Mineralogy and Geochemistry of Nephrite Jade from Yinggelike Deposit, Altyn Tagh (Xinjiang, NW China)
Abstract
:1. Introduction
2. Geological Background
2.1. Hetian Nephrite Belt
2.2. Qiemo-Ruoqiang Section (85–90° E)
3. Samples and Methods
3.1. Samples
3.2. Methods
4. Results
4.1. Gemological Properties
4.2. Petrography
4.2.1. Tremolite
4.2.2. Pargasite
4.2.3. Diopside
4.2.4. Epidote, Allanite, and Prehnite
4.2.5. Andesine, Titanite, Zircon, and Calcite
4.3. Mineral Chemistry
4.3.1. Amphibole
4.3.2. Diopside
4.3.3. Epidote, Allanite, Andesine, Prehnite, Titanite, Zircon, and Calcite
4.4. Bulk-Rock Chemistry
5. Discussion
5.1. Dolomite-Related Origin
5.2. Metasomatic Process in Nephrite
5.3. Gemological Significance
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Samples | H-5-1 | H-5-2 | H-3 | H-3 | H-3 | H-3-1 | H-3-2 | H-1 | H-3 | H-5 |
---|---|---|---|---|---|---|---|---|---|---|
Minerals | Allanite | Allanite | Epidote | Epidote | Andesine | Prehnite | Prehnite | Titanite | Calcite | Zircon |
SiO2 | 35.64 | 36.25 | 37.75 | 37.14 | 61.19 | 44.85 | 44.75 | 30.59 | 0.01 | 31.52 |
ZrO2 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 65.54 |
UO3 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.79 |
TiO2 | 0.00 | 0.19 | 0.08 | 0.02 | 0.00 | 0.05 | 0.02 | 36.85 | 0.00 | n.d. |
Al2O3 | 23.22 | 24.73 | 28.05 | 28.30 | 24.32 | 22.86 | 23.53 | 2.13 | 0.00 | n.d. |
FeO | 7.24 | 5.11 | 3.78 | 3.40 | 0.13 | 0.17 | 0.22 | 0.04 | 0.03 | n.d. |
Cr2O3 | 0.00 | 0.00 | 0.02 | 0.04 | 0.05 | 0.00 | 0.00 | 0.05 | 0.01 | n.d. |
MnO | 0.32 | 0.15 | 0.05 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.06 | n.d. |
MgO | 0.73 | 2.11 | 0.52 | 0.44 | 0.04 | 0.14 | 0.07 | 0.02 | 0.25 | n.d. |
CaO | 20.11 | 18.14 | 25.72 | 25.71 | 7.27 | 27.23 | 27.01 | 29.28 | 55.88 | n.d. |
Na2O | 0.01 | 0.00 | 0.04 | 0.00 | 7.23 | 0.01 | 0.05 | 0.01 | 0.06 | 1.18 |
K2O | 0.02 | 0.02 | 0.00 | 0.02 | 0.12 | 0.02 | 0.01 | 0.03 | 0.00 | n.d. |
NiO | 0.00 | 0.00 | 0.00 | 0.05 | 0.01 | 0.02 | 0.03 | 0.01 | 0.03 | n.d. |
La2O3 | 2.58 | 2.65 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Ce2O3 | 5.85 | 5.96 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Pr2O3 | 0.43 | 1.20 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Nd2O3 | 2.03 | 2.37 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Total | 98.19 | 98.88 | 95.99 | 95.12 | 100.36 | 95.35 | 95.70 | 99.02 | 56.34 | 100.03 |
Samples | H-1 | H-2 | H-3 | H-4 | H-5 | Q-1 | Q-2 | Q-3 | Q-4 | Q-5 | Q-6 |
---|---|---|---|---|---|---|---|---|---|---|---|
Cr | 11.53 | 34.68 | 34.58 | 12.02 | 0.81 | 4.42 | 8.81 | 9.14 | 8.44 | 2.03 | 6.03 |
Co | 1.45 | 2.91 | 1.82 | 1.10 | 1.48 | 1.82 | 1.87 | 2.14 | 1.55 | 1.83 | 1.56 |
Ni | 5.15 | 10.29 | 20.15 | 6.00 | 0.52 | 3.44 | 3.51 | 3.72 | 4.12 | 3.19 | 3.46 |
Y | 2.50 | 3.22 | 1.71 | 1.95 | 123.18 | 1.50 | 2.79 | 1.91 | 1.69 | 2.76 | 1.28 |
La | 1.62 | 1.95 | 0.85 | 2.23 | 150.14 | 1.19 | 0.75 | 0.96 | 0.70 | 0.55 | 0.40 |
Ce | 3.54 | 3.86 | 1.80 | 4.78 | 310.13 | 2.25 | 1.37 | 1.94 | 1.37 | 1.13 | 0.81 |
Pr | 0.42 | 0.43 | 0.21 | 0.59 | 34.83 | 0.25 | 0.15 | 0.22 | 0.17 | 0.15 | 0.11 |
Nd | 1.55 | 1.54 | 0.73 | 2.05 | 127.53 | 0.95 | 0.60 | 0.84 | 0.74 | 0.67 | 0.49 |
Sm | 0.38 | 0.36 | 0.17 | 0.45 | 27.55 | 0.19 | 0.13 | 0.16 | 0.20 | 0.20 | 0.15 |
Eu | 0.05 | 0.03 | 0.02 | 0.03 | 0.33 | 0.04 | 0.02 | 0.03 | 0.02 | 0.02 | 0.01 |
Gd | 0.39 | 0.35 | 0.18 | 0.38 | 25.27 | 0.17 | 0.15 | 0.14 | 0.19 | 0.21 | 0.15 |
Tb | 0.07 | 0.06 | 0.03 | 0.06 | 4.26 | 0.04 | 0.04 | 0.02 | 0.04 | 0.06 | 0.03 |
Dy | 0.39 | 0.36 | 0.21 | 0.30 | 24.33 | 0.24 | 0.33 | 0.18 | 0.28 | 0.39 | 0.19 |
Ho | 0.08 | 0.08 | 0.05 | 0.06 | 4.64 | 0.04 | 0.07 | 0.05 | 0.05 | 0.08 | 0.04 |
Er | 0.22 | 0.22 | 0.13 | 0.16 | 12.43 | 0.12 | 0.22 | 0.24 | 0.15 | 0.25 | 0.10 |
Tm | 0.03 | 0.03 | 0.02 | 0.02 | 1.87 | 0.02 | 0.04 | 0.09 | 0.03 | 0.05 | 0.02 |
Yb | 0.20 | 0.18 | 0.11 | 0.12 | 11.28 | 0.12 | 0.21 | 0.88 | 0.16 | 0.33 | 0.10 |
Lu | 0.03 | 0.02 | 0.02 | 0.02 | 1.64 | 0.02 | 0.03 | 0.14 | 0.02 | 0.05 | 0.01 |
ΣREE | 8.97 | 9.47 | 4.53 | 11.25 | 736.23 | 5.64 | 4.11 | 5.89 | 4.12 | 4.14 | 2.16 |
ΣREE+Y | 11.47 | 12.69 | 6.24 | 13.20 | 859.41 | 7.14 | 6.90 | 7.80 | 5.81 | 6.9 | 3.89 |
