Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,384)

Search Parameters:
Keywords = melting temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4840 KB  
Article
Fluid Inclusion Constraints on the Formation Conditions of the Evevpenta Au–Ag Epithermal Deposit, Kamchatka, Russia
by Pavel S. Zhegunov, Sergey Z. Smirnov, Elena O. Shaparenko, Alexey Yu. Ozerov and Ricardo Scholz
Minerals 2025, 15(11), 1196; https://doi.org/10.3390/min15111196 (registering DOI) - 13 Nov 2025
Abstract
The Evevpenta gold–silver epithermal deposit, belonging to an adularia–sericite or low-sulfidation type, is in the northern part of the Kamchatka Peninsula within the Oligocene–Quaternary Central Kamchatka volcanic belt. Variously native gold, silver, and Au–Ag chalcogenides, including calaverite, petzite, hessite, acanthite, uytenbogaardtite-petrovskaite, and naumannite, [...] Read more.
The Evevpenta gold–silver epithermal deposit, belonging to an adularia–sericite or low-sulfidation type, is in the northern part of the Kamchatka Peninsula within the Oligocene–Quaternary Central Kamchatka volcanic belt. Variously native gold, silver, and Au–Ag chalcogenides, including calaverite, petzite, hessite, acanthite, uytenbogaardtite-petrovskaite, and naumannite, constitute its Au–Ag mineralization. Extensive fluid inclusion studies, involving fluid inclusion petrography, Raman spectroscopy, and microthermometry, revealed that quartz from gold-bearing adularia–quartz veins crystallized from low-salinity fluids (T ice melting from −0.1 to −3.3 °C) at moderate to low temperatures (140 to 364 °C). The mineralizing fluids consisted of Na, K, and Mg sulfate and bicarbonate-bearing aqueous solutions and low-density CO2. The gold-bearing mineral assemblages were formed within narrower temperature ranges. The gold–telluride–quartz assemblage was deposited between 325 and 175 °C, while the telluride–sulfide–quartz formed between 219 and 258 °C. Possible influx of meteoric waters led to progressive cooling and a decrease in salinity from the early to late fluid generations during mineral deposition. Overall data on ore and associated with metasomatic alteration mineralogy indicate that the ore formation occurred under relatively reduced or neutral conditions from weakly acidic to near-neutral aqueous solutions, possessing relatively high sulfur and tellurium fugacity. Full article
10 pages, 546 KB  
Article
Rapid 65-min SYBR-Green PCR Assay for Carbapenem Resistant Klebsiella and Acinetobacter Detection
by Sebnem Emine Bukavaz, Kultural Gungor, Hakan Kunduracılar and Zerrin Yulugkural
Microorganisms 2025, 13(11), 2590; https://doi.org/10.3390/microorganisms13112590 (registering DOI) - 13 Nov 2025
Abstract
This study developed a rapid and reliable SYBR-Green semiplex PCR assay for simulta-neous detection of major carbapenem resistance genes in Klebsiella pneumoniae and Acinetobacter baumannii. Two primer sets were used: one to detect blaKPC, blaNDM-1, and blaOXA-48 genes in [...] Read more.
This study developed a rapid and reliable SYBR-Green semiplex PCR assay for simulta-neous detection of major carbapenem resistance genes in Klebsiella pneumoniae and Acinetobacter baumannii. Two primer sets were used: one to detect blaKPC, blaNDM-1, and blaOXA-48 genes in K. pneumoniae and blaOXA-23 in A. baumannii, and another to amplify conserved 16S rRNA gene regions as internal controls. The intra- and inter-assay coeffi-cient of variation ranged from 0.03% to 3.8%. Standard curves exhibited excellent linearity across six logarithmic scales (101–106 DNA copies/µL), with detection limits of 10–102 DNA copies/mL. Melting temperatures (Tm) were: 88.85 °C (KPIC), 90.65 °C (NDM-1), 89.45 °C (KPC), 84.23 °C (OXA-48), 87.81 °C (OXA-23), and 80.67 °C (ABIC). The SYBR-Green Semiplex PCR assay offers a rapid (65 min turnaround), cost-effective, and sensitive method for early detection of carbapenem-resistant pathogens, enabling timely targeted therapy and improved infection control by potentially reducing empirical antibiotic use before culture confirmation. Full article
26 pages, 6955 KB  
Article
Recycling of Waste PET into Terephthalic Acid in Neutral Media Catalyzed by the Cracking Zeolite/Alumina Binder Acidic Catalyst
by Shaddad S. Alhamedi, Waheed Al-Masry, Ahmed S. Al-Fatesh, Sajjad Haider, Asif Mahmood, Lahssen El Blidi and Abdulrahman Bin Jumah
Catalysts 2025, 15(11), 1072; https://doi.org/10.3390/catal15111072 - 12 Nov 2025
Abstract
This study addresses the critical issue of environmental pollution from plastic waste by investigating an effective chemical recycling method for polyethylene terephthalate (PET) via neutral catalytic hydrolysis. We utilized a recoverable and regenerable composite catalyst based on cracking zeolite and γ-Al2O [...] Read more.
This study addresses the critical issue of environmental pollution from plastic waste by investigating an effective chemical recycling method for polyethylene terephthalate (PET) via neutral catalytic hydrolysis. We utilized a recoverable and regenerable composite catalyst based on cracking zeolite and γ-Al2O3, which possesses both Brønsted and Lewis acidic sites that facilitate the depolymerization of PET into its constituent monomers, terephthalic acid (TPA) and ethylene glycol (EG). This investigation reveals that the catalytic performance is strongly dependent on the total acid site concentration and the specific nature of these sites. A key finding is that a balanced acidic profile with a high proportion of Brønsted acid sites is crucial for enhancing PET hydrolysis attributed to a significant decrease in the activation energy of the reaction. The experiments were conducted in a stirred stainless-steel autoclave reactor, where key parameters such as temperature (210–230 °C), the PET-to-water ratio (1:2 to 1:5), and reaction time were systematically varied. Under optimal conditions of 210 °C and a 6 h reaction time, the process achieved near-complete PET depolymerization (99.5%) and a high TPA yield (90.24%). The catalyst demonstrated remarkable recyclability, maintained its activity over multiple cycles and was easily regenerated. Furthermore, the recovered TPA was of high quality, with a purity of 98.74% as confirmed by HPLC, and exhibited a melt crystallization temperature 14 °C lower than that of the commercial standard. These results not only demonstrate the efficiency and sustainability of neutral catalytic hydrolysis using zeolite/alumina composites but also provide valuable insights for designing advanced catalysts with tunable acidic properties. By demonstrating the importance of tuning acidic properties, specifically the balance between Brønsted and Lewis sites, this work lays a foundation for developing more effective catalysts that can advance circular economy goals for PET recycling. Full article
(This article belongs to the Topic Advanced Materials in Chemical Engineering)
Show Figures

