New Apatite Fission-Track Data from the Murmansk Craton, NE Fennoscandia: An Echo of Hidden Thermotectonic Events
Abstract
:1. Introduction
2. Geologic Setting and Sampling
2.1. Geological Background
2.2. Sampling
3. Methods
3.1. Apatite Fission-Track (AFT) Dating
3.2. Thermal History Modeling
4. Results
5. Discussion
5.1. Time-Temperature Modeling
5.2. “Too Young” and “Too Old” AFT Ages
5.3. New AFT Results in the Framework of Fennoscandia’s AFT Map
6. Conclusions
- (1)
- Apatite fission-track ages, representing the Precambrian intrusive and metamorphic complexes of the basement of the Murmansk craton of NE Fennoscandia, indicate that they were cooled below 110 °C at about 300 Ma; this cooling stage is associated with the general uplift of Fennoscandia and/or a decrease in heat flow [7];
- (2)
- time-temperature modeling indicates similar thermal evolution of the Murmansk craton and the Central Kola terrane in the Mesozoic and Cenozoic;
- (3)
- the youngest obtained AFT age (177 Ma) as well as the younger (ca. 190 Ma) age component detected in other samples is possibly associated with a hidden thermal event that led to the remagnetization of a number of dykes on the Kola Peninsula [4];
- (4)
- four relatively old AFT ages were obtained from gabbro samples, including the oldest one—385 Ma. A larger number of AFT single grain ages obtained from these samples reveal the presence of two age components—291 and 422 Ma. We assume that the 385 Ma central age has no geological meaning, but it is rather a mixture of the mentioned age components. It is possible that grains with AFT ages around 422 Ma, due to their chemical composition, are the most resistant to track annealing. In this case, the age component 422 Ma is associated with the active phase of Caledonian orogeny;
- (5)
- obtained results significantly increase the low-temperature thermochronological database of NE Fennoscandia and define the inner regions of the Kola Peninsula and the Karelian craton as the primary targets for future AFT studies.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Veselovskiy, R.V.; Thomson, S.N.; Arzamastsev, A.A.; Zakharov, V.S. Apatite fission track thermochronology of Khibina Massif (Kola Peninsula, Russia): Implications for post-Devonian Tectonics of the NE Fennoscandia. Tectonophysics 2015, 665, 157–163. [Google Scholar] [CrossRef]
- Veselovskiy, R.V.; Arzamastsev, A.A. Evidence for the Mesozoic endogenous activity in the northeastern part of the Fennoscandian Shield. Dokl. Earth Sci. 2011, 438, 754–758. [Google Scholar] [CrossRef]
- Veselovskiy, R.V.; Arzamastsev, A.A.; Demina, L.I.; Travin, A.V.; Botsyun, S.B. Paleomagnetism, geochronology, and magnetic mineralogy of Devonian dikes from the Kola alkaline province (NE Fennoscandian Shield). Izv. Phys. Solid Earth 2013, 49, 526–547. [Google Scholar] [CrossRef]
- Veselovskiy, R.V.; Bazhenov, M.L.; Arzamastsev, A.A. Paleomagnetism of Devonian dykes in the northern Kola Peninsula and its bearing on the apparent polar wander path of Baltica in the Precambrian. Tectonophysics 2016, 675, 91–102. [Google Scholar] [CrossRef]
- Hendriks, B.W.H.; Andriessen, P.A.M.; Huigen, Y.D.; Leighton, C.; Redfield, T.F.; Murrell, G.R.; Gallagher, K.; Nielsen, S.B. A fission track data compilation for Fennoscandia. Nor. Geol. Tidsskr. 2007, 87, 143–155. [Google Scholar]
- Rohrman, M. Thermal Evolution of the Fennoscandian Region from Fission Track Thermochronology—An Integrated Approach. Ph.D. Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 1995. [Google Scholar]