Eu/Eu* | 0.36 | 0.25 | 0.39 | 0.21 | 0.04 | 0.67 | 0.44 | 0.60 | 0.31 | 0.30 | 0.20 |
LREE/HREE | 5.34 | 6.31 | 5.16 | 9.05 | 7.59 | 6.32 | 2.77 | 2.39 | 3.48 | 1.92 | 3.08 |
(La/Sm)N | 2.75 | 3.50 | 3.23 | 3.20 | 3.52 | 4.04 | 3.72 | 3.87 | 2.26 | 1.78 | 1.72 |
(Gd/Yb)N | 1.61 | 1.61 | 1.35 | 2.62 | 1.85 | 1.17 | 0.59 | 0.13 | 0.98 | 0.53 | 1.24 |
References
- Harlow, G.E.; Sorensen, S.S. Jade (nephrite and jadeitite) and serpentinite: Metasomatic connections. Int. Geol. Rev. 2005, 47, 113–146. [Google Scholar] [CrossRef]
- Wen, G.; Jing, Z.C. Chinese Neolithic Jade: A Preliminary Geoarchaeological Study. Geoarchaeology 1992, 7, 251–275. [Google Scholar] [CrossRef]
- D’Amico, C.; Starnini, E.; Gasparotto, G.; Ghedini, M. Eclogites, jades and other HP-metaophiolites employed for prehistoric polished stone implements in Italy and Europe. Period. Mineral. 2004, 73, 17–42. [Google Scholar]
- Middleton, A. Jade–geology and mineralogy. In Gems; O’Donoghue, M., Ed.; Elsevier Ltd.: Oxford, UK, 2006; pp. 332–354. [Google Scholar]
- Losey, R.J.; Bazaliiskii, V.I.; Garvie-Lok, S.; Germonpré, M.; Leonard, J.A.; Allen, A.L.; Anne Katzenberg, M.; Sablin, M.V. Canids as persons: Early Neolithic dog and wolf burials, Cis-Baikal, Siberia. J. Anthropol. Archaeol. 2011, 30, 174–189. [Google Scholar] [CrossRef] [Green Version]
- Tsydenova, N.; Morozov, M.V.; Rampilova, M.V.; Vasil’ev, Y.A.; Matveeva, O.P.; Konovalov, P.B. Chemical and spectroscopic study of nephrite artifacts from Transbaikalia, Russia: Geological sources and possible transportation routes. Quat. Int. 2015, 355, 114–125. [Google Scholar] [CrossRef]
- Kostov, R.I. Gemmological significance of the prehistoric Balkan “nephrite culture” (cases from Bulgaria). Annu. Univ. Min. Geol. 2005, 48, 91–94. [Google Scholar]
- Kostov, R.I.; Protochristov, C.; Stoyanov, C.; Csedreki, L.; Simon, A.; Szikszai, Z.; Uzonyi, I.; Gaydarska, B.; Chapman, J. Micro-PIXE geochemical fingerprinting of nephrite neolithic artifacts from Southwest Bulgaria. Geoarchaeology 2012, 27, 457–469. [Google Scholar] [CrossRef]
- Péterdi, B.; Szakmány, G.; Judik, K.; Dobosi, G.; Kasztovszky, Z.; Szilágyi, V.; Maróti, B.; Bendõ, Z.; Gil, G. Petrographic and geochemical investigation of a stone adze made of nephrite from the balatonoszöd-Temetoi dulo site (Hungary), with a review of the nephrite occurrences in Europe (especially in Switzerland and in the Bohemian Massif). Geol. Q. 2014, 58, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.-H.; Calligaro, T.; Pagès-Camagna, S.; Menu, M. Investigation of Chinese archaic jade by PIXE and μRaman spectrometry. Appl. Phys. A 2004, 79, 177–180. [Google Scholar] [CrossRef]
- Sax, M.; Meeks, N.D.; Michaelson, C.; Middleton, A.P. The identification of carving techniques on Chinese Jade. J. Archaeol. Sci. 2004, 31, 1413–1428. [Google Scholar] [CrossRef]
- Derevianko, A.P.; Olsen, J.W.; Tseveendorj, D.; Gladyshev, S.A.; Nokhrina, T.I.; Tabarev, A.V. New insights into the archaeological record at Chikhen Agui Rockshelter (Mongolia). Archaeol. Ethnol. Anthropol. Eurasia 2008, 34, 2–12. [Google Scholar] [CrossRef]
- Fournelle, J.; Law, R.; Konishi, H. A nephrite jade amulet from Harappa: Implications for long-distance contacts in the Harappan Period. In Proceedings of the 39th Annual Conference on South Asia, New York, NY, USA, 14–17 October 2010. [Google Scholar]
- Hung, H.-C.; Iizuka, Y.; Bellwood, P.; Nguyen, K.D.; Bellina, B.; Silapanth, P.; Dizon, E.; Santiago, R.; Datan, I.; Manton, J.H. Ancient jades map 3,000 years of prehistoric exchange in Southeast Asia. Proc. Natl. Acad. Sci. USA 2007, 104, 19745–19750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkins, C.J.; Tennant, W.C.; Williamson, B.E.; McCammon, C.A. Spectroscopic and related evidence on the coloring and constitution of New Zealand jade. Am. Mineral. 2003, 88, 1336–1344. [Google Scholar] [CrossRef]
- Tang, Y.L.; Chen, B.Z.; Jiang, R.H. Chinese Hetian Nephrite; Xinjiang People’s Publishing House: Xinjiang, China, 1994; pp. 103–206, (In Chinese with English abstract). [Google Scholar]
