Synthesis, Property and Mechanism Analysis of a Novel Polyhydroxy Organic Amine Shale Hydration Inhibitor
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis and Characterization of THEED
2.3. Tests by Using Shale Samples
2.4. Tests by Using Na-NMT
2.5. Particle Size Analysis Tests
2.6. Inhibition Mechanism Study
2.6.1. FT-IR Analysis
2.6.2. XRD Analysis
2.6.3. SEM Analysis
3. Results and Discussion
3.1. Characterizations of THEED
3.2. Inhibition Property Evaluation
3.2.1. Hot-Rolling Recovery Tests
3.2.2. Linear Swelling Tests
3.2.3. Particle Distribution Tests
3.3. Inhibition Mechanism Analysis
3.3.1. FT-IR Analysis
3.3.2. XRD Analysis
3.3.3. SEM Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ma, Y.S.; Cai, X.Y.; Zhao, P.R. China’s shale gas exploration and development: Understanding and practice. Petrol. Explor. Dev. 2018, 45, 589–603. [Google Scholar] [CrossRef]
- Adesoye, K. Shale Characterization for Evaluating Shale-drilling Fluid Interaction. Master’s Thesis, University of Oklahoma, Norman, OK, USA, 2009. [Google Scholar]
- Shadizadeh, S.R.; Moslemizadeh, A.; Dezaki, A.S. A novel nonionic surfactant for inhibiting shale hydration. Appl. Clay Sci. 2015, 118, 74–86. [Google Scholar] [CrossRef]
- Balaban, R.C.; Ferreira Vidal, E.L.; Borges, M.R. Design of experiments to evaluate clay swelling inhibition by different combinations of organic compounds and inorganic salts for application in water base drilling fluids. Appl. Clay Sci. 2015, 105–106, 124–130. [Google Scholar] [CrossRef]
- Chen, S.Y.; Shi, Y.P.; Yang, X.Y.; Xie, K.Z.; Cai, J.H. Design and evaluation of a surfactant–mixed metal hydroxide-based drilling fluid for maintaining wellbore stability in coal measure strata. Energies 2019, 12, 1862. [Google Scholar] [CrossRef]
- Ni, X.X.; Jiang, G.C.; Li, Y.Y.; Yang, L.L.; Li, W.Q.; Wang, K.; Deng, Z.Q. Synthesis of superhydrophobic nanofluids as shale inhibitor and study of the inhibition mechanism. Appl. Surf. Sci. 2019, 484, 957–965. [Google Scholar] [CrossRef]
- Jain, R.; Mahto, V.; Sharma, V.P. Evaluation of polyacrylamide-grafted-polyethylene glycol/silica nanocomposite as potential additive in water based drilling mud for reactive shale formation. J. Pet. Sci. Eng. 2015, 26, 526–537. [Google Scholar] [CrossRef]
- Moslemizadeh, A.; Shadizadeh, S.R.; Moomenie, M. Experimental investigation of the effect of henna extract on the swelling of sodium bentonite in aqueous solution. Appl. Clay Sci. 2015, 105–106, 78–88. [Google Scholar] [CrossRef]
- Uranta, K.G.; Rezaei-Gomari, S.; Russell, P.; Hamad, F. Studying the effectiveness of polyacrylamide (PAM) application in hydrocarbon reservoirs at different operational conditions. Energies 2018, 11, 2201. [Google Scholar] [CrossRef]
- Jia, H.; Huang, P.; Wang, Q.X.; Han, Y.G.; Wang, S.Y.; Zhang, F.; Pan, W.; Lv, K.H. Investigation of inhibition mechanism of three deep eutectic solvents as potential shale inhibitors in water-based drilling fluids. Fuel 2019, 244, 403–411. [Google Scholar] [CrossRef]
- Xuan, Y.; Jiang, G.C.; Li, Y.Y.; Wang, J.S.; Geng, H.N. Inhibiting effect of dopamine adsorption and polymerization on hydrated swelling of montmorillonite. Colloids Surf. A 2013, 422, 50–60. [Google Scholar] [CrossRef]
- Rana, A.; Arfaj, M.K.; Saleh, T.A. Advanced developments in shale inhibitors for oil production with low environmental footprints-A review. Fuel 2019, 247, 237–249. [Google Scholar] [CrossRef]