Figure 1

29 pages, 5981 KB  
Article
Determination of Annealing Temperature of Thin-Walled Samples from Al-Mn-Mg-Ti-Zr Alloys for Mechanical Properties Restoration of Defective Parts After SLM
by Nikita Nikitin, Roman Khmyrov, Pavel A. Podrabinnik, Nestor Washington Solis Pinargote, Anton Smirnov, Idarmachev Idarmach, Tatiana V. Tarasova and Sergey N. Grigoriev
J. Manuf. Mater. Process. 2025, 9(11), 371; https://doi.org/10.3390/jmmp9110371 - 12 Nov 2025
Abstract
The aim of this work is to investigate the effect of annealing (at temperatures ranging from 260 °C to 530 °C) of thin-walled Al-Mn-Mg-Ti-Zr samples manufactured by selective laser melting (SLM) on their tensile mechanical properties, hardness, and surface roughness. The results of [...] Read more.
The aim of this work is to investigate the effect of annealing (at temperatures ranging from 260 °C to 530 °C) of thin-walled Al-Mn-Mg-Ti-Zr samples manufactured by selective laser melting (SLM) on their tensile mechanical properties, hardness, and surface roughness. The results of this study may contribute to the development of post-processing modes for thin-walled products made of corrosion-resistant aluminum alloys with increased strength, manufactured using SLM technology. Hierarchical clustering methods allowed us to identify three groups of thin-walled samples with different strain-hardening mechanisms depending on the annealing temperature. The greatest hardening is achieved in the first group of samples annealed at 530 °C. Metallographic analysis showed that at this heat treatment temperature, there are practically no micropores (macrodefects) and microcracks. X-ray phase analysis showed the precipitation of Ti and Zr, as well as the formation of an intermetallic phase with a composition of Mg8Al16. At lower heat treatment temperatures, from 260 °C to 500 °C, the observed hardening is statistically significantly lower than at 530 °C. This phenomenon, combined with the formation of intermetallic phases and the precipitation of titanium/zirconium, contributes to the hardening of thin-walled Al-Mn-Mg-Ti-Zr alloy samples manufactured by SLM. The main results of this study show that the optimal strain hardening of thin-walled Al-Mn-Mg-Ti-Zr alloy samples manufactured by SLM is achieved by heat treatment at 530 °C for 1 h. The strengthening mechanism has two characteristics: (1) dispersion strengthening due to the formation of precipitates and (2) reduction in macrodefects at high temperatures. Full article
Show Figures