- Liu, Y.; Deng, J.; Shi, G.H.; Lu, T.J.; He, H.Y.; Ng, Y.-N.; Shen, C.H.; Yang, L.Q.; Wang, Q.F. Chemical Zone of Nephrite in Alamas, Xinjiang, China. Resour. Geol. 2010, 60, 249–259. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, J.; Shi, G.H.; Yui, T.-F.; Zhang, G.B.; Abuduwayiti, M.; Yang, L.Q.; Sun, X. Geochemistry and petrology of nephrite from Alamas, Xinjiang, NW China. J. Asian Earth Sci. 2011, 42, 440–451. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, J.; Shi, G.H.; Sun, X.; Yang, L.Q. Geochemistry and petrogenesis of placer nephrite from Hetian, Xinjiang, Northwest China. Ore Geol. Rev. 2011, 41, 122–132. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, R.Q.; Abuduwayiti, M.; Wang, C.; Zhang, S.P.; Shen, C.H.; Zhang, Z.Y.; He, M.Y.; Zhang, Y.; Yang, X.D. SHRIMP U–Pb zircon ages, mineral compositions and geochemistry of placer nephrite in the Yurungkash and Karakash River deposits, West Kunlun, Xinjiang, Northwest China: Implication for a magnesium skarn. Ore Geol. Rev. 2016, 72, 699–727. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, R.Q.; Zhang, Z.Y.; Shi, G.H.; Zhang, Q.C.; Abuduwayiti, M.; Liu, J.H. Mineral inclusions and SHRIMP U–Pb dating of zircons from the Alamas nephrite and granodiorite: Implications for the genesis of a magnesian skarn deposit. Lithos 2015, 212–215, 128–144. [Google Scholar] [CrossRef]
- Yu, H.Y.; Wang, R.C.; Guo, J.C.; Li, J.G.; Yang, X.W. Study of the minerogenetic mechanism and origin of Qinghai nephrite from Golmud, Qinghai, Northwest China. Sci. China Earth Sci. 2016, 59, 1597–1609. [Google Scholar] [CrossRef]
- Yin, Z.W.; Jiang, C.; Santosh, M.; Chen, Y.M.; Bao, Y.; Chen, Q.L. Nephrite Jade from Guangxi Province, China. Gems Gemol. 2014, 50, 228–235. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, X.; Jiang, T. Mineral association and graphite inclusions in nephrite jade from Liaoning, northeast China: Implications for metamorphic conditions and ore genesis. Geosci. Front. 2019, 10, 425–437. [Google Scholar] [CrossRef]
- Burtseva, M.V.; Ripp, G.S.; Posokhov, V.F.; Zyablitsev, Y.A.; Murzintseva, A.E. The sources of fluids for the formation of nephritic rocks of the southern folded belt of the Siberian. Craton. Dokl. Earth Sci. 2015, 460, 82–86. [Google Scholar] [CrossRef]
- Burtseva, M.V.; Ripp, G.S.; Posokhov, V.F.; Murzintseva, A.E. Nephrites of East Siberia: Geochemical features and problems of genesis. Russ. Geol. Geophys. 2015, 56, 402–410. [Google Scholar] [CrossRef]
- Leaming, S.F. Jade in Canada; Geological Survey of Canada: Ottawa, ON, Canada, 1978; pp. 1–59.
- Adams, C.J.; Beck, R.J.; Campbell, H.J. Characterisation and origin of New Zealand nephrite jade using its strontium isotopic signature. Lithos 2007, 97, 307–322. [Google Scholar] [CrossRef]
- Cox, S.C.; Nibourel, L. Bedload composition, transport and modification in rivers of Westland, New Zealand, with implications for the distribution of alluvial pounamu (jade). N. Z. J. Geol. Geophys. 2015, 58, 154–175. [Google Scholar] [CrossRef] [Green Version]
- Cooper, A.F. Nephrite and Metagabbro in the Haast Schist at Muddy Creek, Northwest Otago, New Zealand. N. Z. J. Geol. Geophys. 1995, 38, 325–332. [Google Scholar] [CrossRef]
- Yui, T.-F.; Kwon, S.-T. Origin of a Dolomite-Related Jade Deposit at Chuncheon, Korea. Econ. Geol. 2002, 97, 593–601. [Google Scholar] [CrossRef]
- Gil, G.; Barnes, J.D.; Boschi, C.; Gunia, P.; Szakmány, G.; Bendő, Z.; Raczynski, P.; Petérdi, B. Origin of serpentinite-related nephrite from Jordanów and adjacent areas (SW Poland) and its comparison with selected nephrite occurrences. Geol. Q. 2015, 59, 457–472. [Google Scholar] [CrossRef] [Green Version]
- Gil, G. Petrographic and microprobe study of nephrites from Lower Silesia (SW Poland). Geol. Q. 2013, 57, 395–404. [Google Scholar] [CrossRef] [Green Version]
- Yui, T.-F.; Yeh, H.-W.; Lee, C.W. Stable isotope studies of nephrite deposits from Fengtien, Taiwan. Geochim. Cosmochim. Acta 1988, 52, 593–602. [Google Scholar] [CrossRef]
- Tian, S. Gemological Characteristics and Mineral Typomorphic Characteristics of Green Xinjiang Manasi Nephrite. Master’s Thesis, Shijiazhuang University of Economics, Shijiazhuang, China, 2014. [Google Scholar]
