Bagiński, B. Origin of Talc and Fe-Ti-V Mineralization in the Kletno Deposit (the Śnieżnik Massif, SW Poland). Minerals 2020, 10, 13. https://doi.org/10.3390/min10010013
Gil G, Gunia P, Barnes JD, Szymański M, Jokubauskas P, Kalbarczyk-Gil A, Bagiński B. Origin of Talc and Fe-Ti-V Mineralization in the Kletno Deposit (the Śnieżnik Massif, SW Poland). Minerals. 2020; 10(1):13. https://doi.org/10.3390/min10010013
Chicago/Turabian StyleGil, Grzegorz, Piotr Gunia, Jaime D. Barnes, Michał Szymański, Petras Jokubauskas, Anna Kalbarczyk-Gil, and Bogusław Bagiński. 2020. "Origin of Talc and Fe-Ti-V Mineralization in the Kletno Deposit (the Śnieżnik Massif, SW Poland)" Minerals 10, no. 1: 13. https://doi.org/10.3390/min10010013
APA StyleGil, G., Gunia, P., Barnes, J. D., Szymański, M., Jokubauskas, P., Kalbarczyk-Gil, A., & Bagiński, B. (2020). Origin of Talc and Fe-Ti-V Mineralization in the Kletno Deposit (the Śnieżnik Massif, SW Poland). Minerals, 10(1), 13. https://doi.org/10.3390/min10010013