Figure 1

17 pages, 4950 KB  
Article
Enhancing the Performance of Polypropylene/High-Density Polyethylene Blends by the Use of a Compatibilizer and Montmorillonite Nanoparticles
by Georgios Moraitis and Petroula A. Tarantili
Appl. Sci. 2025, 15(22), 11998; https://doi.org/10.3390/app152211998 - 12 Nov 2025
Abstract
Nanocomposites composed of compatibilized polyolefin blends and organically modified montmorillonite (OMMT) nanoparticles were produced through melt mixing using a twin-screw extruder. High-density polyethylene (HDPE) and polypropylene (PP) blends were compatibilized with maleic anhydride-grafted PE compatibilizer (COMP). Blends with a 10/25 (w/ [...] Read more.
Nanocomposites composed of compatibilized polyolefin blends and organically modified montmorillonite (OMMT) nanoparticles were produced through melt mixing using a twin-screw extruder. High-density polyethylene (HDPE) and polypropylene (PP) blends were compatibilized with maleic anhydride-grafted PE compatibilizer (COMP). Blends with a 10/25 (w/w) HDPE/PP content were prepared and were reinforced with 1, 2, and 3 phr OMMT. Characterization of nanocomposites was performed using X-ray diffraction (XRD), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Tensile Testing, and Melt Flow Index (MFI) measurements. Preparation of polyolefin blend/OMMT nanocomposites with a twin-screw extruder was successful at low clay levels (1 phr). These nanocomposites presented increased onset temperature of thermal degradation, crystallinity, and stiffness, whereas their MFI values were lower than those of the pure matrix. Full article
Show Figures

Figure 1

17 pages, 3862 KB  
Article
Study of Heat Transfer Characteristics of PCMs Melting Inside Aluminum Foams
by Farjad Shahid Hasan Khan and Andrea Diani
Materials 2025, 18(22), 5130; https://doi.org/10.3390/ma18225130 - 11 Nov 2025
Abstract
This study examines the thermal performance of phase change material (PCM)–metal foam composites under base heating, a configuration more relevant to compact thermal energy storage (TES) and electronics-cooling applications, compared to the widely studied side-heated case. Metal foams with pore densities of 10, [...] Read more.
This study examines the thermal performance of phase change material (PCM)–metal foam composites under base heating, a configuration more relevant to compact thermal energy storage (TES) and electronics-cooling applications, compared to the widely studied side-heated case. Metal foams with pore densities of 10, 20, and 40 PPI, but identical porosity (volumetric value), were impregnated with two PCMs (paraffin RT55 and RT64HC) and tested under varying heat fluxes. The thermophysical properties of three PCMs (RT42, RT55, and RT64HC) were first characterized using the T-history method. A control case consisting of pure PCM revealed significant thermal lag between the heater and the PCM, whereas the inclusion of a metal foam improved temperature uniformity and accelerated melting. The results showed that PPI variation had little influence on melting completion time, while PCM type, viz., melting temperature, strongly affected duration. Heat flux was the dominant parameter: higher input power substantially reduced melting times, although diminishing returns were observed at elevated heat fluxes. An empirical correlation from the literature, originally developed for side-heated foams, was applied to the base-heated configuration and reproduced the main melting trends, though it consistently underpredicted completion times at high fluxes. Overall, embedding PCMs in metal foams enhances heat transfer, mitigates localized overheating, and enables more compact and efficient TES systems. Future work should focus on developing correlations for non-adiabatic cases, exploring advanced foam architecture, and scaling the approach for practical energy storage and cooling applications. Full article
(This article belongs to the Special Issue Advances in Porous Lightweight Materials and Lattice Structures)
Show Figures