- Gil, G.; Barnes, J.D.; Boschi, C.; Gunia, P.; Raczynski, P.; Szakmány, G.; Bendő, Z.; Petérdi, B. Nephrite from Złoty Stok (Sudetes, SW Poland): Petrological, geochemical, and isotopic evidence for a dolomite-related origin. Can. Mineral. 2015, 53, 533–556. [Google Scholar] [CrossRef]
- Wu, L.J. Study on Gemological and Mineralogical Characteristics and Genesis of Nephrite in Tiantai, Qiemo, Xinjiang. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2016. [Google Scholar]
- Gao, K. Study on the Metallogenic Mechanism of Tashisayi Nephrite from Xinjiang. Unpublished. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 2018. [Google Scholar]
- Gao, K.; Shi, G.H.; Wang, M.L.; Xie, G.; Wang, J.; Zhang, X.C.; Fang, T.; Lei, W.Y.; Liu, Y. The Tashisayi nephrite deposit from South Altyn Tagh, Xinjiang, northwest China. Geosci. Front. 2019, 10, 1597–1612. [Google Scholar] [CrossRef]
- Han, H.W.; Zhang, C.J.; Wang, H.; Mou, L.X.; Wei, Y.; Bai, D. Metallogenic geological characteristics and prospecting prospects of nephrite deposits in the middle and western Altyn Tagh. Acta Mineral. Sin. 2011, 31, 952–953. (In Chinese) [Google Scholar]
- Local Chronicle Compilation Committee. Ruoqiang County Local Chronicle; Chinese Literature and History Press: Ruoqiang, China, 2017. (In Chinese) [Google Scholar]
- Yu, M. Chinese Jade Yearbook; Beijing Science Press: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Guangxi Regional Geological Survey Institute. Geological Map of the Washixia, Xinjiang, China, Scale 1: 250,000; Guangxi Regional Geological Survey Institute Press: Guilin, China, 2003. (In Chinese) [Google Scholar]
- Xinjiang Geology and Mineral Bureau third Geology Brigade. Geological Survey of Yingelike Nephrite Mine, Ruoqiang County, Xinjiang, China; Xinjiang Geology and Mineral Bureau Third Geology Brigade Press: Kuerle, China, 2002. (In Chinese) [Google Scholar]
- Wang, C.; Liu, L.; Xiao, P.X.; Cao, Y.T.; Yu, H.Y.; Meert, J.G.; Liang, W.T. Geochemical and geochronologic constraints for Paleozoic magmatism related to the orogenic collapse in the Qimantagh-South Altyn region, northwestern China. Lithos 2014, 202–203, 1–20. [Google Scholar] [CrossRef]
- Wang, C.; Liu, L.; Yang, W.Q.; Zhu, X.H.; Cao, Y.T.; Kang, L.; Chen, S.F.; Li, R.S.; He, S.P. Provenance and ages of the Altyn Complex in Altyn Tagh: Implications for the early Neoproterozoic evolution of northwestern China. Precambrian Res. 2013, 230, 193–208. [Google Scholar] [CrossRef]
- Liu, L.; Sun, Y.; Xiao, P.X.; Che, Z.C.; Luo, J.H.; Chen, D.L.; Wang, Y.; Zhang, A.D.; Chen, L.; Wang, Y.H. Discovery of ultrahigh-pressure magnesite-bearing garnet lherzolite (>3.8 GPa) in the Altyn Tagh, Northwest China. Chin. Sci. Bull. 2002, 47, 881–886. [Google Scholar] [CrossRef]
- Cowgill, E.; Yin, A.; Harrison, T.M.; Wang, X.F. Reconstruction of the Altyn Tagh fault based on U-Pb geochronology: Role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau. J. Geophys. Res. Solid Earth 2003, 108, B7. [Google Scholar] [CrossRef]
- Zhang, J.X.; Zhang, Z.M.; Xu, Z.Q.; Yang, J.S.; Cui, J.W. Petrology and geochronology of eclogites from the western segment of the Altyn Tagh, Northwestern China. Lithos 2001, 56, 187–206. [Google Scholar] [CrossRef]
- Mohsen, M.-D. Distant vision method. In Dictionary of Gems and Gemology, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2009; p. 271. [Google Scholar] [CrossRef]
- Mohsen, M.-D. Hydrostatic weighing of specific gravity. In Dictionary of Gems and Gemology, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2009; p. 440. [Google Scholar] [CrossRef]
- Meng, X.Z.; Zhao, M.F. The legal measurement unit of Vickers hardness and its conversion. J. Gems Gemmol. 2007, 2, 52. [Google Scholar]
- GB/T 14506. 30-2010. National Standards of the People’s Republic of China: Methods for Chemical Analysis of Silicate Rocks-Part 30: Determination of 44 Elements; Standardization Administration of China Press: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Clayton, R.N.; Mayeda, T.K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 1963, 27, 43–52. [Google Scholar] [CrossRef]
