Manganese-Containing Inclusions in Late-Antique Glass Mosaic Tesserae: A New Technological Marker?
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Biron, I.; Chopinet, M.-H. Colouring, Decolouring and Opacifying of Glass. In Modern Methods for Analysing Archaeological and Historical Glass; Janssens, K., Ed.; John Wiley & Sons Inc.: Chichester, West Sussex, UK, 2013; pp. 49–65. ISBN 9780470516140. [Google Scholar]
- Bamford, C.R. Colour Generation and Control in Glass; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands; Oxford, UK; New York, NY, USA, 1977; Volume 3, ISBN 1520-6378. [Google Scholar]
- Schofield, P.F.; Cressey, G.; Wren Howard, W.; Henderson, C.M.B. Origin of color in iron and manganese containing glasses investigated by synchrotron radiation. Glas. Technol. 1995, 36, 86–94. [Google Scholar]
- Freestone, I.C.; Stapleton, C.P. Composition of mosaic glass vessels of the early Imperial period. In Glass of the Roman World; Bayley, J., Freestone, I., Jackson, C., Eds.; Oxbow Books: Oxford, UK, 2015; pp. 61–76. ISBN 9781782977742. [Google Scholar]
- Newton, R.; Davison, S. Conservation of Glass; Butterworth Heineman: Oxford, UK, 1996; ISBN 0750624485. [Google Scholar]
- Schreiber, H.D.; Peters, L.J.; Beckman, J.W.; Schreiber, C.W. Redox chemistry of iron-manganese and iron-chromium interactions in soda lime silicate glass melts. Glas. Sci. Technol. 1996, 69, 269–277. [Google Scholar]
- Sayre, E.V. The intentional use of antimony and manganese in ancient glasses. In Advances in Glass Technology: History Papers and Discussions of the Technical Papers of the VI International Congress on Glass; Matson, F.R., Rindone, G.E., Eds.; Plenum Press: New York, NY, USA, 1963; pp. 236–282. [Google Scholar]
- Jackson, C.M. Making colourless glass in the Roman period. Archaeometry 2005, 47, 763–780. [Google Scholar] [CrossRef]
- Gliozzo, E. The composition of colourless glass: A review. Archaeol. Anthropol. Sci. 2017, 9, 455–483. [Google Scholar] [CrossRef]
- Bidegaray, A.-I.; Godet, S.; Bogaerts, M.; Cosyns, P.; Nys, K.; Terryn, H.; Ceglia, A. To be purple or not to be purple? How different production parameters influence colour and redox in manganese containing glass. J. Archaeol. Sci. Reports 2019, 27, 101975. [Google Scholar] [CrossRef] [Green Version]
- Bidegaray, A.-I.; Nys, K.; Silvestri, A.; Cosyns, P.; Meulebroeck, W.; Terryn, H.; Godet, S.; Ceglia, A. 50 shades of colour: How thickness, iron redox and manganese/antimony contents influence perceived and intrinsic colour in Roman glass. Archaeol. Anthropol. Sci. 2020, 12, 109. [Google Scholar] [CrossRef]
- Silvestri, A. The coloured glass of Iulia Felix. J. Archaeol. Sci. 2008, 35, 1489–1501. [Google Scholar] [CrossRef]
- Peruzzo, L.; Fenzi, F.; Vigato, P.A. Electron Backscatter Diffraction (EBSD): A new technique for the identification of pigments and raw materials in historic glasses and ceramics. Archaeometry 2011, 53, 178–193. [Google Scholar] [CrossRef]
- Schreiber, H.D.; Wilk, N.R.; Schreiber, C.W. Comprehensive electromotive force series of redox couples in soda-lime-silicate glass. J. Non. Cryst. Solids 1999, 253, 68–75. [Google Scholar] [CrossRef]
