Petrographic and Chemical–Mineralogical Characterization of Mortars from the Cistern at Amaiur Castle (Navarre, Spain)
Abstract
:1. Introduction
2. Geological and Archaeological Setting
3. Materials and Methods
3.1. Materials
3.2. Methods
4. Results
4.1. Petrographic and Chemical–Mineralogical Characterization
4.2. Study of the Pigmented Layer of Plaster
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cadogan, G. Water management in Minoan Crete, Greece: The two cisterns of one Middle Bronze Age settlement. Water Sci. Technol. Water Supply 2007, 7, 103–112. [Google Scholar] [CrossRef]
- Angelakis, A.N.; Spyridakis, D.S. Water supply and wastewater management aspects in Ancient Greece. Water Sci. Technol. Water Supply 2010, 10, 618–628. [Google Scholar] [CrossRef]
- Angelakis, A.N.; Mays, L.W.; Koutsoyiannis, D.; Mamassis, N. Evolution of Water Supply through the Millennia; IWA Publishing: London, UK, 2012. [Google Scholar]
- Carrion, A.; Formnes, A. Underground medieval water distribution network in a Spanish town. Tunn. Undergr. Space Technol. 2016, 51, 90–97. [Google Scholar] [CrossRef]
- Mays, L.; Antoniou, G.P.; Angelakis, A.N. History of Water Cisterns: Legacies and Lessons. Water 2013, 5, 1916–1940. [Google Scholar] [CrossRef] [Green Version]
- Van Hees, R.P.J.; Binda, L.; Papayianni, I.; Toumbakari, E. Characterisation and damage analysis of old mortars. Mater. Struct. 2004, 37, 644–648. [Google Scholar] [CrossRef]
- Stefanidou, M.; Pachta, V.; Konopissi, S.; Karkadelidou, F.; Papayianni, I. Analysis and characterization of hydraulic mortars from ancient cisterns and baths in Greece. Mater. Struct. 2014, 47, 571–580. [Google Scholar] [CrossRef]
- Rizzo, G.; Ercoli, L.; Megna, B.; Parlapiano, M. Characterization of mortars from ancient and traditional water supply systems in Sicily. J. Therm. Anal. Calorim. 2008, 92, 323–330. [Google Scholar] [CrossRef]
- Henry, A.; Stewart, J. Practical Building Conservation: Mortars, Renders & Plasters; Practical Building Conservation Series; English Heritage: Surrey, UK, 2011. [Google Scholar]
- Baronio, G.; Binda, L. Study of the pozzolanicity of some bricks and clays. Constr. Build. Mater. 1997, 11, 41–46. [Google Scholar] [CrossRef]
- Baronio, G.; Binda, L.; Lombardini, N. The role of brick pebbles and dust in conglomerates based on hydrated lime and crushed bricks. Constr. Build. Mater. 1997, 11, 33–40. [Google Scholar] [CrossRef]
- Stefanidou, M.; Papayianni, I. The role of aggregates on the structure and properties of lime mortars. Cem. Concr. Compos. 2005, 27, 914–919. [Google Scholar] [CrossRef]
- Arizzi, A.; Cultrone, G. Aerial lime-based mortars blended with a pozzolanic additive and different admixtures: A mineralogical, textural and physical-mechanical study. Constr. Build. Mater. 2012, 31, 135–143. [Google Scholar] [CrossRef]
- Miriello, D.; Bloise, A.; Crisci, G.M.; De Luca, R.; De Nigris, B.; Martellone, A.; Osannac, M.; Paced, R.; Peccia, A.; Ruggieri, N. New compositional data on ancient mortars and plasters from Pompeii (Campania-Southern Italy): Archaeometric results and considerations about their time evolution. Mater. Charact. 2018, 146, 189–203. [Google Scholar] [CrossRef]
- Walker, R.; Pavía, S. Physical properties and reactivity of pozzolans, and their influence on the properties of lime–pozzolan pastes. Mater. Struct. 2011, 44, 1139–1150. [Google Scholar] [CrossRef] [Green Version]