- Liu, H.B.; Jin, G.S.; Li, J.J.; Han, J.; Zhang, J.F.; Zhang, J.; Zhong, F.W.; Guo, D.Q. Determination of stable isotope composition in uranium geological samles. World Nucl. Geosci. 2013, 3, 174–179, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Friedman, I. Deuterium content of natural waters and other substances. Geochim. Cosmochim. Acta 1953, 4, 89–103. [Google Scholar] [CrossRef]
- Adamo, I.; Bocchio, R. Nephrite Jade from Val Malenco, Italy: Review and Update. Gems Gemol. 2013, 49, 98–106. [Google Scholar] [CrossRef]
- Leake, B.E.; Woolley, A.R.; Arpes, C.E.S.; Birch, W.D.; Gilbert, M.C.; Grice, J.D.; Hawthorne, F.C.; Kato, A.; Kisch, H.J.; Krivovichev, V.G.; et al. Nomenclature of Amphiboles; Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineral. Mag. 1997, 61, 295–310. [Google Scholar] [CrossRef]
- Morimoto, N.; Fabries, J.; Ferguson, A.K.; Ginzburg, I.V.; Ross, M.; Seifert, F.A.; Zussman, J.; Aoki, K.; Gottardi, G. Nomenclature of pyroxenes. Mineral. Petrol. 1988, 39, 55–76. [Google Scholar] [CrossRef]
- Sun, S.-S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Liu, X.F.; Zhang, H.Q.; Liu, Y.; Zhang, Y.; Li, Z.J.; Zhang, J.H.; Zheng, F. Mineralogical Characteristics and Genesis of Green Nephrite from the World. Rock Miner. Anal. 2018, 23, 479–489. (In Chinese) [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, D.J.; Chang, S. A mineralogical and gemological characterization of the Korean jade from Chuncheon, Korea. J. Geol. Soc. Korea 1986, 22, 278–288. (In Korean) [Google Scholar]
- Noh, J.H.; Yu, J.-Y.; Choi, J.B. Genesis of nephrite and associated calc-silicate minerals in Chuncheon area. J. Geol. Soc. Korea 1993, 29, 199–224. (In Korean) [Google Scholar]
- Pei, X.X. Study on the Chuncheon Nephrite Deposit, Korea. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2012. [Google Scholar]
- Li, H.J.; Cai, Y.T. Study on Characteristics of Nephrite from Liyang, Jiangsu Province. J. Gems Gemmol. 2008, 10, 16–19, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Simandl, G.J.; Riveros, C.P.; Schiarizza, P. Nephrite (Jade) Deposits, Mount Ogden Area, Central British Columbia (NTS 093N 13W). Geol. Fieldwork 2000, 1999, 339–347. [Google Scholar]
- Mi, L.L. Green Nephrite Jade from Canada. J. Gems Gemmol. 2003, 1, 10–13, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Zhao, Y.Y. Study of Gemological Mineralogy of Green Nephrite from New Zealand. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2015. [Google Scholar]
- Chen, C.X.; Chen, S.Y.; Li, G.G.; Liu, D.Y. Comparative research on gemological characteristics of Hualian nephrite from Taiwan. Acta Petrol. Mineral. 2014, S2, 35–40, (In Chinese with English abstract). [Google Scholar]
- Yuan, M.; Wu, R.H.; Zhang, J.H. A study of gemological and color influencing ions of green nephrite from Ospinsk No. 7 mining area, Russia. Acta Petrol. Mineral. 2014, S1, 48–54, (In Chinese with English abstract). [Google Scholar]
- Prokhor, S.A. The genesis of nephrite and emplacement of the nephrite bearing ultramafic complexes of East Sayan. Int. Geol. Rev. 1991, 33, 290–300. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Gan, F.X.; Cheng, H.S. PIXE analysis of nephrite minerals from different deposits. Nucl. Instrum. Methods Phys. Res., Sect. B 2011, 269, 460–465. [Google Scholar] [CrossRef]
- Siqin, B.; Qian, R.; Zhou, S.J.; Gan, F.X.; Dong, M.; Hua, Y.F. Glow discharge mass spectrometry studies on nephrite minerals formed by different metallogenic mechanisms and geological environments. Int. J. Mass Spectrom. 2012, 309, 206–211. [Google Scholar] [CrossRef]
- Siqin, B.; Qian, R.; Zhuo, S.J.; Gao, J.; Jin, J.; Wen, Z.Y. Studies of rare earth elements to distinguish nephrite samples from different deposits using direct current glow discharge mass spectrometry. J. Anal. At. Spectrom. 2014, 29, 2064–2071. [Google Scholar] [CrossRef]
- Men, Y. The Causes and Genesis Study of Nephrite in Alamas, Yutian, Xinjiang, China. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2014. [Google Scholar]
- Zhou, Z.H.; Feng, J.R. A petrological and mineralogical comparison between Xinjiang nephrite and Xiuyan nephrite. Acta Petrol. Mineral. 2010, 29, 331–340, (In Chinese with English abstract). [Google Scholar]
- Feng, X.Y.; Zhang, Y.; Lu, T.J.; Zhang, H. Characterization of Mg and Fe contents in nephrite using Raman spectroscopy. Gems Gemol. 2017, 53, 204–212. [Google Scholar] [CrossRef]