- Pollard, A.M.; Heron, C. Archaeological Chemistry; The Royal Society of Chemistry: London, UK, 2008; ISBN 978-0-85404-262-3. [Google Scholar]
- Silvestri, A.; Tonietto, S.; Molin, G. The palaeo-Christian glass mosaic of St. Prosdocimus (Padova, Italy): Archaeometric characterisation of ‘gold’ tesserae. J. Archaeol. Sci. 2011, 38, 3402–3414. [Google Scholar] [CrossRef]
- Silvestri, A.; Tonietto, S.; Molin, G.; Guerriero, P. The palaeo-Christian glass mosaic of St. Prosdocimus (Padova, Italy): Archaeometric characterisation of tesserae with antimony- or phosphorus-based opacifiers. J. Archaeol. Sci. 2012, 39, 2177–2190. [Google Scholar] [CrossRef]
- Silvestri, A.; Tonietto, S.; Molin, G.; Guerriero, P. The palaeo-Christian glass mosaic of St. Prosdocimus (Padova, Italy): Archaeometric characterisation of tesserae with copper- or tin-based opacifiers. J. Archaeol. Sci. 2014, 42, 51–67. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; De Gruyter: Berlin, Germany, 2015; pp. 1–30. ISBN 978-3-11-041704-3. [Google Scholar]
- Geller, S. Structure of alpha Mn2O3, (Mn0.983Fe0.017)O3 and (Mn0.37Fe0.63)O3 and relation to magnetic ordering. Acta Crystallogr. Sect. B 1971, 27, 821–828. [Google Scholar] [CrossRef]
- de Villiers, J.P.R.; Herbstein, F.H. Distinction between two Members of the braunite group. Am. Mineral. 1967, 52, 20–30. [Google Scholar]
- de Villiers, J.P.R. The crystal structure of braunite with reference to its solid-solution behavior. Am. Mineral. 1975, 60, 1098–1104. [Google Scholar]
- de Villiers, J.P.R. The crystal structure of braunite II and its relation to bixbyite and braunite. Am. Mineral. 1980, 65, 756–765. [Google Scholar]
- Baudracco-Gritti, C.; Caye, R.; Permingeat, F.; Protas, J. La neltnérite CaMn6SiO12, une nouvelle espèce minérale du groupe de la braunite. Bull. Minéral. 1982, 105, 161–165. [Google Scholar] [CrossRef]
- Baudracco-Gritti, C. Substitution du manganèse bivalent par du calcium dans les minéraux du groupe: Braunite, neltnérite, braunite II. Bull. Minéral. 1985, 108, 437–445. [Google Scholar] [CrossRef]
- de Villiers, J.P.R.; Buseck, P.R. Stacking variations and nonstoichiometry in the bixbyite-braunite polysomatic mineral group. Am. Mineral. 1989, 74, 1325–1336. [Google Scholar]
- de Villiers, J.P.R.; Dobson, S.M.; Buseck, P.R. Refinement of the crystal structure of neltnerite, a member of the bixbyite-braunite group of minerals. Eur. J. Mineral. 1991, 3, 567–573. [Google Scholar] [CrossRef]
- Bhattacharyya, P.K.; Dasgupta, S.; Fukuoka, M.; Roy, S. Geochemistry of braunite and associated phases in metamorphosed non-calcareous manganese ores of India. Contrib. Mineral. Petrol. 1984, 87, 65–71. [Google Scholar] [CrossRef]
- Sen, S.K.; Dasgupta, H.C. Chemical composition of braunite and bixbyite from Kajlidongri and Tirodi, India. Indian J. Earth Sci. 1984, 11, 1–28. [Google Scholar]
- Velilla, N.; Jiménez-Millán, J. Origin and metamorphic evolution of rocks with braunite and pyrophanite from the Iberian Massif (SW Spain). Mineral. Petrol. 2003, 78, 73–91. [Google Scholar] [CrossRef]
