Mineralogy of Skarn Ores from Băița-Bihor, Northern Apuseni Mountains, Romania: A Case Study of Cu-, Bi-, and Sn-minerals
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
4. Results
4.1. Ore Petrography
4.1.1. The Antoniu and Antoniu North Orebodies
4.1.2. The Blidar Contact Orebody
4.2. Crystal Chemistry
5. Discussion
5.1. Bornite
5.2. Sphalerite
5.3. Bi-Cu-Sulfosalts and Bi-Tellurides
5.4. Cu-Sn-Zn(Fe)-S Minerals
5.5. Fe-oxides/Hydroxides
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Berza, T.; Constantinescu, E.; Vlad, Ș.N. Upper Cretaceous magmatic series and associated mineralisation in the Carpathian-Balkan Orogen. Resour. Geol. 1998, 48, 291–306. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Bogdanov, K.; Kiss, O.; Vuckovic, B. Gold enrichment in deposits of the Banatitic Magmatic and Metallogenetic Belt, southeastern Europe. In Proceedings of the Mineral Exploration and Sustainable Development: 7th Biennial SGA Meeting, Athens, Greece, 24–28 August 2003; pp. 1153–1156. [Google Scholar]
- Cook, N.J.; Ciobanu, C.L.; Danyushevsky, L.V.; Gilbert, S. Minor and trace elements in bornite and associated Cu–(Fe)-sulfides: A LA-ICP-MS study. Geochim. Cosmochim. Acta 2011, 75, 6473–6496. [Google Scholar] [CrossRef]
- Topa, D.; Paar, W.H. Cupromakovickyite, Cu8Pb4Ag2Bi18S36, a new mineral species of the pavonite homologous series. Can. Mineral. 2008, 46, 503–514. [Google Scholar] [CrossRef]
- Damian, F.; Ciobanu, C.L.; Cook, N.J.; Damian, G. Lead-bismuth sulphotellurides and associated minerals in the Upper Cretaceous Baita Bihor Cu-(Mo) skarn, North Apuseni Mts., Romania. In Proceedings of the Au-Ag-telluride Deposits of the Golden Quadrilateral, Apuseni Mts., Romania. International Field Workshop of IGCP project 486, Alba Iulia, Romania, 31 August–7 September 2004; pp. 221–224. [Google Scholar]
- Ciobanu, C.L.; Cook, N.J.; Maunders, C.; Benjamin, P.W. Focused Ion Beam and Advanced Electron Microscopy for Minerals: Insights and Outlook from Bismuth Sulphosalts. Minerals 2016, 6, 112. [Google Scholar] [CrossRef] [Green Version]
- Cioflică, G.; Vlad, Ş.; Iosif, V.; Panican, A. Metamorfismul termic și metasomatic al formațiunilor paleozoice din unitatea de Arieșeni de la Băița Bihorului. Studii și Cercetări de Geologie, Geofizică, Geografie Seria Geologie 1974, 19, 43–68. [Google Scholar]
- Cioflică, G.; Vlad, Ş.; Volanschi, E.; Stoici, S. Skarnele magneziene cu mineralizațiile asociate de la Băița Bihorului. Studii și Cercetări de Geologie, Geofizică, Geografie Seria Geologie 1977, 22, 39–57. [Google Scholar]
- Andrii, M.P.; Tămaș, C.G. Preliminary Mineralogical Data on Bi- and Sn-minerals from Băița Bihor Ore Deposit, North Apuseni Mountains, Romania. In Proceedings of the Sesiunea Științifică Anuală “Ion Popescu Voitești”, Cluj-Napoca, Cluj, Romania, 15 December 2017; pp. 1–8. [Google Scholar]
- Andrii, M.P.; Tămaș, C.G. Ore mineralogy and geochemistry relationships in Băița Bihor ore deposit, Apuseni Mountains, Romania—Blidar Contact case study. Romanian J. Mineral Depos. 2018, 91, 49–53. [Google Scholar]