- Fritsch, E.; Rossman, G.R. An update on color in gems. Part 1: Introduction and colors caused by dispersed metal ions. Gems Gemol. 1987, 23, 126–139. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.Y.; Wang, R.C.; Guo, J.C.; Li, J.G.; Yang, X.W. Color–inducing elements and mechanisms in nephrites from Golmud, Qinghai, NW China: Insights from spectroscopic and compositional analyses. J. Mineral. Petrol. Sci. 2016, 111, 313–325. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.H.; Han, J.Y. The IR analyses of M1 and M3 cation occupation of Hetian jade, Manasi green jade and Xiuyanold jade. Acta Petrol. Mineral. 2002, 21, 68–71. (In Chinese) [Google Scholar]
Samples | Color | Luster | Refractive Index | Specific Gravity | Vickers Hardness | Mohs Hardness |
---|---|---|---|---|---|---|
H-1 | Light-yellow | Sub-vitreous | 1.60 | 2.94 | 638 | 5.8 |
H-2 | Greenish-yellow | Greasy | 1.60 | 2.88 | 753 | 6.1 |
H-3 | Yellow | Sub-vitreous | 1.60 | 2.93 | 702 | 6.0 |
H-4 | Light-yellow | Greasy | 1.60 | 2.96 | 657 | 5.9 |
H-5 | Light-yellow | Greasy | 1.60 | 2.93 | 784 | 6.2 |
Q-1 | Greenish-yellow | Sub-vitreous | 1.61 | 2.90 | 713 | 6.0 |
Q-2 | Greenish-yellow | Sub-vitreous | 1.61 | 2.92 | 733 | 6.1 |
Q-3 | Greenish-yellow | Sub-vitreous | 1.62 | 2.93 | 738 | 6.1 |
Q-4 | Light-yellow | Sub-vitreous | 1.62 | 2.96 | 690 | 6.0 |
Q-5 | Light-yellow | Sub-vitreous | 1.62 | 2.90 | 698 | 6.0 |
Q-6 | Light-yellow | Sub-vitreous | 1.61 | 2.92 | 750 | 6.1 |
Samples | H-1 | H-2 | H-3 | H-4 | H-5 | Q-1 | Q-2 | Q-3 | Q-4 | Q-5 | Q-6 | H-2 | H-5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Minerals | Tr-II | Tr-II | Tr-II | Tr-II | Tr-II | Tr-II | Tr-II | Tr-II | Tr-II | Tr-II | Tr-II | Tr-I | Tr-I |
SiO2 | 58.34 | 58.77 | 58.31 | 59.74 | 59.35 | 59.21 | 59.09 | 57.90 | 58.06 | 58.62 | 58.40 | 56.96 | 57.07 |
TiO2 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.02 | 0.00 | 0.00 | 0.02 | 0.04 | 0.03 | 0.00 | 0.00 |
Al2O3 | 0.76 | 0.72 | 0.78 | 0.60 | 0.63 | 0.63 | 0.72 | 0.69 | 0.72 | 1.62 | 0.76 | 1.08 | 2.02 |
FeO | 0.97 | 0.98 | 0.94 | 0.43 | 0.37 | 0.35 | 0.27 | 0.45 | 1.96 | 1.13 | 1.06 | 3.48 | 2.66 |
Cr2O3 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.02 | 0.01 | 0.02 | 0.00 |
MnO | 0.09 | 0.08 | 0.11 | 0.01 | 0.03 | 0.01 | 0.00 | 0.03 | 0.00 | 0.02 | 0.10 | 0.50 | 0.84 |
MgO | 24.09 | 23.75 | 23.95 | 23.90 | 23.19 | 24.62 | 24.17 | 24.07 | 23.42 | 22.69 | 23.94 | 21.63 | 21.05 |
CaO | 12.93 | 12.82 | 13.02 | 12.89 | 13.59 | 12.77 | 12.54 | 13.89 | 13.36 | 13.54 | 13.09 | 13.78 | 12.88 |
Na2O | 0.09 | 0.10 | 0.12 | 0.09 | 0.10 | 0.13 | 0.33 | 0.09 | 0.10 | 0.21 | 0.13 | 0.12 | 0.31 |
K2O | 0.14 | 0.08 | 0.12 | 0.08 | 0.05 | 0.11 | 0.20 | 0.07 | 0.08 | 0.06 | 0.15 | 0.08 | 0.14 |
NiO | 0.00 | 0.03 | 0.01 | 0.00 | 0.01 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 |
Total | 97.42 | 97.33 | 97.39 | 97.75 | 97.31 | 97.86 | 97.38 | 97.19 | 97.72 | 97.93 | 97.67 | 97.68 | 96.97 |
TSi | 7.96 | 8.00 | 7.96 | 8.00 | 8.00 | 8.00 | 8.00 | 7.91 | 7.93 | 8.00 | 7.95 | 7.88 | 7.94 |
TAl | 0.04 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.07 | 0.00 | 0.05 | 0.12 | 0.07 |
SumT | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 |
CAl | 0.08 | 0.12 | 0.08 | 0.10 | 0.10 | 0.10 | 0.11 | 0.03 | 0.05 | 0.26 | 0.08 | 0.06 | 0.27 |
CFe3+ | 0.00 | 0.00 | 0.00 | 0.05 | 0.04 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
CMg | 4.90 | 4.82 | 4.87 | 4.77 | 4.66 | 4.90 | 4.85 | 4.91 | 4.77 | 4.61 | 4.86 | 4.46 | 4.36 |
CFe2+ | 0.02 | 0.07 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.18 | 0.12 | 0.06 | 0.40 | 0.31 |
CMn | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.06 |
SumC | 5.00 | 5.00 | 5.00 | 4.92 | 4.81 | 5.00 | 5.00 | 4.98 | 5.00 | 5.00 | 5.00 | 4.98 | 5.00 |
BMg | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
BFe2 | 0.09 | 0.05 | 0.07 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 |
BMn | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.04 |
BCa | 1.89 | 1.87 | 1.90 | 1.85 | 1.96 | 1.85 | 1.82 | 2.00 | 1.96 | 1.98 | 1.91 | 2.00 | 1.92 |