Graphical abstract

13 pages, 685 KB  
Article
Guerbet Alcohols, Ideal Substrates for the Sustainable Production of Branched Esters
by María Claudia Montiel, Fuensanta Máximo, María Gómez, María Dolores Murcia, Salvadora Ortega-Requena and Josefa Bastida
Materials 2025, 18(22), 5129; https://doi.org/10.3390/ma18225129 - 11 Nov 2025
Abstract
Saturated and branched high molecular weight organic esters are highly valued as emollients in the cosmetic industry due to their superior properties. Their saturated character provides resistance to oxidation and rancidity. Additionally, their branched structure endows them with low melting temperatures, enabling them [...] Read more.
Saturated and branched high molecular weight organic esters are highly valued as emollients in the cosmetic industry due to their superior properties. Their saturated character provides resistance to oxidation and rancidity. Additionally, their branched structure endows them with low melting temperatures, enabling them to remain liquid over a broad temperature range. These esters can be obtained from branched alcohols, branched fatty acids or both, using chemical or enzymatic processes. Among branched alcohols, Guerbet alcohols stand out. Due to their characteristic properties as branched, saturated alcohols with superior oxidative stability and extremely low volatility, they are proposed as excellent substrates for the enzymatic synthesis of these compounds. This study represents the first investigation into the biocatalytic synthesis of three specific esters: those formed between 2-octyl-1-dodecanol (C20 Guerbet alcohol) and the fatty acids myristic (MA), palmitic (PA), and stearic acid (SA). To achieve this, an environmentally sustainable biocatalytic process was developed. The synthesis involves a solvent-free esterification catalyzed by the commercial immobilized lipase, Lipozyme® 435, conducted within a vertically stirred, thermostated batch tank reactor. Optimal conditions for lipase concentration and temperature were established, and the sustainability of the process was successfully quantified using various “green metrics”. Full article
Show Figures

Figure 1

20 pages, 30182 KB  
Article
Performance and Durability of Biopolymer Blends Containing Modified Metal Oxide Particles
by Giulia Infurna, Andrea Antonino Scamporrino, Elisabetta Morici, Elena Bruno, Giuseppe Pecoraro and Nadka Tz. Dintcheva
Polymers 2025, 17(22), 3000; https://doi.org/10.3390/polym17223000 - 11 Nov 2025
Abstract
This study applies circular and sustainable principles to the formulation of biopolymer-based materials using naturally occurring additives. To improve the affinity between the host matrix and additives such as metal oxides, the work involves adding stearic acid-modified zinc oxide (f-ZnO) and [...] Read more.
This study applies circular and sustainable principles to the formulation of biopolymer-based materials using naturally occurring additives. To improve the affinity between the host matrix and additives such as metal oxides, the work involves adding stearic acid-modified zinc oxide (f-ZnO) and sonicated titanium dioxide (s-TiO2) to a polylactic acid and bio-derived polyamide 11 (PLA/PA11 = 70/30 w/w biopolymer blend via melt mixing. To evaluate the impact of the functionalization and sonication on metal oxides (i.e., f-ZnO and s-TiO2) introduced into the PLA/PA11 blend, composites containing unmodified ZnO and TiO2 prepared under the same processing conditions were compared with the modified ones. All of the composites were characterised in terms of their solid-state properties, morphology, melt behaviour, and photo-oxidation resistance. The addition of both f-ZnO and s-TiO2 appears to exert a plasticising effect on the rheological behaviour, in contrast to unmodified ZnO and TiO2. The presence of stearic acid tails on ZnO has been estimated at approximately 4%, whereas sonication reduces the diameter of TiO2 particles by half. In the solid state, both unmodified and modified particles can reinforce the biopolymer matrix, enhancing the Young′s (elastic) modulus. Calorimetry analysis suggests that unmodified and modified metal oxide particles do not influence the glass transition of the PLA phase but affect the melt temperatures of both biopolymeric phases by reducing macromolecular mobility. Morphology analysis shows that the presence of both f-ZnO and s-TiO2 particles does not reduce the size of the PA11 droplets. The f-ZnO particles, which have long stearic tails and are more compatible with the less-polar phase (PLA), are probably located at the interface between the two biopolymeric phases or in the PLA phase. Furthermore, s-TiO2 particles, like TiO2, do not reduce the dimensions of PA11 droplets, suggesting that there is no preferential location of the particles. Due to the presence of both f-ZnO and s-TiO2, an increase in the hydrophobicity of the PLA/PA11 blend has been detected, suggesting enhanced water resistance. The photo-oxidation resistance of the PLA/PA11 blend is significantly reduced by the presence of unmodified metal oxides and even more so by the presence of modified metal oxides. This suggests that metal oxides could be considered photo-sensitive degradant agents for biopolymer blends. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

