U-Pb Zircon Dating of Migmatitic Paragneisses and Garnet Amphibolite from the High Pressure Seve Nappe Complex in Kittelfjäll, Swedish Caledonides
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Petrography and Mineral Chemistry
4.1.1. Migmatitic Paragneisses
4.1.2. Garnet Amphibolite
4.2. Zr-in-Rutile Thermometry
4.3. Zircon U-Pb Dating
4.4. Trace Element Chemistry of Zircon
5. Discussion
5.1. Metamorphic Evolution
5.2. U-Pb Ages and Conditions of Zircon Formation
5.3. Tectonic Remarks
6. Conclusions
- The migmatitic paragneisses preserve remnants of the peak pressure mineral assemblage. The following exhumation and dehydration- and decompression-driven migmatization profusely overprinted the primary (U)HP mineral assemblage under granulite and amphibolite facies conditions.
- The migmatitic paragneisses from Kittelfjäll show a petrological resemblance to metasediments representing the Seve Nappe Complex in Jämtland and other localities in southern Västerbotten. However, they are significantly different compared to the Seve Nappe Complex metasediments in Norrbotten. Despite the petrological differences between the Seve Nappe Complex in Kittelfjäll and Norrbotten, the speculated age of peak pressure metamorphism of ≥480 Ma corresponds to the age of eclogite facies metamorphism known from Norrbotten.
- The majority of the metamorphic zircon rims in the paragneisses originated from partial melt crystallization and/or dissolution–reprecipitation. Hence, the obtained lower intercept ages of 474.8 ± 5.8, 479.5 ± 2.7, and 473.0 ± 4.9 Ma reflect the timing of the granulite facies metamorphism and related migmatization. The single concordia age of 469.1 ± 4.5 Ma obtained from the paragneisses presumably represents the minimum melting age.
- The zircon from the garnet amphibolite yielded the concordia age of 471.7 ± 3.4 Ma, interpreted as growth under granulite facies conditions, which is in agreement with the ages obtained from the host paragneisses.
- The protolith of the studied garnet amphibolite could have been peridotitic, which is only locally expressed by relict Cr-rich paragenesis, including Cr-garnet and chromite.
- The obtained age of migmatization matches the observed age gradient of metamorphism from the Late Ordovician/early Silurian period in the south to the Early Ordovician/late Cambrian period in the north of the Seve Nappe Complex of the Scandinavian Caledonides.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gee, D.G. A tectonic model for the central part of the Scandinavian Caledonides. Am. J. Sci. 1975, 275-A, 468–515. [Google Scholar]
- Dallmeyer, R.D.; Gee, D.G. 40Ar/39Ar mineral dates from retrogressed eclogites within the Baltoscandian miogeocline: Implications for a polyphase Caledonian orogenic evolution. Geol. Soc. Am. Bulletic 1986, 97, 26–34. [Google Scholar] [CrossRef]
- Solyom, Z.; Andréasson, P.-G.; Johansson, I. Geochemistry of amphibolites from Mt. Sylarna, Central Scandinavian Caledonides. Geol. Föreningen i Stock. Förhandlingar 1979, 101, 17–25. [Google Scholar] [CrossRef]
- Svenningsen, O.M. Onset of seafloor spreading in the Iapetus Ocean at 608 Ma: Precise age of the Sarek Dyke Swarm, northern Swedish Caledonides. Precambrian Res. 2001, 110, 241–254. [Google Scholar] [CrossRef]