- Veselovskiy, R.V.; Thomson, S.N.; Arzamastsev, A.A.; Botsyun, S.; Travin, A.V.; Yudin, D.S.; Samsonov, A.V.; Stepanova, A.V. Thermochronology and Exhumation History of the Northeastern Fennoscandian Shield Since 1.9 Ga: Evidence From 40Ar/39Ar and Apatite Fission Track Data from the Kola Peninsula. Tectonics 2019, 38, 2317–2337. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, N.E.; Sorokhtin, N.O.; Glaznev, V.N.; Kozlova, N.E.; Ivanov, A.A.; Kudryashov, N.M.; Martynov, E.V.; Tyuremnov, V.A.; Matiushkin, A.V.; Osipenko, L.G. Archaean Geology of the Baltic Shield; Nauka Publishing: Saint-Petersburg, Russia, 2006. (In Russian) [Google Scholar]
- Glebovitsky, V.A. Early Precambrian of the Baltic Shield; Nauka Publishing: Saint-Petersburg, Russia, 2005. (In Russian) [Google Scholar]
- Timmerman, M.J.; Daly, J.S. SmNd evidence for late Archaean crust formation in the Lapland-Kola Mobile Belt, Kola Peninsula, Russia and Norway. Precambrian Res. 1995, 72, 97–107. [Google Scholar] [CrossRef]
- Arzamastsev, A.A.; Fedotov, Z.A.; Arzamastzeva, L.V. Dyke Magmatism in the Northeastern Part of the Baltic Shield; Nauka Publishing: Saint-Petersburg, Russia, 2009. (In Russian) [Google Scholar]
- Fedotov, Z.A.; Bayanova, T.B.; Serov, P.A. Spatiotemporal relationships of dike magmatism in the Kola region, the Fennoscandian Shield. Geotectonics 2012, 46, 412–426. [Google Scholar] [CrossRef]
- Salnikova, E.B.; Samsonov, A.V.; Stepanova, A.V.; Veselovskiy, R.V.; Egorova, S.V.; Arzamastsev, A.A.; Erofeeva, K.G. Fragments of Paleoproterozoic Large Igneous Provinces in Northern Fennoscandia: Baddeleyite U-Pb Age Data for Mafic Dykes and Sills. Dokl. Earth Sci. 2020, 491, 227–230. [Google Scholar] [CrossRef]
- Stepanova, A.V.; Salnikova, E.B.; Samsonov, A.V.; Egorova, S.V.; Arzamastsev, A.A.; Larionova, Y.O.; Veselovskiy, R.V.; Kervinen, A.V.; Erofeeva, K.G.; Stifeeva, M.V. Mafic dyke swarms of 2505 Ma large igneous province in the Eastern Fennoscandia: Implications for Kola-Karelia-Superior connection in the Neoarchean Superia supercraton. Precambrian Res. 2020. under review. [Google Scholar]
- Samsonov, A.V.; Stepanova, A.V.; Salnikova, E.B.; Larionova, Y.O.; Larionov, A.N.; Arzamastsev, A.A.; Egorova, S.V.; Veselovskiy, R.V.; Kervinen, A.V.; Erofeeva, K.G.; et al. Relicts of a Paleoarchean core in the Murmansk craton: Application for Neoarchean tectonic setting and paleocontinental correlation. Precambrian Res. 2020. in preparation. [Google Scholar]
- Arzamastsev, A.A.; Stepanova, A.V.; Samsonov, A.V.; Skuf’in, P.K.; Salnikova, E.B.; Larionov, A.N.; Larionova, Y.O.; Egorova, S.V.; Erofeeva, K.G. Mafic Magmatism of Northeastern Fennoscandia (2.06–1.86 Ga): Geochemistry of Volcanic Rocks and Correlation with Dike Complexes. Stratigr. Geol. Correl. 2020, 28, 1–34. [Google Scholar] [CrossRef]
- Stepanova, A.V.; Samsonov, A.V.; Larionova, Y.O.; Egorova, S.V.; Arzamastsev, A.A.; Salnikova, E.B.; Veselovskiy, R.V.; Erofeeva, K.G.; Stifeeva, M.V. 1860-Ma I-Shaped Mafic Sills in the Murmansk Craton, Eastern Fennoscandia: Petrology and Tectonic Setting of Within-plate Mafic Events during Nuna Assembly. Petrology 2020, 28, 93–117. [Google Scholar] [CrossRef]
- Gleadow, A.J.W. Fission-track dating methods: What are the real alternatives? Nucl. Tracks 1981, 5, 3–14. [Google Scholar] [CrossRef]
- Dumitru, T.A. A new computer-automated microscope stage system for fission-track analysis. Int. J. Radiat. Appl. Instrum. Part 1993, 21, 575–580. [Google Scholar] [CrossRef]