- Stoici, S. Districtul Metalogenetic Băiţa Bihorului: Cercetări Geologice şi Miniere; Editura Academiei Republicii Socialiste România: Bucharest, Romania, 1983. [Google Scholar]
- Udubașa, G. Outstanding mineral occurrences in Romania: What’s new? Acta Mineral. Petrogr. 2003, 1, 106. [Google Scholar]
- Papp, G. History of Minerals, Rocks and Fossil Resins Discovered in the Carpathian Region; Hungarian Natural History Museum: Budapest, Hungary, 2004. [Google Scholar]
- Peters, K.F. Geologische und Mineralogische Studien aus dem Südöstlichen Ungarn, Insbesondere aus der Umgebung von Rézbánya; K. K. Hof- und Staastdruckerei: Vienna, Austria, 1861; pp. 385–463. [Google Scholar]
- Mumme, W.G.; Žák, L. Padĕraite, Cu5.9Ag1.3Pb1.6Bi11.2S22, a new mineral of the cuprobismutite-hodrushite group. Neues Jahrb. Mineral. Monatsh. 1985, 12, 557–567. [Google Scholar]
- Žák, L.; Fryda, J.; Mumme, W.G.; Paar, W.H. Makovickyite, Ag1.5Bi5.5S9 from Băiţa Bihorului, Romania. The 4P natural member of the pavonite series. Neues Jahrb. Mineral. Abh. 1994, 168, 147–169. [Google Scholar]
- Ilinca, G.; Makovicky, E.; Topa, D.; Zagler, G. Cuproneyite, Cu7Pb27Bi25S68, a new mineral species fom Băița Bihor, Romania. Can. Mineral. 2012, 50, 353–370. [Google Scholar] [CrossRef]
- Ciobanu, C.L. Graţianite, MnBi2S4, a new mineral from the Bǎiţa Bihor skarn, Romania. Am. Mineral. 2014, 99, 1163–1170. [Google Scholar] [CrossRef]
- Strashimirov, S.; Popov, P. Geology and Metallogeny of the Srednogorie Zone and Panagyurishte Ore Region (Srednogorie Zone, Bulgaria). Guide to excursions A and C. In ABCD-GEODE Workshop; Sofia University: Sofia, Bulgaria, 2000. [Google Scholar]
- Gallhofer, D.; von Quadt, A.; Peytcheva, I.; Schmid, S.M.; Heinrich, C.A. Tectonic, magmatic, and metallogenic evolution of the Late Cretaceous arc in the Carpathian-Balkan orogen. Tectonics 2015, 34, 1813–1836. [Google Scholar] [CrossRef] [Green Version]
- Kounov, A.; Schmid, S.M. Fission-track constraints on the thermal and tectonic evolution of the Apuseni Mountains (Romania). Int. J. Earth Sci. 2013, 102, 207–233. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Stein, H. Regional setting and geochronology of the Late Cretaceous Banatitic magmatic and metallogenetic belt. Miner. Deposita 2002, 37, 541–567. [Google Scholar] [CrossRef]
- Vlad, Ș.N.; Berza, T. Banatitic magmatic and metallogenetic belt: metallogeny of the Romanian Carpathians segment. Studia UBB Geologia 2003, 48, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Cioflică, G.; Vlad, Ş. The correlation of the Laramian metallogenic events belonging to the Carpatho—Balkan area. Rev. Roum. Géol. Geoph. Géogr. Géologie 1973, 17, 217–224. [Google Scholar]
- Stoici, S. Studiul geologic şi petrografic al bazinului superior al Crişului Negru - Băiţa Bihor cu privire specială asupra mineralizaţiei de bor şi a skarnelor magneziene. Inst. Geol. Geofiz. Stud. Tehn. Econ. 1974, 1, 1–198. [Google Scholar]
- Bordea, S.; Dimitrescu, R.; Mantea, G.; Ștefan, A.; Bordea, J.; Bleahu, M.; Costea, C. Harta Geologică a României, sc. 1:50.000, foaia Biharia; Institutul de Geologie și Geofizică: Bucharest, Romania, 1988. [Google Scholar]