- Gee, D.G.; Fossen, H.; Henriksen, N.; Higgins, A.K. From the Early Paleozoic Platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland. Episodes 2008, 31, 44–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gee, D.G.; Janák, M.; Majka, J.; Robinson, P.; Van Roermund, H.L.M. Subduction along and within the Baltoscandian margin during closing of the Iapetus Ocean and Baltica- Laurentia collision. Lithosphere 2012, 5, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Cuthbert, S.J.; Carswell, D.A.; Krogh Ravna, E.J.; Wain, A. Eclogites and eclogites in the Western Gneiss Region, Norwegian Caledonides. Lithos 2000, 52, 165–195. [Google Scholar] [CrossRef]
- Froitzheim, N.; Miladinova, I.; Janák, M.; Kullerud, K.; Krogh Ravna, E.J.; Majka, J.; Fonseca, R.O.C.; Münker, C.; Nagel, T.J. Devonian subduction and syncollisional exhumation of continental crust in Lofoten, Norway. Geology 2016, 44, 223–226. [Google Scholar] [CrossRef]
- Krogh Ravna, E.J.; Roux, M.R.M. Metamorphic evolution of the Tønsvika Eclogite, Tromsø Nappe—Evidence for a new UHPM province in the Scandinavian Caledonides. Int. Geol. Rev. 2006, 48, 861–881. [Google Scholar] [CrossRef]
- Janák, M.; Krogh Ravna, E.J.; Kullerud, K. Contraining peak P-T conditions in UHP eclogites: Calculates phase equilibria in kyanite- and phengite-bearing eclogite of the Tromsø Nappe, Norway. J. Metamorph. Geol. 2012, 30, 377–396. [Google Scholar] [CrossRef]
- Ziemniak, G.; Kośmińska, K.; Petrík, I.; Janák, M.; Walczak, K.; Manecki, M.; Majka, J. Th–U–total Pb monazite geochronology records Ordovician (444 Ma) metamorphism/partial melting and Silurian (419 Ma) thrusting in the Kåfjord Nappe, Norwegian Arctic Caledonides. Geol. Carpathica 2019, 70, 494–511. [Google Scholar] [CrossRef]
- Andréasson, P.G. The Baltoscandian Margin in Neoproterozoic-early Palaeozoic times. Some constraints on terrane derivation and accretion in the Arctic Scandinavian Caledonides. Tectonophysics 1994, 231, 1–32. [Google Scholar] [CrossRef]
- Zachrisson, E. The westerly extension of Seve rocks within the Seve-Köli Nappe Complex in the Scandinavian Caledonides. Geol. Föreningen i Stock. Förhandlingar 1973, 95, 243–251. [Google Scholar] [CrossRef]
- Klonowska, I.; Janák, M.; Majka, J.; Petrík, I.; Froitzheim, N.; Gee, D.G.; Sasinková, V. Microdiamond on Åreskutan confirms regional UHP metamorphism in the Seve Nappe Complex of the Scandinavian Caledonides. J. Metamorph. Geol. 2017, 35, 541–564. [Google Scholar] [CrossRef]
- Clos, F.; Gilio, M.; Roermund, H.L.M. Fragments of deeper parts of the hanging wall mantle preserved as orogenic peridotites in the central belt of the Seve Nappe, Sweden. Lithos 2014, 192–195, 8–20. [Google Scholar] [CrossRef]
- Brueckner, H.K.; Van Roermund, H.L.M. Concurrent HP metamorphism on both margins of Iapetus: Ordovician ages for eclogites and garnet pyroxenites from the Seve Nappe Complex, Swedish Caledonides. J. Geol. Soc. 2007, 164, 117–128. [Google Scholar] [CrossRef]
- Fassmer, K.; Klonowska, I.; Walczak, K.; Andersson, B.; Froitzheim, N.; Majka, J.; Fonseca, R.O.C.; Münker, C.; Janák, M.; Whitehouse, M. Middle Ordovician subduction of continental crust in the Scandinavian Caledonides: An example from Tjeliken, Seve Nappe Complex, Sweden. Contrib. Mineral. Petrol. 2017, 172, 103. [Google Scholar] [CrossRef]