- Bonazza, A.; Ciantelli, C.; Sardella, A.; Pecchioni, E.; Favoni, O.; Natali, I.; Sabbioni, C. Characterization of hydraulic mortars from archaeological complexes in Petra. Period. Mineral. 2014, 82, 459. [Google Scholar]
- Rampazzi, L.; Colombini, M.P.; Conti, C.; Corti, C.; Lluveras-Tenorio, A.; Sansonetti, A.; Zanaboni, M. Technology of medieval mortars: An investigation into the use of organic additives. Archaeometry 2016, 58, 115–130. [Google Scholar] [CrossRef]
- Galán Pérez, E.; García de Domingo, A.; Cabra Gil, A.; Ganzález Lastra, J.; Matinez Torres, L.M.; Pesquera Pérez, A. Memoria Hoja 66-III (Maya de Baztán). In Mapa Geológico de Navarra. E. 1:25000; Diputación Foral de Navarra: Navarra, Spain, 2002. [Google Scholar]
- Juch, D.; Krausse, H.F.; Müller, D.; Requadt, H.; Schafer, D.; Sole, J.; Villalobos, L. Memoria Hoja 66 (Maya del Baztan). In Mapa Geológico de España, E. 1:50.000, 1st ed.; Segunda Serie; MAGNA: Magna Drive Aurora, ON, Canada, 1974. [Google Scholar]
- AGN. Royal and General Archive of Navarre. In Rena Papers; 15/3, 52, Box 33055: 1516; Government of Navarre: Pamplona, Spain, 1995. [Google Scholar]
- Sagredo, I. El castillo de Amaiur a Través de la Historia de Navarra; Editorial Pamiela Argitaletxea: Pamplona, Spain, 2009. [Google Scholar]
- Sagredo, I. Navarra. In Castillos que Defendieron el Reino (Tomo I) de Laguardia a Foix, y del Moncayo al Goierri; Editorial Pamiela Argitaletxea: Pamplona, Spain, 2006. [Google Scholar]
- Ponce-Antón, G.; Zuluaga, M.C.; Ortega, L.A.; Mauleon, J.A. Multi-analytical approach for chemical-mineralogical characterization of reaction rims in the lime mortars from Amaiur Castle (Navarre, Spain). Microchem. J. 2020, 152, 104303. [Google Scholar] [CrossRef]
- Boynton, R.S. Chemistry and Technology of Lime and Limestone; John Wiley & Sons, Inc.: New York, NY, USA, 1980. [Google Scholar]
- Vicat, L.J. Mortars and Cements; Donhead Publishing: Shaftesbury, UK, 1997. [Google Scholar]
- Folk, R.L. A comparison chart for visual percentage estimation. J. Sediment. Res. 1951, 21, 32–33. [Google Scholar]
- Ortega, L.A.; Zuluaga, M.C.; Alonso-Olazabal, A.; Murelaga, X.; Insausti, M.; Ibañez-Etxeberria, A. Historic lime-mortar 14C dating of Santa María la Real (Zarautz, northern Spain): Extraction of suitable grain size for reliable 14C dating. Radiocarbon 2012, 54, 23–36. [Google Scholar] [CrossRef]
- Ponce-Antón, G.; Ortega, L.A.; Zuluaga, M.C.; Alonso-Olazabal, A.; Solaun, J.L. Hydrotalcite and Hydrocalumite in Mortar Binders from the Medieval Castle of Portilla (Álava, North Spain): Accurate Mineralogical Control to Achieve More Reliable Chronological Ages. Minerals 2018, 8, 326. [Google Scholar] [CrossRef] [Green Version]
- Mills, S.J.; Christy, A.G.; Génin, J.-M.R.; Kameda, T.; Colombo, F. Nomenclature of the hydrotalcite supergroup: Natural layered double hydroxides. Mineral. Mag. 2012, 76, 1289–1336. [Google Scholar] [CrossRef] [Green Version]
- Bakolas, A.; Biscontin, G.; Moropoulou, A.; Zendri, E. Characterization of structural byzantine mortars by thermogravimetric analysis. Thermochim. Acta 1998, 321, 151–160. [Google Scholar] [CrossRef]
- Paama, L.; Pitkänen, I.; Rönkkömäki, H.; Perämäki, P. Thermal and infrared spectroscopic characterization of historical mortars. Thermochim. Acta 1998, 320, 127–133. [Google Scholar] [CrossRef]
