Tonalite-Dominated Magmatism in the Abitibi Subprovince, Canada, and Significance for Cu-Au Magmatic-Hydrothermal Systems
Abstract
:1. Introduction
2. Materials and Methods
3. Spatial Distribution of Intrusive Rocks
3.1. Distribution of the Main Lithologies
- Granodiorite-granite (30.5%)—units with granite and/or granodiorite as the main lithology;
- Tonalite-granodiorite (21.7%)—units dominated by tonalite and granodiorite intrusive rocks with similar or distinct ages;
- Tonalite (20.6%)—units dominated by tonalite rocks and locally referred to as leucotonalite, i.e., quartz-rich tonalite and trondhjemite;
- Tonalite-diorite (6.5%)—diorite and tonalite dominated intrusions;
- Diorite (6.2%)—diorite-dominated plutons;
- Tonalite-granodiorite-(diorite) (1.0%)—tonalite- and granodiorite-rich intrusions with minor amounts of diorite;
- Syenite, monzodiorite, carbonatite, among other (8.2%)—intrusions of the syntectonic period that contain more K than the intrusions considered here;
- Syenite, monzodiorite, granodiorite, tonalite (4.9%)—syntectonic intrusions that crosscut tonalite-dominated intrusions of the synvolcanic and syntectonic periods;
- Unclassified (0.4%)—units identified as intermediate-felsic intrusions.
3.2. Distribution of Synvolcanic Intrusions
4. Chemistry
5. Discussion
- Mantle-derived magma (tholeiitic affinity) formed lava flow piles and layered intrusions, and locally induced anatexis to produce felsic magmas emplaced as flows and pyroclastic units with calc-alkaline-like affinities [4];
- High-pressure partial melting of basalt (TTG magma) formed plutons possibly associated with volcanic units [46];
- Hybrid magmas from the mixing of TTG melt and tholeiitic magma formed plutons and, possibly, volcanic units that remain to be identified.
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goodwin, A.M.; Ridler, R.H. The Abitibi orogenic belt. In Proceedings of the Symposium on basins and geosynclines of the Canadian Shield, Wininipeg, MB, Canada, 10–15 May 1970; Baer, A.J., Ed.; Geological Association of Canada: St. John, NL, Canada, 1970; Volume 70, pp. 1–31. [Google Scholar]
- Laurent, O.; Martin, H.; Moyen, J.-F.; Doucelance, R. The diversity and evolution of late-Archean granitoids: Evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos 2014, 205, 208–235. [Google Scholar] [CrossRef]
- Moyen, J.-F.; Laurent, O. Archaean tectonic systems: A view from igneous rocks. Lithos 2018, 302, 99–125. [Google Scholar] [CrossRef]
- Mathieu, L.; Snyder, D.B.; Bedeaux, P.; Cheraghi, S.; Lafrance, B.; Thurston, P.; Sherlock, R. Deep into the Chibougamau area, Abitibi Subprovince: structure of a Neoarchean crust revealed by seismic reflection profiling. Earth Sp. Sci. Open Arch. 2020. [Google Scholar] [CrossRef]
- Katz, L.R.; Kontak, D.J.; Dubé, B.; McNicoll, V. The geology, petrology, and geochronology of the Archean Côté Gold large-tonnage, low-grade intrusion-related Au (±Cu) deposit, Swayze greenstone belt, Ontario, Canada. Can. J. Earth Sci. 2017, 54, 173–202. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, L.; Racicot, D. Petrogenetic Study of the Multiphase Chibougamau Pluton: Archaean Magmas Associated with Cu-Au Magmato-Hydrothermal Systems. Minerals 2019, 9, 174. [Google Scholar] [CrossRef] [Green Version]
- Leclerc, F.; Roy, P.; Pilote, P.; Bédard, J.H.; Harris, L.B.; McNicoll, V.J.; van Breemen, O.; David, J.; Goulet, N. Géologie de la Région de Chibougamau; MERN report RG 2015-03; Ministère de l’Énergie et des Ressources Naturelles: Québec, QC, Canada, 2017. [Google Scholar]
- Thurston, P.C.; Ayer, J.A.; Goutier, J.; Hamilton, M.A. Depositional gaps in Abitibi greenstone belt stratigraphy: A key to exploration for syngenetic mineralization. Econ. Geol. 2008, 103, 1097–1134. [Google Scholar] [CrossRef] [Green Version]
- Martin, H.; Moyen, J.-F.; Guitreau, M.; Blichert-Toft, J.; Le Pennec, J.-L. Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos 2014, 198, 1–13. [Google Scholar] [CrossRef]
- Moyen, J.-F.; Martin, H. Forty years of TTG research. Lithos 2012, 148, 312–336. [Google Scholar] [CrossRef]
- SIGEOM Système d’information géominière du Québec. Available online: http://sigeom.mines.gouv.qc.ca (accessed on 1 January 2020).