- Ladenberger, A.; Be’eri-Shlevin, Y.; Claesson, S.; Gee, D.G.; Majka, J.; Romanova, I.V. Tectonometamorphic evolution of the Åreskutan Nappe—Caledonian history revealed by SIMS U–Pb zircon geochronology. In New Perspectives on the Caledonides of Scandinavia and Related Areas; Corfu, F., Gasser, D., Chew, D.M., Eds.; Geological Society: London, UK, 2014; pp. 337–368. [Google Scholar]
- Albrecht, L.G. Early Structural and Metamorphic Evolution of the Scandinavian Caledonides: A Study of the Eclogite-Bearing Seve Nappe Complex at the Arctic Circle, Sweden; Lund University: Lund, Sweden, 2000. [Google Scholar]
- Bukała, M.; Klonowska, I.; Barnes, C.; Majka, J.; Kośmińska, K.; Janák, M.; Fassmer, K.; Broman, C.; Luptáková, J. UHP metamorphism recorded by phengite eclogite from the Caledonides of northern Sweden: P–T path and tectonic implications. J. Metamorph. Geol. 2018, 36, 547–566. [Google Scholar] [CrossRef]
- Mørk, M.B.E.; Kullerud, K.; Stabel, A. Sm-Nd dating of Seve eclogites, Norrbotten, Sweden—Evidence for early Caledonian (505 Ma) subduction. Contrib. Mineral. Petrol. 1988, 99, 344–351. [Google Scholar] [CrossRef]
- Root, D.; Corfu, F. U–Pb geochronology of two discrete Ordovician high-pressure metamorphic events in the Seve Nappe Complex, Scandinavian Caledonides. Contrib. Mineral. Petrol. 2012, 163, 769–788. [Google Scholar] [CrossRef]
- Barnes, C.; Majka, J.; Schneider, D.; Walczak, K.; Bukała, M.; Kośmińska, K.; Tokarski, T.; Karlsson, A. High-spatial resolution dating of monazite and zircon reveals the timing of subduction—Exhumation of the Vaimok Lens in the Seve Nappe Complex (Scandinavian Caledonides). Contrib. Mineral. Petrol. 2019, 174, 5. [Google Scholar] [CrossRef] [Green Version]
- Wiliams, I.S.; Claesson, S. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. II. Ion microprobe zircon U-Th-Pb. Contrib. Mineral. Petrol. 1987, 97, 205–217. [Google Scholar] [CrossRef]
- Petrík, I.; Janák, M.; Klonowska, I.; Majka, J.; Froitzheim, N.; Yoshida, K.; Sasinková, V.; Konečny, P.; Vaculovič, T. Monazite behaviour during metamorphic evolution of a diamond- bearing gneiss: A case study from the Seve Nappe Complex, Scandinavian Caledonides. J. Petrol. 2019, 60, 1773–1796. [Google Scholar] [CrossRef]
- Grimmer, J.C.; Glodny, J.; Drüppel, K.; Greiling, R.O.; Kontny, A. Early- to mid-Silurian extrusion wedge tectonics in the central Scandinavian Caledonides. Geology 2015, 43, 347–350. [Google Scholar] [CrossRef]
- Majka, J.; Rosén, Å.; Janák, M.; Froitzheim, N.; Klonowska, I.; Manecki, M.; Sasinková, V.; Yoshida, K. Microdiamond dicovered in the Seve Nappe (Scandinavian Caledonides) and its exhumation by the “vacuum-cleaner” mechanism. Geology 2014, 42, 1107–1110. [Google Scholar] [CrossRef]
- Klonowska, I.; Majka, J.; Janák, M.; Gee, D.G.; Ladenberger, A. Pressure-temperature evolution of a kyanite-garnet pelitic gneiss from Åreskutan: Evidence of ultra-high-pressure metamorphism of the Seve Nappe Complex, west-central Jämtland, Swedish Caledonides. In New Perspectives on the Caledonides of Scandinavia and Related Areas; Corfu, F., Gasser, D., Chew, D.M., Eds.; Geological Society: London, UK, 2014; pp. 321–336. [Google Scholar]