18 pages, 4999 KB  
Article
Efficient Resource Utilization and Environmentally Safe Recovery of Platinum Group Metals from Spent Automotive Catalysts via Copper Smelting
by Shubo A, Ganfeng Tu, Shuchen Sun, Yaoyu Yan, Faxin Xiao, Ruifeng Shi, Chengfu Sui and Kuopei Yu
Separations 2025, 12(11), 315; https://doi.org/10.3390/separations12110315 - 11 Nov 2025
Abstract
Spent automotive catalysts (SAC) not only contain significant amounts of platinum group metals (PGMs) but also hazardous heavy metals, rendering them a solid waste. A harmless technology for the efficient recovery of PGMs through copper smelting has been proposed. By investigating the effects [...] Read more.
Spent automotive catalysts (SAC) not only contain significant amounts of platinum group metals (PGMs) but also hazardous heavy metals, rendering them a solid waste. A harmless technology for the efficient recovery of PGMs through copper smelting has been proposed. By investigating the effects of the CaO/SiO2 mass ratio and Al2O3 content on the properties of the slag, the composition of the slag was adjusted. The influence of copper dosage, Na2B4O7 dosage, smelting temperature, and smelting time on the recovery efficiency of PGMs was also discussed. The determined composition of the target slag was 36.44 wt% CaO, 45.56 wt% SiO2, 12.00 wt% Al2O3, and 6.00 wt% MgO. The optimal processing conditions included 12 wt% Cu, 4 wt% Na2B4O7, smelting temperature 1450 °C, and smelting time 90 min. Ultimately, the recovery efficiency of PGMs reached 99.5%. Compared to traditional plasma furnace smelting methods, PGMs were efficiently recovered at a lower melting temperature. A pilot-scale experiment with a mass of 30 kg also achieved a recovery rate of over 99% for PGMs. TCLP results indicate that the heavy metals were immobilized within the glass slag. Full article
(This article belongs to the Special Issue Separation Technology for Resource Utilization and Recovery)
Show Figures