- Galbraith, R.F. Statistics for Fission Track Analysis; CRC Press: Boca Raton, FL, USA, 2005; ISBN 9781420034929. [Google Scholar]
- Galbraith, R.F.; Laslett, G.M. Statistical models for mixed fission track ages. Nucl. Tracks Radiat. Meas. 1993, 21, 459–470. [Google Scholar] [CrossRef]
- Dunkl, I. Trackkey: A Windows program for calculation and graphical presentation of fission track data. Comput. Geosci. 2002, 28, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Hurford, A.J.; Green, P.F. The zeta age calibration of fission-track dating. Chem. Geol. 1983, 41, 285–317. [Google Scholar] [CrossRef]
- Hurford, A.J. Standardization of fission track dating calibration: Recommendation by the Fission Track Working Group of the I.U.G.S. Subcommission on Geochronology. Chem. Geol. Isot. Geosci. Sect. 1990, 80, 171–178. [Google Scholar] [CrossRef]
- Ketcham, R.A. Forward and Inverse Modeling of Low-Temperature Thermochronometry Data. Rev. Mineral. Geochem. 2005, 58, 275–314. [Google Scholar] [CrossRef]
- Ketcham, R.A.; Carter, A.; Donelick, R.A.; Barbarand, J.; Hurford, A.J. Improved modeling of fission-track annealing in apatite. Am. Mineral. 2007, 92, 799–810. [Google Scholar] [CrossRef]
- Vermeesch, P.; Tian, Y. Thermal history modelling: HeFTy vs. QTQt. Earth Sci. Rev. 2014, 139, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Kohn, B.; Chung, L.; Gleadow, A. Fission-track analysis: Field collection, sample preparation and data acquisition. In Fission-Track Thermochronology and Its Application to Geology; Malusa, M., Fitzgerald, P.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 25–48. [Google Scholar]
- Kohn, B.; Gleadow, A. Application of Low-Temperature Thermochronology to Craton Evolution. In Fission-Track Thermochronology and Its Application to Geology; Malusa, M., Fitzgerald, P.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 373–393. [Google Scholar]
- Zachos, J. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science 2001, 292, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Zachos, J.C.; Dickens, G.R.; Zeebe, R.E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 2008, 451, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, B.W.H.; Redfield, T.F. Apatite fission track and (U-Th)/He data from Fennoscandia: An example of underestimation of fission track annealing in apatite. Earth Planet. Sci. Lett. 2005, 236, 443–458. [Google Scholar] [CrossRef]
- Green, P.F.; Duddy, I.R. Interpretation of apatite (U-Th)/He ages and fission track ages from cratons. Earth Planet. Sci. Lett. 2006, 244, 541–547. [Google Scholar] [CrossRef]
- Spiegel, C.; Kohn, B.; Belton, D.; Berner, Z.; Gleadow, A. Apatite (U-Th-Sm)/He thermochronology of rapidly cooled samples: The effect of the implantation. Earth Planet. Sci. Lett. 2009, 285, 105–114. [Google Scholar] [CrossRef]
- Ksienzyk, A.K.; Dunkl, I.; Jacobs, J.; Fossen, H.; Kohlmann, F. From orogen to passive margin: Constraints from fission track and (U-Th)/He analyses on Mesozoic uplift and fault reactivation in SW Norway. Geol. Soc. Lond. Spec. Publ. 2014, 390, 679–702. [Google Scholar] [CrossRef] [Green Version]
- Kohn, B.P.; Lorencak, M.; Gleadow, A.J.W.; Kohlmann, F.; Raza, A.; Osadetz, K.G.; Sorjonen-Ward, P. A reappraisal of low-temperature thermochronology of the eastern Fennoscandia Shield and radiation-enhanced apatite fission-track annealing. Geol. Soc. Lond. Spec. Publ. 2009, 324, 193–216. [Google Scholar] [CrossRef]