- Abs-Wurmbach, I.; Peters, T.; Langer, K.; Schreyer, W. Phase relations in the system Mn-Si-O: An experimental and petrological study. Neues Jahrb. Mineral. Abh. J. Mineral. Geochem. 1983, 146, 258–279. [Google Scholar]
- Anastasiou, P.; Langer, K. Synthesis and physical properties of piemontite Ca2Al3-pMnp3+(Si2O7/SiO4/O/OH). Contrib. Mineral. Petrol. 1977, 60, 225–245. [Google Scholar] [CrossRef]
- Coentro, S.; Mimoso, J.M.; Lima, A.M.; Silva, A.S.; Pais, A.N.; Muralha, V.S.F. Multi-analytical identification of pigments and pigment mixtures used in 17th century Portuguese azulejos. J. Eur. Ceram. Soc. 2012, 32, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Coentro, S.; Trindade, R.A.A.; Mirão, J.; Candeias, A.; Alves, L.C.; Silva, R.M.C.; Muralha, V.S.F. Hispano-Moresque ceramic tiles from the Monastery of Santa Clara-a-Velha (Coimbra, Portugal). J. Archaeol. Sci. 2014, 41, 21–28. [Google Scholar] [CrossRef]
- Pradell, T.; Molera, J.; Salvadó, N.; Labrador, A. Synchrotron radiation micro-XRD in the study of glaze technology. Appl. Phys. A 2010, 99, 407–417. [Google Scholar] [CrossRef]
- Molera, J.; Coll, J.; Labrador, A.; Pradell, T. Manganese brown decorations in 10th to 18th century Spanish tin glazed ceramics. Appl. Clay Sci. 2013, 82, 86–90. [Google Scholar] [CrossRef]
- Pradell, T.; Molina, G.; Molera, J.; Pla, J.; Labrador, A. The use of micro-XRD for the study of glaze color decorations. Appl. Phys. A 2013, 111, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Di Febo, R.; Molera, J.; Pradell, T.; Vallcorba, O.; Melgarejo, J.C.; Capelli, C. Thin-section petrography and SR-µXRD for the identification of micro-crystallites in the brown decorations of ceramic lead glazes. Eur. J. Mineral. 2017, 29, 861–870. [Google Scholar] [CrossRef]
- Bajnóczi, B.; Nagy, G.; Tóth, M.; Ringer, I.; Ridovics, A. Archaeometric characterization of 17th-century tin-glazed Anabaptist (Hutterite) faience artefacts from North-East-Hungary. J. Archaeol. Sci. 2014, 45, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Coutinho, M.L.; Veiga, J.P.; Alves, L.C.; Mirão, J.; Dias, L.; Lima, A.M.; Muralha, V.S.; Macedo, M.F. Characterization of the glaze and in-glaze pigments of the nineteenth-century relief tiles from the Pena National Palace, Sintra, Portugal. Appl. Phys. A 2016, 122, 696. [Google Scholar] [CrossRef]
- Coentro, S.; da Silva, R.C.; Relvas, C.; Ferreira, T.; Mirão, J.; Pleguezuelo, A.; Trindade, R.; Muralha, V.S.F. Mineralogical characterization of Hispano-Moresque glazes: A µ-Raman and Scanning Electron Microscopy with X-Ray Energy Dispersive Spectrometry (SEM-EDS) study. Microsc. Microanal. 2018, 24, 300–309. [Google Scholar] [CrossRef]
- Abs-Wurmbach, I. Miscibility and compatibility of braunite, Mn2+Mn63+O8/SiO4, in the system Mn-Si-O at 1 atm in air. Contrib. Mineral. Petrol. 1980, 71, 393–399. [Google Scholar] [CrossRef]
- Foy, D.; Picon, M.; Vichy, M.; Thirion-Merle, V. Caractérisation des verres de la fin de l’Antiquité en Méditerranée occidentale: L’émergence de nouveaux courants commerciaux. In Proceedings of the Echanges et Commerce du Verre Dans le Monde Antique, Actes du Colloque de l’Association Francaise Pour l’Archéologie du Verre, Aix-en-Provence et Marseille, France, 7–9 June 2001; Foy, D., Nenna, M.-D., Eds.; Editions Monique Mergoil: Montagnac, France, 2003; pp. 41–85. [Google Scholar]