- Montsion, R.M.; Thurston, P.; Ayer, J. Superior Data Compilation. Available online: https://merc.laurentian.ca/research/metal-earth/superior-compilation (accessed on 1 January 2020).
- Beakhouse, G.P. The Abitibi Subprovince Plutonic Record: Tectonic and Metallogenic Implications; Open File report 6268; Ontario Geological Survey: Sudbury, ON, Canada, 2011. [Google Scholar]
- Carr, S.D.; Easton, R.M.; Jamieson, R.A.; Culshaw, N.G. Geologic transect across the Grenville orogen of Ontario and New York. Can. J. Earth Sci. 2000, 37, 193–216. [Google Scholar] [CrossRef]
- Percival, J.A.; West, G.F. The Kapuskasing uplift: a geological and geophysical synthesis. Can. J. Earth Sci. 1994, 31, 1256–1286. [Google Scholar] [CrossRef]
- Mortensen, J.K. U–Pb geochronology of the eastern Abitibi subprovince. Part 1: Chibougamau–Matagami–Joutel region. Can. J. Earth Sci. 1993, 30, 11–28. [Google Scholar] [CrossRef]
- Krogh, T.E. Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochim. Cosmochim. Acta 1982, 46, 637–649. [Google Scholar] [CrossRef]
- Pilote, P.; Dion, C.; Joanisse, A.; David, J.; Machado, N.; Kirkham, R.V.; Robert, F. Géochronologie des minéralisations d’affiliation magmatique de l’Abitibi, secteurs Chibougamau et de Troilus-Frotet: implications géotectoniques. In Programme et résumés, Séminaire d’information sur la recherche géologique; MRN report, DV-97-03; Ministère des Ressources Naturelles: Québec, QC, Canada, 1997; p. 47. [Google Scholar]
- McNicoll, V.; Dubé, B.; Goutier, J.; Mercier-Langevin, P.; Dion, C.; Monecke, T.; Ross, P.-S.; Thurston, P.; Pilote, P.; Bédard, J.; et al. Nouvelles datations U-Pb dans le Cadre du Projet ICG-3 Abitibi/Plan Cuivre: Incidences pour l’Interprétation Géologique et l’Exploration des Métaux Usuels; MRN report DV-2008-06; Ministère des Ressources Naturelles: Québec, QC, Canada, 2008. [Google Scholar]
- David, J.; Vaillancourt, D.; Bandyayera, D.; Simard, M.; Goutier, J.; Pilote, P.; Dion, C.; Barbe, P. Datations U-Pb Effectuées dans les Sousprovinces d’Ashuanipi, de La Grande, d’Opinaca et d’Abitibi en 2008–2009; MERN report, RP-2010-11; Ministère de l’Énergie et des Ressources Naturelles: Québec, QC, Canada, 2011. [Google Scholar]
- Allard, G.O. Doré Lake Complex and its importance to Chibougamau Geology and Metallogeny; MRN report DPV-386; Ministère des Ressources Naturelles: Québec, QC, Canada, 1976. [Google Scholar]
- Mathieu, L. Origin of the Vanadiferous Serpentine-Magnetite Rocks of the Mt. Sorcerer Area, Lac Doré Layered Intrusion, Chibougamau, Québec. Geosciences 2019, 9, 110. [Google Scholar] [CrossRef] [Green Version]
- Maier, W.D.; Barnes, S.-J.; Pellet, T. The economic significance of the Bell River complex, Abitibi subprovince, Quebec. Can. J. Earth Sci. 1996, 33, 967–980. [Google Scholar] [CrossRef]
- Paradis, S.; Ludden, J.; Gélinas, L. Evidence for contrasting compositional spectra in comagmatic intrusive and extrusive rocks of the late Archean Blake River Group, Abitibi, Quebec. Can. J. Earth Sci. 1988, 25, 134–144. [Google Scholar] [CrossRef]