Figure 1

14 pages, 8180 KB  
Article
Impact of Replicated Biomimetic Microstructures on the Wettability of Injection-Molded Polymer Surfaces
by Vojtěch Šorm, Jakub Bittner, Petr Lenfeld, Dora Kroisová and Štěpánka Dvořáčková
Biomimetics 2025, 10(11), 759; https://doi.org/10.3390/biomimetics10110759 - 11 Nov 2025
Abstract
This article evaluates the influence of replicated natural structures, produced by micro-machining, on the wettability of plastic parts made from hydrophilic and hydrophobic polymer materials under various temperature and pressure conditions. Although many studies have focused on biomimetic surface design, the effect of [...] Read more.
This article evaluates the influence of replicated natural structures, produced by micro-machining, on the wettability of plastic parts made from hydrophilic and hydrophobic polymer materials under various temperature and pressure conditions. Although many studies have focused on biomimetic surface design, the effect of specific processing parameters on the accurate replication of natural topologies and their resulting wettability has been only partially explored. This study addresses this gap by systematically analyzing the effect of melt temperature and packing pressure on the functional replication of micro-machined biomimetic structures. The research describes the design of hierarchical microstructures inspired by biomimetics and their fabrication by micro-milling on molded parts. Test samples were prepared from polypropylene (PP), acrylonitrile butadiene styrene (ABS), and polyamide 6.6 (PA 6.6) under different processing parameters, and wettability was assessed using contact angle (CA) measurements. The results confirmed significant variations in surface wettability depending on polymer type, melt temperature, and packing pressure. For the hydrophilic relief (Rock Moss), contact angles below 90° were obtained for all tested polymers, including PP, which decreased from 98.7° on a flat surface to 82.4° at 220 °C and 500 bar. In PA 6.6, a reduction of up to 12% in contact angle was observed compared to smooth samples at 310 °C and 500 bar. For hydrophobic reliefs (Three-part Hibiscus and Tricolor Pansy), contact angles exceeded 100–110°, with the highest value of 108.3 ± 1.6° for PP at 200 °C and 500 bar. Suitable combinations of melt temperature and packing pressure enabled accurate replication of microstructures while preserving their functional wettability, demonstrating the possibility of tuning surface properties through topological design. Full article
(This article belongs to the Special Issue Bioinspired Engineered Systems)
Show Figures

Graphical abstract

22 pages, 3346 KB  
Article
Isosorbide as a Molecular Glass: New Insights into the Physicochemical Behavior of a Biobased Diol
by Nadia Hammami, Stéphane Patry, Armand Soldera, Bruno Ameduri and Jean-Pierre Habas
Molecules 2025, 30(22), 4364; https://doi.org/10.3390/molecules30224364 - 11 Nov 2025
Abstract
This paper presents a study of the thermal and rheological properties of isosorbide, showing that its degradation temperature (around 100 °C) is much lower than values previously proposed in the literature. Furthermore, remarkable calorimetric and viscoelastic behaviors, with features usually observed in semi-crystalline [...] Read more.
This paper presents a study of the thermal and rheological properties of isosorbide, showing that its degradation temperature (around 100 °C) is much lower than values previously proposed in the literature. Furthermore, remarkable calorimetric and viscoelastic behaviors, with features usually observed in semi-crystalline systems are presented. The onset of the melting is measured at 45 °C, while a glass transition occurs at −45 °C, followed by cold crystallization. Wide-angle X-ray diffraction confirmed the coexistence of crystalline domains and an amorphous fraction, which behaves as a molecular glass, with an estimated crystallinity of approximately 70%. Thermogravimetric analyses conducted under both air and nitrogen and at multiple heating rates, in line with ICTAC recommendations, established the robustness of the 100 °C degradation onset. These findings provide new structure–property relationships for isosorbide and open up new avenues for further research and development in this area. Full article
Show Figures