BNa | 0.12 | 0.04 | 0.02 | 0.02 | 0.03 | 0.03 | 0.09 | 0.09 | 0.09 | 0.02 | 0.02 | 0.03 | 0.04 |
SumB | 2.00 | 1.95 | 2.00 | 1.87 | 1.99 | 1.98 | 1.94 | 2.09 | 2.05 | 2.00 | 2.00 | 2.03 | 2.00 |
ACa | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 |
ANa | 0.12 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.04 | 0.02 | 0.03 | 0.04 |
AK | 0.03 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | 0.04 | 0.01 | 0.01 | 0.01 | 0.03 | 0.01 | 0.03 |
SumA | 0.15 | 0.01 | 0.04 | 0.01 | 0.01 | 0.02 | 0.04 | 0.07 | 0.04 | 0.05 | 0.05 | 0.09 | 0.07 |
Sumcat | 15.15 | 14.96 | 15.04 | 14.80 | 14.81 | 15.00 | 14.98 | 15.14 | 15.09 | 15.05 | 15.05 | 15.10 | 15.07 |
Mg2+/(Mg2+ + Fe2+) | 0.98 | 0.98 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 0.98 | 0.98 | 0.92 | 0.93 |
Samples | H-3 | H-3 | H-4 | H-5 | H-1 | H-5 | H-2 | H-3 |
---|---|---|---|---|---|---|---|---|
Minerals | Prg | Prg | Prg | Prg | Di | Di | Di | Di |
SiO2 | 45.78 | 45.90 | 44.90 | 45.02 | 55.03 | 54.20 | 54.54 | 54.69 |
TiO2 | 0.33 | 0.62 | 1.42 | 1.43 | 0.01 | 0.18 | 0.00 | 0.04 |
Al2O3 | 14.60 | 15.10 | 14.52 | 14.24 | 0.50 | 0.79 | 0.49 | 2.01 |
FeO | 0.52 | 0.50 | 0.52 | 0.23 | 0.12 | 0.07 | 0.05 | 0.40 |
Cr2O3 | 0.00 | 0.03 | 0.00 | 0.00 | 0.04 | 0.00 | 0.01 | 0.03 |
MnO | 0.03 | 0.00 | 0.00 | 0.04 | 0.00 | 0.04 | 0.04 | 0.07 |
MgO | 19.36 | 18.99 | 19.39 | 19.76 | 18.46 | 17.68 | 18.47 | 16.50 |
CaO | 14.50 | 14.37 | 13.96 | 14.38 | 26.13 | 26.94 | 26.23 | 25.93 |
Na2O | 2.25 | 1.95 | 1.97 | 1.93 | 0.02 | 0.05 | 0.00 | 0.20 |
K2O | 0.11 | 0.15 | 0.24 | 0.28 | 0.00 | 0.01 | 0.00 | 0.03 |
NiO | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.03 | 0.00 |
Total | 97.44 | 97.58 | 97.27 | 97.30 | 100.33 | 99.96 | 99.86 | 99.90 |
Si | 6.39 | 6.39 | 6.29 | 6.29 | 1.98 | 1.96 | 1.97 | 1.98 |
Ti | 0.03 | 0.07 | 0.15 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 |
Cr | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Al | 2.40 | 2.48 | 2.40 | 2.34 | 0.02 | 0.03 | 0.02 | 0.09 |
Fe3+ | 0.00 | 0.00 | 0.03 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 |
Mg | 4.03 | 3.94 | 4.05 | 4.12 | 0.99 | 0.95 | 0.99 | 0.89 |
Fe2+ | 0.06 | 0.06 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
Mn | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Ca | 2.17 | 2.14 | 2.10 | 2.15 | 1.01 | 1.04 | 1.01 | 1.00 |
Na | 0.64 | 0.55 | 0.56 | 0.55 | 0.00 | 0.00 | 0.00 | 0.01 |
K | 0.02 | 0.03 | 0.04 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 |
Sum | 15.75 | 15.66 | 15.66 | 15.68 | 4.00 | 4.00 | 4.00 | 3.99 |
BCa | 2.00 | 2.00 | 2.00 | 2.00 | n.d. | n.d. | n.d. | n.d. |
(Na + K)A | 0.57 | 0.64 | 0.58 | 0.57 | n.d. | n.d. | n.d. | n.d. |
Mg2+/(Mg2+ + Fe2+) | 0.99 | 0.99 | 0.99 | 1.00 | n.d. | n.d. | n.d. | n.d. |
Samples | H-1 | H-2 | H-3 | H-4 | H-5 | Q-1 | Q-2 | Q-3 | Q-4 | Q-5 | Q-6 | AVG |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 55.93 | 55.05 | 55.21 | 56.20 | 56.12 | 57.97 | 57.88 | 58.27 | 57.18 | 55.89 | 57.67 | 56.70 |
TiO2 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 |
Al2O3 | 0.76 | 1.10 | 2.11 | 2.19 | 0.85 | 0.77 | 1.09 | 0.76 | 1.30 | 2.64 | 1.05 | 1.33 |
TFe2O3 | 0.56 | 1.15 | 0.50 | 0.78 | 0.37 | 0.78 | 0.66 | 0.74 | 0.60 | 0.48 | 0.57 | 0.65 |
FeO | 0.40 | 0.83 | 0.33 | 0.49 | 0.26 | 0.61 | 0.49 | 0.58 | 0.53 | 0.41 | 0.50 | 0.49 |
Fe2O3 | 0.09 | 0.23 | 0.13 | 0.24 | 0.08 | 0.10 | 0.11 | 0.10 | 0.01 | 0.03 | 0.01 | 0.10 |
MnO | 0.02 | 0.08 | 0.03 | 0.02 | 0.04 | 0.07 | 0.06 | 0.08 | 0.04 | 0.03 | 0.05 | 0.05 |
MgO | 27.44 | 26.49 | 27.44 | 26.88 | 27.85 | 24.25 | 23.81 | 23.80 | 24.51 | 25.07 | 24.63 | 25.70 |
CaO | 12.26 | 12.40 | 11.43 | 13.12 | 11.76 | 12.58 | 13.21 | 12.99 | 12.37 | 11.93 | 12.76 | 12.4 |
Na2O | 0.12 | 0.09 | 0.15 | 0.13 | 0.14 | 0.44 | 0.39 | 0.47 | 0.41 | 0.36 | 0.33 | 0.28 |
K2O | 0.08 | 0.09 | 0.22 | 0.14 | 0.07 | 0.20 | 0.11 | 0.11 | 0.61 | 0.39 | 0.41 | 0.22 |
P2O5 | 0.01 | 0.01 | 0.01 | 0.03 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
LOI | 2.81 | 3.55 | 2.83 | 0.44 | 2.73 | 2.97 | 2.78 | 2.80 | 2.99 | 3.23 | 2.55 | 2.70 |
Total | 100.49 | 101.1 | 100.5 | 100.85 | 100.37 | 99.99 | 99.98 | 99.98 | 99.98 | 99.99 | 99.99 | 100 |
Fe/(Fe + Mg) | 0.02 | 0.05 | 0.02 | 0.03 | 0.02 | 0.03 | 0.03 | 0.03 | 0.03 | 0.02 | 0.03 | 0.03 |