- Majka, J.; Be’eri-Shlevin, Y.; Gee, D.G.; Ladenberger, A.; Claesson, S.; Konečny, P.; Klonowska, I. Multiple monazite growth in the Åreskutan migmatite: Evidence for a polymetamorphic Late Ordovician to Late Silurian evolution in the Seve Nappe Complex of west-central Jämtland, Sweden. J. Geosci. 2012, 57, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Claesson, S. Caledonian metamorphism of Proterozoic Seve rocks on Mt. Åreskutan, southern Swedish Caledonides. Geol. Föreningen i Stock. Förhandlingar 1982, 103, 291–304. [Google Scholar] [CrossRef]
- Gromet, L.P.; Sjöström, H.; Bergman, S.; Claesson, S.; Essex, R.M.; Andréasson, P.-G.; Albrecht, L.G. Contrasting ages of metamorphism in the Seve nappes: U-Pb results from the central and northern Swedish Caledonides. GFF 1996, 118, 36–37. [Google Scholar] [CrossRef]
- Kullerud, K. Orogin and Tectonometamorphic Evolution of the Eclogites in the Tsäkkok Lens (Seve Nappes), Southern Norrbotten Sweden; University of Oslo: Oslo, Norway, 1987. [Google Scholar]
- Nicholson, R. An eclogite from the Caledonides of southern Norrbotten. Nor. Geol. Tidsskr. 1984, 64, 165–169. [Google Scholar]
- Stephens, M.B.; Van Roermund, H.L.M. Occurence of glaucophane and crossite in eclogites of the Seve Nappes, southern Norrbotten Caledonides, Sweden. Nor. Geol. Tidsskr. 1984, 64, 155–163. [Google Scholar]
- Bukała, M.; Barnes, C.; Jeanneret, P.; Majka, J.; Klonowska, I.; Kośmińska, K. The interplay between fluid and fracturing: Seismometamorphic evolution of Tsäkkok eclogites, Scandinavian. In Proceedings of the 21st EGU General Assembly, Vienna, Austria, 7–12 April 2019. Geophysical Research Abstracts. [Google Scholar]
- Essex, R.M.; Gromet, L.P.; Andréasson, P.-G.; Albrecht, L.G. Early Ordovician U-Pb metamorphic ages of the eclogite-bearing Seve Nappes, Northern Scandinavian Caledonides. J. Metamorph. Geol. 1997, 15, 665–676. [Google Scholar] [CrossRef]
- Zachrisson, E.; Sjöstrand, T. Bedrock Map 22E Frostviken, 1:50000; SGU Ai 44; SGU: Uppsala, Sweden, 1990. [Google Scholar]
- Zwart, H.J. Structure and metamorphism in the Seve–Köli Nappe Complex (Scandinavian Caledonides) and its implications concerning the formation of metamorphic nappes. In Géologie des Domains Cristallins. Centenaire de la Société Géologique de Belgique; Duchesne, J.C., Bellière, J., Eds.; Société Géologique de Belgique: Liège, Belgium, 1974; pp. 129–144. [Google Scholar]
- Van Roermund, H.L.M.; Barker, E. Structure and metamorphism of the Tången—Inviken area, seve nappes, central scandinavian caledonides. GFF 1984, 105, 301–319. [Google Scholar] [CrossRef]
- Brueckner, H.K.; Van Roermund, H.L.M. Dunk tectonics: A multiple subduction/eduction model for the evolution of the Scandinavian Caledonides. Tectonics 2004, 23, TC2004. [Google Scholar] [CrossRef]
- Majka, J.; Janák, M.; Andersson, B.; Klonowska, I.; Gee, D.G.; Rosén, Å.; Kośmińska, K. Pressure-temperature estimates on the Tjeliken eclogite: New insights into the (ultra)-high-pressure evolution of the Seve Nappe Complex in the Scandinavian Caledonides. In New Perspectives on the Caledonides of Scandinavia and Related Areas; Corfu, F., Gasser, D., Chew, D.M., Eds.; Geological Society: London, UK, 2014; pp. 369–384. [Google Scholar]
- Janák, M.; Van Roermund, H.L.M.; Majka, J.; Gee, D.G. UHP metamorphism recorded by kyanite-bearing eclogite in the Seve Nappe Complex of nothern Jämtland, Swedesh Caledonites. Gondwana Res. 2013, 23, 865–879. [Google Scholar] [CrossRef]