- Wilson, M.J.; Wilson, L. Clay mineralogy and shale instability: An alternative conceptual analysis. Clay Miner. 2014, 49, 127–145. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Kamal, M.S.; Al-Harthi, M. Polymeric and low molecular weight shale inhibitors: A review. Fuel 2019, 251, 187–217. [Google Scholar] [CrossRef]
- Stephens, M.; Gomez-Nava, S.; Churan, M. Laboratory Methods to Assess Shale Reactivity with Drilling Fluids; AADE-2009-NTCE-11-04; American Association of Drilling Engineers. National Technical Conference & Exhibition: New Orleans, LA, USA, 2009. [Google Scholar]
- Oort, E.V.; Hoxha, B.B.; Hale, A. How to Test Fluids for Shale Compatibility; AADE-16-FTCE-77; American Association of Drilling Engineers. The AADE Fluids Technical Conference and Exhibition: Houston, TX, USA, 2016. [Google Scholar]
- Anderson, R.L.; Ratcliffe, I.; Greenwell, H.C.; Williams, P.A.; Cliffe, S.; Coveney, P.V. Clay swelling-A challenge in the oilfield. Earth-Sci. Rev. 2010, 98, 201–216. [Google Scholar] [CrossRef]
- Teixeira, G.T.; Lomba, R.F.T.; Francisco, A.D.D.S.; da Silva, J.F.C.; Nascimento, R.S.V. Hyperbranched polyglycerols, obtained from environmentally benign monomer, as reactive clays inhibitors for water-based drilling fluids. J. Appl. Polym. Sci. 2014, 131, 40384–40391. [Google Scholar] [CrossRef]
- Du, W.C.; Pu, X.L.; Sun, J.S.; Luo, X.; Zhang, Y.; Li, L. Synthesis and evaluation of a novel monomeric amine as sodium montmorillonite swelling inhibitor. Adsorpt. Sci. Technol. 2018, 36, 655–668. [Google Scholar] [CrossRef]
- Jain, R.; Mahto, V. Evaluation of polyacrylamide/claycomposite as a potential drilling fluid additive in inhibitive water based drilling fluid system. J. Petrol. Sci. Eng. 2015, 133, 612–621. [Google Scholar] [CrossRef]
- Gholami, R.; Elochukwu, H.; Fakhari, N.; Sarmadivaleh, M. A review on borehole instability in active shale formations: Interactions, mechanisms and inhibitors. Earth-Sci. Rev. 2018, 177, 2–13. [Google Scholar] [CrossRef]
- Salles, F.; Douillard, J.M.; Bildstein, O.; Gaudin, C.; Prelot, B.; Zajac, J.; Van Damme, H. Driving force for the hydration of the swelling clays: Case of montmorillonites saturated with alkaline-earth cations. J. Colloid Interface Sci. 2013, 395, 269–276. [Google Scholar] [CrossRef]
- Zhao, X.; Qiu, Z.S.; Zhang, Y.J.; Zhong, H.Y.; Huang, W.A.; Tang, Z.C. Zwitterionic polymer P (AM-DMC-AMPS) as a low-molecular-weight encapsulator in deepwater drilling fluid. Appl. Sci. 2017, 7, 594. [Google Scholar] [CrossRef]
- Lin, C.Y.; Li, S.X.; Chen, M.; Jiang, R. Removal of congo red dye by gemini surfactant C12-4-C12·2 Br-modified chitosanhydrogel beads. J. Disper. Sci. Technol. 2017, 38, 46–57. [Google Scholar] [CrossRef]
- Zhao, W.W.; Wang, Y.L. Coacervation with surfactants: From single-chain surfactants to Gemini surfactants. Adv. Colloid Interfaces 2017, 239, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.P.; Song, Z.Z.; Zhao, J.J.; Hu, Z.Y.; Zhang, Y.; Jiang, Q.Z. Self-assembly properties of ultra-long-chain gemini surfactants bearing multiple amide groups with high performance in fracturing fluid application. Colloids Surf. A: Physicochem. Eng. Asp. 2017, 523, 62–70. [Google Scholar] [CrossRef]
- Menger, F.M.; Littau, C.A. Gemini-surfactants: Synthesis and properties. J. Am. Chem. Soc. 1991, 113, 1451–1452. [Google Scholar] [CrossRef]
- Li, R.Q.; Yan, F.M.; Zhang, J.L.; Xu, C.F.; Wang, J.B. The self-assembly properties of a series of polymerizable cationicgemini surfactants: Effect of the acryloxyl group. Colloid Surf. A 2014, 444, 276–282. [Google Scholar] [CrossRef]
- Boek, E.S.; Coveney, P.V.; Skipper, N.T. Monte carlo molecular modeling studies of hydrated Li-, Na-, and K-smectites: Understanding the role of potassium as a clay swelling inhibitor. J. Am. Chem. Soc. 1995, 117, 12608–12617. [Google Scholar] [CrossRef]