- Feng, R.; Kerrich, R. Single zircon age constraints on the tectonic juxtaposition of the Archean Abitibi greenstone belt and Pontiac subprovince, Quebec, Canada. Geochim. Cosmochim. Acta 1991, 55, 3437–3441. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth-Science Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Irvine, T.N.J.; Baragar, W. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef] [Green Version]
- Streckeisen, A. Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites, and melilitic rocks: Recommendations and suggestions of the IUGS Subcommission on the Systematics of Igneous Rocks. Geology 1979, 7, 331–335. [Google Scholar] [CrossRef]
- Le Maitre, R.W.; Streckeisen, A.; Zanettin, B.; Le Bas, M.J.; Bonin, B.; Bateman, P.; Bellieni, G.; Dudek, A.; Efremova, S.; Keller, J. Igneous rocks: A classification and glossary of terms; Recommendations of the International Union of Geological Sciences. In Subcommission on the Systematics of Igneous Rocks; Cambridge University Press: Cambridge, UK, 2002; p. 230. [Google Scholar]
- Hutchison, C.S. The norm; its variations, their calculaton and relationships. Schweizerische Mineral. und Petrogr. Mitteilungen 1975, 55, 243–256. [Google Scholar]
- Le Maitre, R.W. The chemical variability of some common igneous rocks. J. Petrol. 1976, 17, 589–598. [Google Scholar] [CrossRef]
- Hofmann, A.W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 1988, 90, 297–314. [Google Scholar] [CrossRef] [Green Version]
- McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Kerrich, R.; Polat, A. Archean greenstone-tonalite duality: thermochemical mantle convection models or plate tectonics in the early Earth global dynamics? Tectonophysics 2006, 415, 141–165. [Google Scholar] [CrossRef]
- Bedard, J.H.; Harris, L.B.; Thurston, P.C. The hunting of the snArc. Precambrian Res. 2013, 229, 20–48. [Google Scholar] [CrossRef]
- Hanson, G.N. The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth Planet. Sci. Lett. 1978, 38, 26–43. [Google Scholar] [CrossRef]
- Liou, P.; Guo, J. Generation of Archaean TTG Gneisses Through Amphibole Dominated Fractionation. J. Geophys. Res. Solid Earth 2019, 124, 3605–3619. [Google Scholar] [CrossRef]
- Klein, M.; Stosch, H.-G.; Seck, H.A. Partitioning of high field-strength and rare-earth elements between amphibole and quartz-dioritic to tonalitic melts: an experimental study. Chem. Geol. 1997, 138, 257–271. [Google Scholar] [CrossRef]
- Drake, M.J.; Weill, D.F. Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+, and other REE between plagioclase feldspar and magmatic liquid: an experimental study. Geochim. Cosmochim. Acta 1975, 39, 689–712. [Google Scholar] [CrossRef]
- Moyen, J.-F. High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. Lithos 2009, 112, 556–574. [Google Scholar] [CrossRef]
- Richards, J.P.; Kerrich, R. Special paper: adakite-like rocks: their diverse origins and questionable role in metallogenesis. Econ. Geol. 2007, 102, 537–576. [Google Scholar] [CrossRef]
- Laurent, O.; Björnsen, J.; Wotzlaw, J.-F.; Bretscher, S.; Silva, M.P.; Moyen, J.-F.; Ulmer, P.; Bachmann, O. Earth’s earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions. Nat. Geosci. 2020, 1–7. [Google Scholar] [CrossRef]
- Allard, G.O.; Caty, J.L. Géologie du quart nordest et d’une partie du quart sud-est du canton de Lemoine, comtés d’Abitibi-Est et de Roberval; MRN report RP-566; Ministère des ressources naturelles: Québec, QC, Canada, 1969. [Google Scholar]