- Klonowska, I.; Janák, M.; Majka, J.; Froitzheim, N.; Kośmińska, K. Eclogite and garnet pyroxenite from Stor Jougdan, Seve Nappe Complex, Sweden: Implications for UHP metamorphism of allochthons in the Scandinavian Caledonides. J. Metamorph. Geol. 2016, 34, 103–119. [Google Scholar] [CrossRef]
- Gilio, M.; Clos, F.; Van Roermund, H.L.M. The Friningen Garnet Peridotite (central Swedish Caledonides). A good example of the charaacteristic PTt path of a cold mantle wedge garnet peridotite. Lithos 2015, 230, 1–16. [Google Scholar] [CrossRef]
- Bender, H.; Glodny, J.; Ring, U. Absolute timing of Caledonian orogenic wedge assembly, Central Sweden, constrained by Rb–Sr multi-mineral isochron data. Lithos 2019, 344–345, 339–359. [Google Scholar] [CrossRef]
- Biermann, C. Investigations into the Development of Microstructures in Amphibole Bearing Rocks from the Seve–Köli Nappe Complex; Leiden University: Leiden, The Netherlands, 1979. [Google Scholar]
- Trouw, R.A.J. Structural geology ofthe Marsfjällen area Caledonides of Västerbotten Sweden. Arsb. Sver. Geol. Unders. 1973, 689, 1–115. [Google Scholar]
- Petrus, J.A.; Kamber, B.S. VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostand. Geoanalytical Res. 2012, 36, 247–270. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Alle, P.; Corfu, F.; Meier, M.; Oberli, F.; Von Quadt, A.; Roddick, J.C.; Spiegel, W. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Ree Analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Davis, D.W.; Aleinikoff, J.N.; Valley, J.W.; Mundil, R.; Campbell, I.H.; Korsch, R.J.; Williams, I.S.; et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 2004, 205, 115–140. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot 3.75, a Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2012; Available online: http://www.bgc.org/isoplot_etc/isoplot.html (accessed on 6 February 2015).
- Wiedenbeck, M.; Hanchar, J.M.; Peck, W.H.; Sylvester, P.; Valley, J.; Whitehouse, M.; Kronz, A.; Morishita, Y.; Nasdala, L.; Fiebig, J.; et al. Further Characterisation of the 91500 Zircon Crystal. Geostand. Geoanalytical Res. 2007, 28, 9–39. [Google Scholar] [CrossRef]
- Sun, S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society: London, UK, 1989; pp. 313–345. [Google Scholar]
- Lanari, P.; Vidal, O.; De Andrade, V.; Dubacq, B.; Lewin, E.; Grosch, E.G.; Schwartz, S. XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. Comput. Geosci. 2014, 62, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Tomkins, H.S.; Powell, R.; Ellis, D.J. The pressure dependence of the zirconium-in-rutile thermometer. J. Metamorph. Geol. 2007, 25, 703–713. [Google Scholar] [CrossRef]
- Gee, D.G.; Ladenberger, A.; Dahlqvist, P.; Majka, J.; Be’eri-Shlevin, Y.; Frei, D.; Thomsen, T. The Baltoscandian margin detrital zircon signatures of the central Scandes. In New Perspectives on the Caledonides of Scandinavia and Related Areas; Corfu, F., Gasser, D., Chew, D.M., Eds.; Geological Society: London, UK, 2014; pp. 131–155. [Google Scholar]
- Gee, D.G.; Andrésson, P.-G.; Lorenz, H.; Frei, D.; Majka, J. Detrital zircon signatures of the Baltoscandian margin along the Arctic Circle Caledonides in Sweden: The Sveconorwegian connection. Precambrian Res. 2015, 265, 40–56. [Google Scholar] [CrossRef]