Samples | Fe3+ | Fe2+ | Mn | Ti | V | Cr | Co | Ni | Cu | Color |
---|---|---|---|---|---|---|---|---|---|---|
Q-1 | 695 | 4731 | 550 | 108 | 11.6 | 4.42 | 1.82 | 3.44 | 0.52 | Greenish-yellow |
Q-2 | 769 | 3824 | 459 | 118 | 7.42 | 8.81 | 1.87 | 3.51 | 1.04 | Greenish-yellow |
Q-3 | 733 | 4472 | 578 | 81 | 11.5 | 9.14 | 2.14 | 3.72 | 0.93 | Greenish-yellow |
Q-4 | 96 | 4083 | 341 | 61 | 1.37 | 8.44 | 1.55 | 4.12 | 1.74 | Light-yellow |
Q-5 | 184 | 3175 | 210 | 79 | 2.77 | 2.03 | 0.83 | 3.19 | 0.37 | Light-yellow |
Q-6 | 98 | 3889 | 361 | 88 | 1.49 | 6.03 | 1.56 | 3.46 | 0.41 | Light-yellow |
Samples | δD | δ18O | ||||
H-3 | –74.9 | 5.3 | ||||
H-4 | –78.0 | 7.4 | ||||
H-5 | –86.7 | 5.4 | ||||
Average | –79.9 | 6.0 | ||||
Types | Dolomite-related | Serpentinite-related | ||||
Deposits | δD | δ18O | Deposits | δD | δ18O | |
Kunlun, China1 | −108~−124 | 0.5~2.3 | Chara Jelgra River, Siberia1 | –39 | 6.9 | |
Cowell, Australia1 | −57 | 3.4 | Red Mountain, New Zealand1 | –54 | 7.5 | |
Wyoming, USA1 | −56 | 1.5 | Mt. Ogden, Canada1 | –52 | 9.6 | |
Chuncheon, Korea1 | −118~−105 | −9.9~−7.9 | Shulaps Range, Canada1 | –49 | 8.4 | |
Alamas, Xinjiang, China2 | −95~−75 | 3.2~6.2 | Fengtien, China1 | −68~−33 | 4.5~5.3 | |
Hetian placer nephrite, China3 | −72.4~−55.7 | 1.1~5.6 | Qinghai, China7 | −60~−56 | 8.1~8.6 | |
Złoty Stok, SW Poland4 | −77.2~−74.6 | 8.3~10.4 | Pakistan7 | −56~−43 | 13.2~13.4 | |
Tashisayi, Xinjiang, China5 | −89.3~−82.5 | 3.0~6.5 | Jordanów, SW Poland8 | –61 | 6.1 | |
Apocarbonate nephrite, Russia6 | −179~−119 | −17~−15 |
Types | Deposits | Major Minerals | Minor Minerals |
---|---|---|---|
D-type | Złoty Stok, SW Poland1 | Type 1: actinolite, diopside Type 2: tremolite-actinolite (>90%) | Type 1: lollingite, carbonates, quartType 2: diopside, calcite, quartz, As-minerals, apatite, scheelite, allanite |
Alamas, Xinjiang, China2 | Tremolite (>98%) | Diopside, actinolite, calcite | |
Hetian placer nephrite, China3 | Tremolite (>95%) | Diopside, calcite, allanite, zircon, rutile | |
Chuncheon, Korea4 | Tremolite (~98%) | Diopside, serpentine, clinochlore, carbonates, apatite | |
Qinghai, China5 | Tremolite (>95%) | Diopside, calcite, epidote, clinozolisite, titanite, actinolite | |
Tiantai, Xinjiang, China6 | Tremolite (>95%) | Diopside, dolomite, titanite, epidote, magnetite, apatite, limonite | |
Liyang, Jiangsu, China7 | Tremolite (~99%) | Diopside, apatite, carbonates | |
S-type | Jordanów, SW Poland8 | Tremolite (97.2–89.8%), diopside (4.0–5.7%) and chlorite (3.8–8.1%) | Grossular, prehnite, opaque spinel, antigorite, hydrogrossular, titanite, zircon, apatite, monazite |
Mount Ogden area, Central British Columbia9 | Actinolite-tremolite (>90%), serpentine (˂10%), talc (~6%) | Spinel, titanite, ilmenite, hematite, chlorite | |
Qinghai, China10 | Tremolite, minor actinolite | Diopside, chlorite, zoisite, rutile, zircon, serpentine, magnetite, magnesite, chromite, augite | |
Manasi, Xinjiang, China11 | Tremolite-actinolite (75–90%) | Chromite, kirschsteinite, chlorite | |
South Island, New Zealand12 | Mainly tremolite, less actinolite | Albite, Chlorite, diopside, Maucherite | |
Hualian, Taiwan, China13 | Tremolite-actinolite | Grossular, chromite, chlorite | |
East Sayan, Siberia, Russia14 | Tremolite | Chlorite, chromite |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Shi, G.; Xu, L.; Li, X. Mineralogy and Geochemistry of Nephrite Jade from Yinggelike Deposit, Altyn Tagh (Xinjiang, NW China). Minerals 2020, 10, 418. https://doi.org/10.3390/min10050418
Jiang Y, Shi G, Xu L, Li X. Mineralogy and Geochemistry of Nephrite Jade from Yinggelike Deposit, Altyn Tagh (Xinjiang, NW China). Minerals. 2020; 10(5):418. https://doi.org/10.3390/min10050418
Chicago/Turabian StyleJiang, Ying, Guanghai Shi, Liguo Xu, and Xinling Li. 2020. "Mineralogy and Geochemistry of Nephrite Jade from Yinggelike Deposit, Altyn Tagh (Xinjiang, NW China)" Minerals 10, no. 5: 418. https://doi.org/10.3390/min10050418
APA StyleJiang, Y., Shi, G., Xu, L., & Li, X. (2020). Mineralogy and Geochemistry of Nephrite Jade from Yinggelike Deposit, Altyn Tagh (Xinjiang, NW China). Minerals, 10(5), 418. https://doi.org/10.3390/min10050418