- Gaboury, D. Geochemical approaches in the discrimination of synvolcanic intrusions as a guide for volcanogenic base metal exploration: an example from the Abitibi belt, Canada. Appl. Earth Sci. 2006, 115, 71–79. [Google Scholar] [CrossRef]
- Abbott, D.; Drury, R.; Smith, W.H.F. Flat to steep transition in subduction style. Geology 1994, 22, 937–940. [Google Scholar] [CrossRef]
- Martin, H.; Moyen, J.-F. Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth. Geology 2002, 30, 319–322. [Google Scholar] [CrossRef]
- Pilote, P. Metallogenic Evolution and Geology of the Chibougamau Area-from Porphyry Cu-Au-Mo to Mesothermal Lode Gold Deposits; Open File 3143; Geological Survey of Canada: Québec, QC, Canada, 1995. [Google Scholar]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Richards, J.P. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology 2009, 37, 247–250. [Google Scholar] [CrossRef]
- Richards, J.P. A shake-up in the porphyry world? Econ. Geol. 2018, 113, 1225–1233. [Google Scholar] [CrossRef]
- Chiaradia, M.; Caricchi, L. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Botcharnikov, R.E.; Linnen, R.L.; Wilke, M.; Holtz, F.; Jugo, P.J.; Berndt, J. High gold concentrations in sulphide-bearing magma under oxidizing conditions. Nat. Geosci. 2011, 4, 112. [Google Scholar] [CrossRef]
- Chelle-Michou, C.; Chiaradia, M. Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits. Contrib. to Mineral. Petrol. 2017, 172, 105. [Google Scholar] [CrossRef] [Green Version]
Sigeom Dataset | Beakhouse Dataset | |||||
---|---|---|---|---|---|---|
(La/Yb)N < 6 | (La/Yb) N > 6 | (La/Yb) N < 6 | (La/Yb) N > 6 | |||
Field 1 | CIPW 2 | Field | CIPW | Field | Field | |
Granite, granodiorite | 8.73 % | 11.11% | 29.93% | 39.29% | 30% | 35.08% |
Diorite | 39.29 % | 32.14% | 17.01% | 10.03% | 20% | 13.61% |
Tonalite | 32.54 % | 45.24% | 40.14% | 35.37% | 40% | 27.22% |
Trondhjemite | 10.32 % | 2.55% | ||||
Syenite, monzodiorite | 1.59 % | 4.93% | ||||
Felsic intrusions | 6.75 % | 3.57% | 10% | 9.95% | ||
Intermediate intrusions | 0.79 % | 1.87% | 14.13% | |||
Other | 11.15% | 15.31% | ||||
n data | 252 | 588 | 10 | 191 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathieu, L.; Crépon, A.; Kontak, D.J. Tonalite-Dominated Magmatism in the Abitibi Subprovince, Canada, and Significance for Cu-Au Magmatic-Hydrothermal Systems. Minerals 2020, 10, 242. https://doi.org/10.3390/min10030242
Mathieu L, Crépon A, Kontak DJ. Tonalite-Dominated Magmatism in the Abitibi Subprovince, Canada, and Significance for Cu-Au Magmatic-Hydrothermal Systems. Minerals. 2020; 10(3):242. https://doi.org/10.3390/min10030242
Chicago/Turabian StyleMathieu, Lucie, Alexandre Crépon, and Daniel J. Kontak. 2020. "Tonalite-Dominated Magmatism in the Abitibi Subprovince, Canada, and Significance for Cu-Au Magmatic-Hydrothermal Systems" Minerals 10, no. 3: 242. https://doi.org/10.3390/min10030242
APA StyleMathieu, L., Crépon, A., & Kontak, D. J. (2020). Tonalite-Dominated Magmatism in the Abitibi Subprovince, Canada, and Significance for Cu-Au Magmatic-Hydrothermal Systems. Minerals, 10(3), 242. https://doi.org/10.3390/min10030242