- Lang, H.M.; Gilotti, J.A. Partial melting of metapelites at ultrahigh-pressure conditions, Greenland Caledonides. J. Metamorph. Geol. 2007, 25, 129–147. [Google Scholar] [CrossRef]
- Thompson, A.B. Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. Am. J. Sci. 1982, 282, 1567–1595. [Google Scholar] [CrossRef]
- Vielzeuf, D.; Holloway, J.R. Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib. Mineral. Petrol. 1988, 98, 257–276. [Google Scholar] [CrossRef]
- Indares, A.; Dunning, G. Partial melting of high-P-T metapelites from the Tshenukutish Terrane (Grenville Province): Petrography and U-Pb geochronology. J. Petrol. 2001, 42, 1547–1565. [Google Scholar] [CrossRef]
- Meinhold, G. Rutile and its applications in earth sciences. Earth-Sci. Rev. 2010, 102, 1–28. [Google Scholar] [CrossRef]
- Van Roermund, H.L.M. On eclogites from the Seve Nappe, N. Jämtland, Central Scandinavian Caledonides; University of Utrecht: Utrecht, The Netherlands, 1982. [Google Scholar]
- Boland, J.N.; Van Roermund, H.L.M. The decomposition of natural omphcite into pyroxene-plagioclase symplectites- a case of discontinuous precipitation. In Electron Microscopy; Brederoo, P., Boom, G., Eds.; European Congres on Electron Microscopy: Leiden, The Netherlands, 1980; pp. 458–459. [Google Scholar]
- Haggerty, S.E. Upper mantle mineralogy. J. Geodyn. 1995, 20, 331–364. [Google Scholar] [CrossRef]
- Fleet, M.E.; Angeli, N.; Pan, Y. Oriented chlorite lamellae in chromite from Pedra Branca Mafic–Ultramafic complex, Ceara, Brazil. Am. Mineral. 1993, 78, 68–74. [Google Scholar]
- Medaris, L.G.J.; Beard, B.L.; Jelínek, E. Mantle-Derived, UHP Garnet Pyroxenite and Eclogite in the Moldanubian Gföhl Nappe, Bohemian Massif: A Geochemical Review, New P-T Determinations, and Tectonic Interpretation. Int. Geol. Rev. 2006, 48, 765–777. [Google Scholar] [CrossRef] [Green Version]
- Kullerud, K.; Stephens, M.B.; Zachrisson, E. Pillow lavas as protoliths for eclogites: Evidence from a late Precambrin-Cambrian continental margin, Seve Nappes, Scandinavian Caledonides. Contrib. Mineral. Petrol. 1990, 105, 1–10. [Google Scholar] [CrossRef]
- Spandler, C.; Hermann, J.; Rubatto, D. Exsolution of thortveitite, yttrialite and xenotime during low temperature recrystallization of zircon from New Caledonia, and their significance for trace element incorporation in zircon. Am. Mineral. 2004, 89, 1795–1806. [Google Scholar] [CrossRef]
- Ewing, T.; Hermann, J.; Rubatto, D. The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, norhtern Italy). Contrib. Mineral. Petrol. 2013, 165, 757–779. [Google Scholar] [CrossRef]
- Gauthiez-Putallaz, L.; Rubatto, D.; Hermann, J. Dating prograde fluid pulses during subduction by in situ U-Pb and oxygen isotope analysis. Contrib. Mineral. Petrol. 2016, 171, 15. [Google Scholar] [CrossRef]
- Rubatto, D.; Gebauer, D. Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: Some examples from the Western Alps. In Cathodoluminescence in Geosciences; Pagel, M., Barbin, V., Blanc, P., Ohnenstetter, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 373–400. [Google Scholar]