Chromatic Group | Number of Samples | Label | Mean Chemical Composition, Expressed as Weight Percentage of the Element Oxides (in Bold), and Standard Deviations (in Italic) (EMPA Data) | |||||||||||||
SiO2 | Na2O | CaO | Al2O3 | K2O | MgO | FeO | TiO2 | MnO | P2O5 | SO3 | Cl | SnO2 | PbO | |||
Light brown/amber | 5 | PD-NC from 1 to 5 | 66.8 | 18.1 | 7.0 | 2.00 | 0.50 | 0.98 | 0.90 | 0.13 | 1.31 | 0.11 | 0.34 | 1.12 | 0.26 | 0.90 |
0.7 | 0.1 | 0.2 | 0.02 | 0.03 | 0.06 | 0.06 | 0.01 | 0.11 | 0.06 | 0.03 | 0.06 | 0.03 | 0.11 | |||
Purple | 5 | PD-PR from 1 to 5 | 65.78 | 17.04 | 8.36 | 2.34 | 0.65 | 1.09 | 0.93 | 0.15 | 2.18 | 0.09 | 0.37 | 0.93 | <0.04 | <0.08 |
0.65 | 0.17 | 0.14 | 0.03 | 0.09 | 0.11 | 0.07 | 0.02 | 0.20 | 0.04 | 0.06 | 0.22 | |||||
Chromatic Group | Glassy Matrix | Reference Group | Opacifier | Colourant/Decolourant | MnO/FeO (Mean in Bold; st. dev. in Italic) | |||||||||||
Light brown/amber | Soda-lime-lead | Série 3.2 of Foy et al. [44] | Cassiterite | Iron and manganese | 1.5 | |||||||||||
0.1 | ||||||||||||||||
Purple | Soda-lime | Group 2 of Foy et al. [44] | None | Iron and manganese | 2.37 | |||||||||||
0.40 |
Element | Line | Analyser Crystal | Electron Beam | Acquisition Time (s) | Standard | Detection Limits (wt%) | ||
---|---|---|---|---|---|---|---|---|
nA | kV | Peak | Background | |||||
Na | Ka | TAP 100 | 2 | 20 | 10 | 5 | Albite | 0.02 |
Mg | Ka | TAP 100 | 2 | 20 | 10 | 5 | Diopside | 0.01 |
Al | Ka | TAP 100 | 2 | 20 | 10 | 5 | Al2O3 | 0.08 |
Si | Ka | TAP 100 | 2 | 20 | 10 | 5 | Diopside | 0.08 |
Ca | Ka | PET 002 | 2 | 20 | 10 | 5 | Diopside | 0.08 |
Ti | Ka | PET 002 | 2 | 20 | 10 | 5 | MnTiO3 | 0.08 |
Mn | Ka | LiF 200 | 2 | 20 | 10 | 5 | MnTiO3 | 0.02 |
Fe | Ka | LiF 200 | 2 | 20 | 10 | 5 | Fe2O3 | 0.03 |
Sample | Na2O | MgO | Al2O3 | SiO2 | CaO | TiO2 | Mn2O3 | Fe2O3 | TOTAL |
---|---|---|---|---|---|---|---|---|---|
PD-NC1 | <0.02 | 0.35 | 0.11 | 10.01 | 1.82 | <0.08 | 87.96 | <0.03 | 100.24 |
St. Dev. | 0.08 | 0.06 | 0.21 | 0.07 | 0.36 | ||||
PD-PR3 | <0.02 | 0.27 | 0.19 | 9.82 | 1.88 | <0.08 | 88.81 | <0.03 | 100.97 |
St. Dev. | 0.06 | 0.03 | 0.10 | 0.05 | 0.30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvestri, A.; Nestola, F.; Peruzzo, L. Manganese-Containing Inclusions in Late-Antique Glass Mosaic Tesserae: A New Technological Marker? Minerals 2020, 10, 881. https://doi.org/10.3390/min10100881
Silvestri A, Nestola F, Peruzzo L. Manganese-Containing Inclusions in Late-Antique Glass Mosaic Tesserae: A New Technological Marker? Minerals. 2020; 10(10):881. https://doi.org/10.3390/min10100881
Chicago/Turabian StyleSilvestri, Alberta, Fabrizio Nestola, and Luca Peruzzo. 2020. "Manganese-Containing Inclusions in Late-Antique Glass Mosaic Tesserae: A New Technological Marker?" Minerals 10, no. 10: 881. https://doi.org/10.3390/min10100881
APA StyleSilvestri, A., Nestola, F., & Peruzzo, L. (2020). Manganese-Containing Inclusions in Late-Antique Glass Mosaic Tesserae: A New Technological Marker? Minerals, 10(10), 881. https://doi.org/10.3390/min10100881