- Fernie, N.; Glorie, S.; Jessell, M.W.; Collins, A.S. Thermochronological insights into reactivation of a continental shear zone in response to Equatorial Atlantic rifting (northern Ghana). Sci. Rep. 2018, 8, 16619. [Google Scholar] [CrossRef]
- McDannell, K.T.; Issler, D.R.; O’Sullivan, P.B. Radiation-enhanced fission track annealing revisited and consequences for apatite thermochronometry. Geochim. Cosmochim. Acta 2019, 252, 213–239. [Google Scholar] [CrossRef]
- Carter, A. The thermal history and annealing effects in zircons from the Ordovician of North Wales. Int. J. Radiat. Appl. Instrumentation. Part D Nucl. Tracks Radiat. Meas. 1990, 17, 309–313. [Google Scholar] [CrossRef]
- Galbraith, R.F.; Laslett, G.M. Statistical modelling of thermal annealing of fission tracks in zircon. Chem. Geol. 1997, 140, 123–135. [Google Scholar] [CrossRef]
- Shipilov, E.V.; Lobkovskiy, L.I.; Yurik, R.Y. Spatial–temporal trends of Late Mesozoic plume magmatism in the Arctic during formation of the Amerasian Basin. Dokl. Earth Sci. 2017. [Google Scholar] [CrossRef]
- Arzamastsev, A.A.; Vesolovskiy, R.V.; Travin, A.V.; Yudin, D.S.; Belyatsky, B.V. Paleozoic tholeiitic magmatism of the Kola province: Spatial distribution, age, and relation to alkaline magmatism. Petrology 2017, 25, 42–65. [Google Scholar] [CrossRef]
- Brandon, M.T. Decomposition of mixed grain age distributions using BinomFit. On Track 2002, 24, 13–18. [Google Scholar]
- Vermeesch, P. On the visualisation of detrital age distributions. Chem. Geol. 2012, 312–313, 190–194. [Google Scholar] [CrossRef]
- Green, P.F. A new look at statistics in fission-track dating. Nucl. Tracks 1981, 5, 77–86. [Google Scholar] [CrossRef]
NN | Sample No. | Latitude, °N * | Longitude, °E * | Locality | Rock name | Age, Ma | Method | Reference |
---|---|---|---|---|---|---|---|---|
1 | 514-1 | 69.689320 | 31.379680 | Liinakhamari | Tonalitic gneiss | 2780 | U-Pb zircon (SIMS) | [15] |
2 | 532-4 | 69.221293 | 33.418255 | Snezhnogorsk | Tonalitic gneiss | 2789 | U-Pb zircon (SIMS) | [15] |
3 | 533-4 | 69.222046 | 33.416460 | Snezhnogorsk | Gabbro pegmatite | 2500 | U-Pb baddeleyite (ID-TIMS) | [14] |
4 | 539-5 | 69.112630 | 33.383870 | Retinskoe | Gabbro pegmatite | 1983 | U-Pb baddeleyite (ID-TIMS) | [16] |
5 | 548-1 | 69.058179 | 35.008604 | Teriberka | Granodiorite | 2730 | The age is estimated by indirect evidence | A.V. Samsonov, unpubl. |
6 | 552-15 | 69.120363 | 36.054145 | Dalnie Zelentsy | Granite | 2730 | The age is estimated by indirect evidence | A.V. Samsonov, unpubl. |
7 | 563-3 | 69.115178 | 36.108886 | Dalnie Zelentsy | Tonalitic gneiss | 2836 | U-Pb zircon (SIMS) | [15] |
8 | 682-1 | 69.011853 | 36.531298 | Tryaschina Bay | Tonalitic gneiss | 2845 | U-Pb zircon (SIMS) | [15] |
9 | 680-5 | 68.831032 | 37.181274 | Chegodaevka Mt. | Tonalitic gneiss | 2850 | U-Pb zircon (SIMS) | [15] |
10 | 631-5 | 68.646679 | 37.771174 | Cape Litsky | Tonalitic gneiss | 2827 | U-Pb zircon (SIMS) | [15] |
11 | 639-3 | 68.591123 | 37.880255 | Mertvetskaya Bay | Granite | 2822 | U-Pb zircon (SIMS) | [15] |
12 | 676-4 | 68.440881 | 38.211200 | Dvorovaya Bay | Gabbro pegmatite | 1860 | U-Pb baddeleyite (ID-TIMS) | [17] |
13 | 676-3 | 68.441035 | 38.211450 | Dvorovaya Bay | Gabbro pegmatite | 1860 | U-Pb baddeleyite (ID-TIMS) | [17] |
14 | 675-3 | 68.378845 | 38.379579 | Varzina Bay | Granite | 2745 | U-Pb zircon (SIMS) | [15] |