- Huang, X.; Shen, H.K.; Sun, J.S.; Lv, K.H.; Liu, J.P.; Dong, X.D.; Luo, S.J. Nanoscale laponite as a potential shale inhibitor in water based drilling fluid for stabilizing wellbore stability and mechanism study. ACS Appl. Mater. Interfaces 2018, 10, 33252–33259. [Google Scholar] [CrossRef]
- Caglar, B.; Topcu, C.; Coldur, F.; Sarp, G.; Caglar, S.; Tabak, A.; Sahin, E. Structural, thermal, morphological and surface charge properties of dodecyltrimethylammonium-smectite composites. J. Mol. Liq. 2016, 1105, 70–79. [Google Scholar] [CrossRef]
- Suter, J.L.; Coveney, P.V.; Anderson, R.L.; Greenwell, H.C.; Cliffe, S. Rule based design of clay-swelling inhibitors. Energy Environ. Sci. 2011, 4, 4572–4586. [Google Scholar] [CrossRef]
- Muayad, E.; Laurence, N.W.; Georg, G.; Meyer, T.; Schafmeister, M.T.; Kruth, A.; Testrich, H. Synthesis of hydroxy-sodalite/cancrinite zeolites from calcite-bearing kaolin for the removal of heavy metal ions in aqueous media. Minerals 2019, 9, 484–494. [Google Scholar]
- Tuchowska, M.; Wołowiec, M.; Soli´nska, A.; Kościelniak, A.; Bajda, T. Organo-modified vermiculite: Preparation, characterization, and sorption of arsenic compounds. Minerals 2019, 9, 483. [Google Scholar] [CrossRef]
- Slaný, M.; Jankovič, Ľ.; Madejová, J. Structural characterization of organo-montmorillonites prepared from a series of primary alkylamines salts: Mid-IR and near-IR study. Appl. Clay Sci. 2019, 176, 11–20. [Google Scholar] [CrossRef]
- Madejová, J.; Sekeráková, Ľ.; Bizovská, V.; Slaný, M.; Jankovič, Ľ. Near-infrared spectroscopy as an effective tool for monitoring the conformation of alkylammonium surfactants in montmorillonite interlayers. Vib. Spectrosc. 2016, 84, 44–52. [Google Scholar] [CrossRef]
- Li, M.C.; Ren, S.X.; Zhang, X.Q.; Dong, L.L.; Lei, T.Z.; Lee, S.Y.; Wu, Q.L. Surface-chemistry-tuned cellulose nanocrystals in a bentonite suspension for water-based drilling fluids. ACS Appl. Nano Mater. 2018, 1, 7039–7051. [Google Scholar] [CrossRef]
- Li, M.C.; Wu, Q.L.; Song, K.L.; French, A.D.; Mei, C.T.; Lei, T.Z. pH-responsive water-based drilling fluids containing bentonite and chitin nanocrystals. ACS Sustain. Chem. Eng. 2018, 6, 33783–33795. [Google Scholar] [CrossRef]
- Vryzas, Z.; Kelessidis, V.C. Nano-based drilling fluids: A review. Energies 2017, 10, 540. [Google Scholar] [CrossRef]
Mineral Compositions | Kaolinite | Chlorite | Illite | Sodium Bentonite | Illite/Sodium Bentonite |
---|---|---|---|---|---|
Content/% | 0.0 | 26.3 | 65.1 | 8.6 | 10.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, W.; Wang, X.; Chen, G.; Zhang, J.; Slaný, M. Synthesis, Property and Mechanism Analysis of a Novel Polyhydroxy Organic Amine Shale Hydration Inhibitor. Minerals 2020, 10, 128. https://doi.org/10.3390/min10020128
Du W, Wang X, Chen G, Zhang J, Slaný M. Synthesis, Property and Mechanism Analysis of a Novel Polyhydroxy Organic Amine Shale Hydration Inhibitor. Minerals. 2020; 10(2):128. https://doi.org/10.3390/min10020128
Chicago/Turabian StyleDu, Weichao, Xiangyun Wang, Gang Chen, Jie Zhang, and Michal Slaný. 2020. "Synthesis, Property and Mechanism Analysis of a Novel Polyhydroxy Organic Amine Shale Hydration Inhibitor" Minerals 10, no. 2: 128. https://doi.org/10.3390/min10020128
APA StyleDu, W., Wang, X., Chen, G., Zhang, J., & Slaný, M. (2020). Synthesis, Property and Mechanism Analysis of a Novel Polyhydroxy Organic Amine Shale Hydration Inhibitor. Minerals, 10(2), 128. https://doi.org/10.3390/min10020128