Figure 1

18 pages, 5613 KB  
Article
Preparation and Performance Study of Decanoic Acid–Stearic Acid Composite Phase-Change Ceramsite Aggregate
by Gui Yu, Qiang Yuan, Min Li, Jiaxing Tao, Jing Jiang and De Chen
Coatings 2025, 15(11), 1315; https://doi.org/10.3390/coatings15111315 - 11 Nov 2025
Abstract
In response to the problem of high energy consumption caused by inefficient temperature control of energy storage aggregates in traditional building envelope structures, this study developed a decanoic acid–stearic acid composite phase-change ceramsite aggregate to improve the thermal performance of buildings and promote [...] Read more.
In response to the problem of high energy consumption caused by inefficient temperature control of energy storage aggregates in traditional building envelope structures, this study developed a decanoic acid–stearic acid composite phase-change ceramsite aggregate to improve the thermal performance of buildings and promote the utilization of solid waste resources. Based on the theory of minimum melting, composite phase-change materials were screened through thermodynamic models. The capric acid–stearic acid (CA-SA) melt system, whose theoretical phase-transition temperature falls within the building indoor thermal environment control range (18–26 °C), was preferred as the experimental object of this study, and its characteristics were verified through step cooling curves and thermal property tests. Subsequently, the ceramsite adsorption process was optimized, and the encapsulation process was studied. Finally, the encapsulation performance was evaluated through thermal stability and stirring crushing rate tests. The results showed that the phase-transition temperature of the decanoic acid–stearic acid melt system was 24.83 °C, which accurately matched the indoor thermal environment control requirements. The ceramsite particles treated by a physical vibrating screen can reach equilibrium after 30 min of adsorption at room temperature and pressure, which is both efficient and economical. The encapsulation layer of sludge biochar cement slurry with a water–cement ratio of 0.5 and a biochar content of 3% has both thermal conductivity and encapsulation integrity. The thermal stability test showed that the percentage of leakage of sludge biochar cement slurry and epoxy resin encapsulated aggregates was 0%, and the thermal stability rating was “very stable”. However, the percentage of leakage of unencapsulated and spray-coated encapsulated aggregates was as high as 193% and 40%, respectively. The results of the mixing and crushing rate test show that although the mixing and crushing rate of sludge biochar cement slurry encapsulation is slightly higher, its production cost is much lower than that of epoxy resin, and it is also environmentally friendly. This study improves the thermal performance of buildings by using composite phase-change ceramsite aggregate, and simultaneously realizes the resource utilization of sludge biochar, providing a solution for building energy saving and efficiency that combines environmental and engineering value. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

15 pages, 1897 KB  
Article
Enabling Industrial Re-Use of Large-Format Additive Manufacturing Molding and Tooling
by Matthew Korey, Amber M. Hubbard, Gregory Haye, Robert Bedsole, Zachary Skelton, Neeki Meshkat, Ashish L. S. Anilal, Kathryn Slavny, Katie Copenhaver, Tyler Corum, Don X. Bones, William M. Gramlich, Chad Duty and Soydan Ozcan
Polymers 2025, 17(22), 2981; https://doi.org/10.3390/polym17222981 - 10 Nov 2025
Viewed by 274
Abstract
Large-format additive manufacturing (LFAM) is an enabling manufacturing technology capable of producing large parts with highly complex geometries for a wide variety of applications, including automotive, infrastructure/construction, and aerospace mold and tooling. In the past decade, the LFAM industry has seen widespread use [...] Read more.
Large-format additive manufacturing (LFAM) is an enabling manufacturing technology capable of producing large parts with highly complex geometries for a wide variety of applications, including automotive, infrastructure/construction, and aerospace mold and tooling. In the past decade, the LFAM industry has seen widespread use of bio-based, glass, and/or carbon fiber reinforced thermoplastic composites which, when printed, serve as a lower-cost alternative to metallic parts. One of the highest-volume materials utilized by the industry is carbon fiber (CF)-filled polycarbonate (PC), which in out-of-autoclave applications can achieve comparable mechanical performance to metal at a significantly lower cost. Previous work has shown that if this material is recovered at various points throughout the manufacturing process for both the lab and pilot scale, it can be mechanically recycled with minimal impacts on the functional performance and printability of the material while significantly reducing the feedstock costs. End-of-life (EOL) CF-PC components were processed through industrial shredding, melt compounding, and LFAM equipment, followed by evaluation of the second-life material properties. Experimental assessments included quantitative analysis of fiber length attrition, polymer molecular weight degradation using gel permeation chromatography (GPC), density changes via pycnometry, thermal performance using dynamic mechanical analysis (DMA), and mechanical performance (tensile properties) in both the X- and Z-directions. Results demonstrated a 24.6% reduction in average fiber length compared to virgin prints, accompanied by a 21% decrease in X-direction tensile strength and a 39% reduction in tensile modulus. Despite these reductions, Z-direction tensile modulus improved by 4%, density increased by 6.8%, and heat deflection temperature (HDT) under high stress retained over 97% of its original value. These findings underscore the potential for integrating mechanically recycled CF-PC into industrial LFAM applications while highlighting the need for technological innovations to mitigate fiber degradation and enhance material performance for broader adoption. This critical step toward circular material practices in LFAM offers a pathway to reducing feedstock costs and environmental impact while maintaining functional performance in industrial applications. Full article
(This article belongs to the Special Issue Additive Manufacturing of Polymer Based Materials)
Show Figures