- Moropoulou, A.; Bakolas, A.; Anagnostopoulou, S. Composite materials in ancient structures. Cem. Concr. Compos. 2005, 27, 295–300. [Google Scholar] [CrossRef]
- Yang, W.; Kim, Y.; Liu, P.K.T.; Sahimi, M.; Tsotsis, T.T. A study by in situ techniques of the thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide. Chem. Eng. Sci. 2002, 57, 2945–2953. [Google Scholar] [CrossRef]
- León, M.; Díaz, E.; Bennici, S.; Vega, A.; Ordóñez, S.; Auroux, A. Adsorption of CO2 on Hydrotalcite-Derived Mixed Oxides: Sorption Mechanisms and Consequences for Adsorption Irreversibility. Ind. Eng. Chem. Res. 2010, 49, 3663–3671. [Google Scholar] [CrossRef]
- Brindley, G.W.; Oughton, B.M.; Youell, R.F. The crystal structure of amesite and its thermal decomposition. Acta Crystallogr. 1951, 4, 552–557. [Google Scholar] [CrossRef]
- Grim, R.E. Applied Clay Mineralogy; Mc Graw-Hill: New York, NY, USA, 1962. [Google Scholar]
- MacKenzie, K.J.D.; Bowden, M.E. Thermal and Mössbauer studies of iron-containing hydrous silicates. IV. Amesite. Thermochim. Acta 1983, 64, 83–106. [Google Scholar] [CrossRef]
- Drits, V.A.; McCarty, D.K. The nature of structure-bonded H2O in illite and leucophyllite from dehydration and dehydroxylation experiments. Clays Clay Miner. 2007, 55, 45–58. [Google Scholar] [CrossRef]
- Duran, A.; Jimenez De Haro, M.C.; Perez-Rodriguez, J.L.; Franquelo, M.L.; Herrera, L.K.; Justo, A. Determination of pigments and binders in Pompeian wall paintings using synchrotron radiation–high-resolution X-ray powder diffraction and conventional spectroscopy–chromatography. Archaeometry 2010, 52, 286–307. [Google Scholar] [CrossRef]
- Franquelo, M.L.; Robador, M.D.; Ranirez-Valle, V.; Duran, A.; Jimenez de Haro, M.C.; Pérez-Rodríguez, J.L. Roman ceramics of hydraulic mortars used to build the Mithraeum house of Mérida (Spain). J. Therm. Anal. Calorim. 2008, 92, 331–335. [Google Scholar] [CrossRef]
- Farmer, V.C. The Infrared Spectra of Minerals; Mineralogical Society of Great Britain and Ireland: London, UK, 1974; Volume 4. [Google Scholar]
- Smith, B. Infrared Spectra Interpretation: A Systematic Approach; CRC Press: Florida, FL, USA, 1999. [Google Scholar]
- Vahur, S.; Teearu, A.; Peets, P.; Joosu, L.; Leito, I. ATR-FT-IR spectral collection of conservation materials in the extended region of 4000–80 cm−1. Anal. Bioanal. Chem. 2016, 408, 3373–3379. [Google Scholar] [CrossRef] [PubMed]
- Odler, I. Hydration, Setting and Hardening of Portland Cement. In Lea’s Chemistry of Cement and Concrete; Hewlett, P.C., Ed.; Elsevier: London, UK, 2003; pp. 241–289. [Google Scholar]
- Papayianni, I.; Stefanidou, M. Strength–porosity relationships in lime–pozzolan mortars. Constr. Build. Mater. 2006, 20, 700–705. [Google Scholar] [CrossRef]
- Sabir, B.B.; Wild, S.; Bai, J. Metakaolin and calcined clays as pozzolans for concrete: A review. Cem. Concr. Compos. 2001, 23, 441–454. [Google Scholar] [CrossRef]
- Cunha, A.L.C.; Gonçalves, J.P.; Dweck, J. Evaluating the pozzolanic activity of spent catalyst partially substituting type II Portland cement. In Key Engineering Materials; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2014; Volume 634, pp. 131–138. [Google Scholar]
- Arizzi, A.; Cultrone, G. Comparing the pozzolanic activity of aerial lime mortars made with metakaolin and fluid catalytic cracking catalytic residue: A petrographic and physical-mechanical study. Constr. Build. Mater. 2018, 184, 382–390. [Google Scholar] [CrossRef]