- Schaltegger, U.; Fanning, M.; Günter, D.; Maurin, J.C.; Schulmann, K.; Gebauer, D. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: Conventional and in situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contrib. Mineral. Petrol. 1999, 134, 186–201. [Google Scholar] [CrossRef]
- Hermann, J.; Rubatto, D. Relating zircon and monazite domains to garnet growth zones: Age and duration of granulite facies metamorphism in the Val Malenco lower crust. J. Metamorph. Geol. 2003, 21, 833–852. [Google Scholar] [CrossRef]
- Tomaschek, F.; Kennedy, A.A.; Villa, I.M.; Lagos, M.; Ballhaus, C. Zircon from Syros, Cyclades, Greece—Recrystallization and mobilization of zircon during high-pressure metamorphism. J. Petrol. 2001, 54, 343–385. [Google Scholar] [CrossRef] [Green Version]
- Geisler, T.; Pidgeon, R.T.; Kurtz, R.; Bronswijk, W.; Schleicher, H. Experimental hydrothermal alteration of partially metamict zircon. Am. Mineral. 2003, 88, 1496–1543. [Google Scholar] [CrossRef]
- Vavra, G.; Schmid, R.; Gebauer, D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: Geochronology of the Ivrea Zone (Southern Alps). Contrib. Mineral. Petrol. 1999, 134, 380–404. [Google Scholar] [CrossRef]
- Kohn, M.J.; Kelly, N.M. Petrology and geochronology of metamorphic zircon. In Microstructural Geochronology: Planetary Records Down to Atom Scale; Moser, D.E., Corfu, F., Darling, J.R., Reddy, S.M., Tait, K., Eds.; American Geophysical Union: Washington, DC, USA, 2018; pp. 35–61. ISBN 9781119227250. [Google Scholar]
- Rubatto, D.; Hermann, J.; Berger, A.; Engi, M. Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps. Contrib. Mineral. Petrol. 2009, 158, 703–722. [Google Scholar] [CrossRef]
- Walczak, K.; Anczkiewicz, R.; Szczepański, J.; Rubatto, D.; Košler, J. Combined garnet and zircon geochronology of the ultra-high temperature metamorphism: Constraints on the rise of the Orlica-Śnieżnik Dome, NE Bohemian Massif, SW Poland. Lithos 2017, 292–293, 388–400. [Google Scholar] [CrossRef] [Green Version]
- Mezger, K.; Krogstad, E.J. Interpretation of discordant U-Pb zircon ages: An evaluation. J. Metamorph. Geol. 1997, 15, 127–140. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukała, M.; Majka, J.; Walczak, K.; Włodek, A.; Schmitt, M.; Zagórska, A. U-Pb Zircon Dating of Migmatitic Paragneisses and Garnet Amphibolite from the High Pressure Seve Nappe Complex in Kittelfjäll, Swedish Caledonides. Minerals 2020, 10, 295. https://doi.org/10.3390/min10040295
Bukała M, Majka J, Walczak K, Włodek A, Schmitt M, Zagórska A. U-Pb Zircon Dating of Migmatitic Paragneisses and Garnet Amphibolite from the High Pressure Seve Nappe Complex in Kittelfjäll, Swedish Caledonides. Minerals. 2020; 10(4):295. https://doi.org/10.3390/min10040295
Chicago/Turabian StyleBukała, Michał, Jarosław Majka, Katarzyna Walczak, Adam Włodek, Melanie Schmitt, and Anna Zagórska. 2020. "U-Pb Zircon Dating of Migmatitic Paragneisses and Garnet Amphibolite from the High Pressure Seve Nappe Complex in Kittelfjäll, Swedish Caledonides" Minerals 10, no. 4: 295. https://doi.org/10.3390/min10040295
APA StyleBukała, M., Majka, J., Walczak, K., Włodek, A., Schmitt, M., & Zagórska, A. (2020). U-Pb Zircon Dating of Migmatitic Paragneisses and Garnet Amphibolite from the High Pressure Seve Nappe Complex in Kittelfjäll, Swedish Caledonides. Minerals, 10(4), 295. https://doi.org/10.3390/min10040295