NN | Sample No. | No. of Crystals | Track Density (×106 tracks/cm2) (No. of Tracks) | Mean Dpar (µm) | Mean U (ppm) | Age Dispersion (Pχ2) | Central Age (Ma) (±1σ) | Apatite Mean Track Length (µm ± 1 s.e.) (No. of Tracks) | Standard Deviation (µm) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Ps (Ns) | Pi (Ni) | Pd (Nd) | |||||||||
1 | 514-1 | 12 | 11.947 (233) | 9.332 (182) | 15.13 (31,666) | 2.81 | 7.95 | 0.00 (96.53%) | 274.7 ± 27.6 | 13.78 ± 0.5 (5) | 1.04 |
2 | 532-4 | 24 | 24.691 (511) | 17.588 (364) | 16.02 (31,666) | 2.50 | 12.82 | 0.00 (99.44%) | 317.9 ± 22.5 | 13.53 ± 0.3 (39) | 1.84 |
3 | 533-4 | 4 | 13.4 (72) | 9.492 (51) | 16.25 (31,666) | 2.63 | 6.89 | 0.00 (79.0%) | 324.2 ± 59.6 | 13.65 ± 0.5 (2) | 0.49 |
4 | 539-5 | 23 | 7.162 (310) | 5.337 (231) | 16.91 (31,666) | 3.26 | 3.69 | 0.00 (96.08) | 320.7 ± 28.5 | 14.40 ± 0.4 (7) | 1.08 |
5 * | 548-1 | 25 | 34.742 (840) | 32.674 (790) | 17.14 (31,666) | 2.30 | 24.2 | 0.00 (98.87%) | 258.8 ± 13.6 | 13.80 ± 0.2 (50) | 1.36 |
6 * | 552-15 | 25 | 23.533 (1145) | 17.059 (830) | 13.8 (31,666) | 1.82 | 14.66 | 0.01 (84.25%) | 270.1 ± 13.2 | 13.31 ± 0.1 (100) | 1.00 |
7 | 563-3 | 25 | 8.493 (469) | 5.686 (314) | 14.02 (31,666) | 1.87 | 4.83 | 0.01 (78.84%) | 296.5 ± 22.3 | 13.71 ± 0.3 (27) | 1.41 |
8 * | 682-1 | 26 | 21.853 (985) | 15.663 (706) | 14.69 (31,666) | 2.17 | 13.05 | 0.00 (98.73%) | 290.4 ± 15.2 | 13.61 ± 0.1 (100) | 1.18 |
9 | 680-5 | 25 | 10.393 (667) | 7.495 (481) | 14.24 (31,666) | 2.36 | 6.42 | 0.00 (92.4%) | 280.0 ± 17.5 | 12.98 ± 0.3 (21) | 1.65 |
10 | 631-5 | 25 | 13.716 (767) | 9.782 (547) | 14.91 (31,666) | 2.39 | 8.87 | 0.01 (71.76%) | 296.1 ± 17.4 | 13.20 ± 0.2 (20) | 1.08 |
11 * | 639-3 | 23 | 31.119 (1028) | 41.351 (1366) | 16.47 (31,666) | 2.59 | 31.8 | 0.00 (92.41%) | 177.2 ± 8.0 | 13.08 ± 0.2 (74) | 1.50 |
12 | 676-4 | 24 | 17.783 (890) | 10.53 (527) | 14.47 (31,666) | 2.06 | 8.65 | 0.05 (48.11%) | 344.7 ± 19.9 | 13.59 ± 0.2 (45) | 1.35 |
13 * | 676-3 | 57 | 10.641 (1261) | 6.076 (720) | 15.58 (31,666) | 2.50 | 4.67 | 0.26 (0.07%) | 383.8 ± 19.2 | 13.27 ± 0.2 (103) | 1.58 |
14 | 675-3 | 21 | 43.216 (817) | 38.032 (719) | 15.8 (31,666) | 2.71 | 35.03 | 0.00 (89.62%) | 255.1 ± 13.8 | 13.43 ± 0.3 (24) | 1.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veselovskiy, R.V.; Arató, R.; Bagdasaryan, T.E.; Samsonov, A.V.; Stepanova, A.V.; Arzamastsev, A.A.; Myshenkova, M.S. New Apatite Fission-Track Data from the Murmansk Craton, NE Fennoscandia: An Echo of Hidden Thermotectonic Events. Minerals 2020, 10, 1095. https://doi.org/10.3390/min10121095
Veselovskiy RV, Arató R, Bagdasaryan TE, Samsonov AV, Stepanova AV, Arzamastsev AA, Myshenkova MS. New Apatite Fission-Track Data from the Murmansk Craton, NE Fennoscandia: An Echo of Hidden Thermotectonic Events. Minerals. 2020; 10(12):1095. https://doi.org/10.3390/min10121095
Chicago/Turabian StyleVeselovskiy, Roman V., Róbert Arató, Tanya E. Bagdasaryan, Alexander V. Samsonov, Alexandra V. Stepanova, Andrey A. Arzamastsev, and Mariya S. Myshenkova. 2020. "New Apatite Fission-Track Data from the Murmansk Craton, NE Fennoscandia: An Echo of Hidden Thermotectonic Events" Minerals 10, no. 12: 1095. https://doi.org/10.3390/min10121095
APA StyleVeselovskiy, R. V., Arató, R., Bagdasaryan, T. E., Samsonov, A. V., Stepanova, A. V., Arzamastsev, A. A., & Myshenkova, M. S. (2020). New Apatite Fission-Track Data from the Murmansk Craton, NE Fennoscandia: An Echo of Hidden Thermotectonic Events. Minerals, 10(12), 1095. https://doi.org/10.3390/min10121095