- Romagnoli, M.; Rivasi, M.R. Optimal size distribution to obtain the densest packing: A different approach. J. Eur. Ceram. Soc. 2007, 27, 1883–1887. [Google Scholar] [CrossRef]
- Fung, W.W.S.; Kwan, A.K.H.; Wong, H.H.C. Wet packing of crushed rock fine aggregate. Mater. Struct. 2008, 42, 631–643. [Google Scholar] [CrossRef]
- Kwan, A.K.H.; Fung, W.W.S. Packing density measurement and modelling of fine aggregate and mortar. Cem. Concr. Compos. 2009, 31, 349–357. [Google Scholar] [CrossRef]
- Arizzi, A.; Cultrone, G. The influence of aggregate texture, morphology and grading on the carbonation of non-hydraulic (aerial) lime-based mortars. Q. J. Eng. Geol. Hydrogeol. 2013, 46, 507–520. [Google Scholar] [CrossRef]
- Colombini, M.P.; Modugno, F. Organic Mass Spectrometry in Art and Archaeology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Luxán, M.P.; Dorrego, F.; Laborde, A. Ancient gypsum mortars from St. Engracia (Zaragoza, Spain): Characterization. Identification of additives and treatments. Cem. Concr. Res. 1995, 25, 1755–1765. [Google Scholar] [CrossRef]
- Beruto, D.T.; Vecchiattini, R.; Giordani, M. Solid products and rate-limiting step in the thermal half decomposition of natural dolomite in a CO2 (g) atmosphere. Thermochim. Acta 2003, 405, 183–194. [Google Scholar] [CrossRef]
- Gan, G.-L.; Spry, P.G.; Cody, A.M. Rim Formation on Iowa Highway Concrete Dolomite Aggregate: The Effects of Dedolomitization Reactions. Environ. Eng. Geosci. 1996, 2, 59–72. [Google Scholar] [CrossRef]
- Sipos, P. The structure of Al(III) in strongly alkaline aluminate solutions—A review. J. Mol. Liq. 2009, 146, 1–14. [Google Scholar] [CrossRef]
- Zajac, M.; Bremseth, S.K.; Whitehead, M.; Ben Haha, M. Effect of CaMg(CO3)2 on hydrate assemblages and mechanical properties of hydrated cement pastes at 40 °C and 60 °C. Cem. Concr. Res. 2014, 65, 21–29. [Google Scholar] [CrossRef]
- Schork, J. Dolomitic Lime in the US. J. Archit. Conserv. 2012, 18, 7–25. [Google Scholar] [CrossRef]
- Hobbs, D.W. Alkali-Silica Reaction in Concrete; Thomas Telford: London, UK, 1988. [Google Scholar]
- Katayama, T. How to identify carbonate rock reactions in concrete. Mater. Charact. 2004, 53, 85–104. [Google Scholar] [CrossRef]
- da Fonseca, J.M.M.; de Souza, V.K.B.; da Silva, D.G.C.; da Silva, D.L.; Monteiro, E.C.B. Alkali-Aggregate Reaction: Definition, Influence and Control. Eng. Appl. Sci. 2018, 3, 12. [Google Scholar]
- Braz, I.G.; Shinzato, M.C.; Montanheiro, T.J.; de Almeida, T.M.; de Souza Carvalho, F.M. Effect of the addition of aluminum recycling waste on the pozzolanic activity of sugarcane bagasse ash and zeolite. Waste Biomass Valorization 2019, 10, 3493–3513. [Google Scholar] [CrossRef]
- Brew, D.R.M.; Glasser, F.P. Synthesis and characterisation of magnesium silicate hydrate gels. Cem. Concr. Res. 2005, 35, 85–98. [Google Scholar] [CrossRef]
- Zhang, T.; Vandeperre, L.J.; Cheeseman, C.R. Formation of magnesium silicate hydrate (MSH) cement pastes using sodium hexametaphosphate. Cem. Concr. Res. 2014, 65, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Bernard, E.; Lothenbach, B.; Cau-Dit-Coumes, C.; Chlique, C.; Dauzères, A.; Pochard, I. Magnesium and calcium silicate hydrates, Part I: Investigation of the possible magnesium incorporation in calcium silicate hydrate (C-S-H) and of the calcium in magnesium silicate hydrate (M-S-H). Appl. Geochem. 2018, 89, 229–242. [Google Scholar] [CrossRef]