Figure 1

22 pages, 7801 KB  
Article
Effects of Laser Process Parameters on Melt Pool Thermodynamics, Surface Morphology and Residual Stress of Laser Powder Bed-Fused TiAl-Based Composites
by Xiaolong Xu, Ziwen Xie, Meiping Wu and Chenglong Ma
Metals 2025, 15(11), 1234; https://doi.org/10.3390/met15111234 - 9 Nov 2025
Viewed by 162
Abstract
A coupled discrete element method and computational fluid dynamics (DEM-CFD) approach was utilized to systematically investigate the mesoscale dynamics of single-track melt pools in laser powder bed fusion (LPBF) of TiAl-based composites. It was found that the melt pool’s temporal evolution and flow [...] Read more.
A coupled discrete element method and computational fluid dynamics (DEM-CFD) approach was utilized to systematically investigate the mesoscale dynamics of single-track melt pools in laser powder bed fusion (LPBF) of TiAl-based composites. It was found that the melt pool’s temporal evolution and flow behavior are predominantly governed by recoil pressure and Marangoni convection. When lower laser power and higher scanning speeds are applied, the melt pool size is limited due to restricted energy input, resulting in increased cooling rates and steeper temperature gradients. Under these conditions, residual stresses are slightly elevated. However, crack initiation and propagation are partially suppressed by the refined microstructure formed during rapid cooling, unless a critical stress threshold is surpassed. In contrast, the use of higher laser power with lower scanning speeds leads to the formation of wider and deeper melt pools and an expanded heat-affected zone, where cooling rates and temperature gradients are reduced. Under these circumstances, significant recoil pressure induces interfacial instabilities and surface perturbations, thereby considerably increasing the likelihood of cracking. The reliability of the developed model was confirmed by the close agreement between the simulation results and experimental data. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

13 pages, 15087 KB  
Article
Investigation on High-Temperature Tensile and Wear Properties in an L-PBF-Fabricated TiB2-Reinforced Austenitic Steel
by Minghao Huang and Yutong Chen
Metals 2025, 15(11), 1233; https://doi.org/10.3390/met15111233 - 9 Nov 2025
Viewed by 247
Abstract
316L austenitic stainless steel is an ideal candidate for high-temperature applications. However, the relatively low strength and poor wear resistance at high temperatures significantly limit its application in high-temperature environments. In this study, we address this challenge by tracing TiB2 microalloying austenitic [...] Read more.
316L austenitic stainless steel is an ideal candidate for high-temperature applications. However, the relatively low strength and poor wear resistance at high temperatures significantly limit its application in high-temperature environments. In this study, we address this challenge by tracing TiB2 microalloying austenitic steel via L-PBF (laser powder bed fusion), a micro-melting pool metallurgy method. The results show that adding 2.5 wt.% TiB2 significantly refines the austenite grain size from ~19 μm to ~1 μm. The austenite grain size characterizes thermal stability at 300 °C and 600 °C. The fabricated TiB2-reinforced steel shows extraordinarily high-temperature tensile strength, achieving 740 MPa and 636 MPa at 300 °C and 600 °C, respectively. The high tensile strength under high temperature is attributed to the TiB2 phase strengthening and ultrafine austenite grain sizes. Regarding the high-temperature wear friction coefficient of 0.69 at 300 °C and 0.47 at 600 °C, the predominant wear mechanism is abrasive wear, accompanied by adhesive and oxidative wear mechanisms. The present study provides new insight for the development of L-PBF austenitic steels that combine high-temperature strength with superior wear resistance. Full article
(This article belongs to the Special Issue Additive Manufactured Metal Structural Materials)
Show Figures

Figure 1

Back to TopTop