- Roosz, C.; Grangeon, S.; Blanc, P.; Montouillout, V.; Lothenbach, B.; Henocq, P.; Giffaut, E.; Vieillard, P.; Gaboreau, S. Crystal structure of magnesium silicate hydrates (M-S-H): The relation with 2:1 Mg–Si phyllosilicates. Cem. Concr. Res. 2015, 73, 228–237. [Google Scholar] [CrossRef]
- Walling, S.A.; Kinoshita, H.; Bernal, S.A.; Collier, N.C.; Provis, J.L. Structure and properties of binder gels formed in the system Mg(OH)2–SiO2–H2O for immobilisation of Magnox sludge. Dalton Trans. 2015, 44, 8126–8137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nied, D.; Enemark-Rasmussen, K.; L’Hopital, E.; Skibsted, J.; Lothenbach, B. Properties of magnesium silicate hydrates (M-S-H). Cem. Concr. Res. 2016, 79, 323–332. [Google Scholar] [CrossRef]
- Bernard, E. Magnesium Silicate Hydrate (MSH) Characterization: Temperature, Calcium, Aluminium and Alkali; University of Burgundy Franche-Comté: Besançon, France, 2017. [Google Scholar]
- Schaefer, J.; Hilsdorf, H.K. Ancient and new lime mortars—The correlation between their composition structure and properties. In Conservation of Stone and Other Materials, Prevention and Treatments; Thiel, M.-J., Ed.; (RILEM proceedings. 21,2.); E & FN Spon: London, UK, 1993; Volume 2, pp. 605–612. [Google Scholar]
- Papayianni, I.; Stefanidou, M. The Evolution of Porosity in Lime-Based Mortars. In Proceedings of the 8th Euroseminar on Microscopy Applied to Building Materials, Athens, Greece, 4–7 September 2001; pp. 451–458. [Google Scholar]
- Thomson, M.; Lindqvist, J.E.; Elsen, J.; Groot, C.J.W.P. 2.5. Porosity of Mortars; RILEM Publications SARL: Cachan, France, 2007; pp. 77–106. [Google Scholar]
Mortar Type | Structure | Location | Sample | |
---|---|---|---|---|
Structural | Barrel vault | Lunette | CA-AL-2 | |
Base | CA-AL-5 | |||
CA-AL-6 | ||||
Tank | Inner layer | CA-AL-7 | ||
Outer layer | CA-AL-8 | CA-AL-8b | ||
CA-AL-8a | ||||
CA-AL-9 | ||||
Plaster | Inner layer | CA-AL-1 | ||
Pigmented layer |
Sample | Structure | MgO | Al2O3 | SiO2 | K2O | CaO | TiO2 | MnO | Fe2O3t | LOI | HI | CI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CA-AL-2 | Lunette | 6.16 | 2.43 | 5.55 | 0.23 | 44.73 | 0.20 | 0.05 | 2.40 | 38.14 | 0.20 | 0.37 |
CA-AL-9 | Tank | 6.70 | 8.15 | 21.12 | 1.08 | 29.20 | 0.35 | 0.15 | 4.88 | 28.17 | 0.95 | 1.85 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponce-Antón, G.; Zuluaga, M.C.; Ortega, L.A.; Agirre Mauleon, J. Petrographic and Chemical–Mineralogical Characterization of Mortars from the Cistern at Amaiur Castle (Navarre, Spain). Minerals 2020, 10, 311. https://doi.org/10.3390/min10040311
Ponce-Antón G, Zuluaga MC, Ortega LA, Agirre Mauleon J. Petrographic and Chemical–Mineralogical Characterization of Mortars from the Cistern at Amaiur Castle (Navarre, Spain). Minerals. 2020; 10(4):311. https://doi.org/10.3390/min10040311
Chicago/Turabian StylePonce-Antón, Graciela, Maria Cruz Zuluaga, Luis Angel Ortega, and Juantxo Agirre Mauleon. 2020. "Petrographic and Chemical–Mineralogical Characterization of Mortars from the Cistern at Amaiur Castle (Navarre, Spain)" Minerals 10, no. 4: 311. https://doi.org/10.3390/min10040311
APA StylePonce-Antón, G., Zuluaga, M. C., Ortega, L. A., & Agirre Mauleon, J. (2020). Petrographic and Chemical–Mineralogical Characterization of Mortars from the Cistern at Amaiur Castle (Navarre, Spain). Minerals, 10(4), 311. https://doi.org/10.3390/min10040311