- Bleahu, M. Corelarea depozitelor paleozoice din Munții Apuseni. In Proceedings of the Vth Congress of the Carpathian Balkan Geological Association, Bucharest, Romania, 4–9 September 1961; pp. 75–79. [Google Scholar]
- Bordea, S.; Bleahu, M.; Bordea, I. Date noi stratigrafice şi structurale asupra Bihorului de vest. Unitatea de Următ şi Unitatea de Vetre. Dări de Seamă ale Ședințelor—Institutul de Geologie și Geofizică 1975, 11, 61–83. [Google Scholar]
- Arabu, N. La géologie des environs de Băiţa (départment de Bihor). C. R. des Séances 1941, 25, 47–94. [Google Scholar]
- Seghedi, I. 2. Geological evolution of the Apuseni Mountains with emphasis on the Neogene magmatism–A review. In Proceedings of the Au-Ag–telluride Deposits of the Golden Quadrilateral, Apuseni Mts., Romania, Guidebook of the International Field Work of IGCP Project 486, IAGOD Guidebook Series 12. Alba-Iulia, Romania, 7–31 September 2004; Cook, N.J., Ciobanu, C.L., Eds.; pp. 5–23. [Google Scholar]
- Stoicovici, E.; Selegean, I. Considerațiuni la cunoașterea magmatismului banatitic din Munții Bihorului. Studia Univesitatis Babeș-Bolyai, Seria Geologia 1970, 15, 3–15. [Google Scholar]
- Cioflică, G.; Vlad, Ș.; Stoici, S. Repartition de la mineralization dans le skarn de Băița Bihorului. Rev. Roum. Géol. Geoph. Géogr. Géologie 1971, 15, 43–58. [Google Scholar]
- Gherasi, N. Microfaciesuri, metamorphism termic și metasomatic în bazinul superior al Crișului Negru. Dări de Seamă ale Ședințelor—Institutul de Geologie 1967, 54, 22–54. [Google Scholar]
- Cioflică, G.; Vlad, Ş. Contribution à la connaissance des types structuraux de pyrométasomatites laramiens de Roumanie. Revue Roumaine de Géologie, Géophysique, Géographie, s. Géologie 1973, 17, 3–14. [Google Scholar]
- Cook, N.J.; Ciobanu, C.L. Cervelleite, Ag4TeS, from three localities in Romania, substitution of Cu, and the occurrence of the associated phase, Ag2Cu2TeS. Neues Jahrb. Mineral. Monatsh. 2003, 7, 321–336. [Google Scholar] [CrossRef]
- Meinert, L. Skarns and Skarn Deposits. Geosci. Canada 1992, 19, 145–162. [Google Scholar]
- George, L.; Cook, N.J.; Ciobanu, C.L. Partitioning of trace elements in co-crystallized sphalerite–galena–chalcopyrite hydrothermal ores. Ore Geol. Rev. 2016, 77, 97–116. [Google Scholar] [CrossRef]
- George, L.; Cook, N.J.; Ciobanu, C.L.; Benjamin, P.W. Trace and minor elements in galena: A reconnaissance LA-ICP-MS study. Am. Mineral. 2015, 100, 548–569. [Google Scholar] [CrossRef]
- Marincea, Ș. Fluoborite in magnesian skarns from Baita Bihor (Bihor Massif, Apuseni Mountains, Romania). Neues Jahrb. Mineral. Monatsh. 2000, 8, 351–371. [Google Scholar]
- Marincea, Ș. New data on szaibelyite from the type locality, Băița Bihor, Romania. Can. Mineral. 2001, 39, 111–127. [Google Scholar] [CrossRef]
- Marincea, Ș. Cristallochimie et propriétés physiques des borates magnésiens des skarns de la province banatitique de Roumanie. Sciences de la Terre. Ecole Nationale Supérieure des Mines de Saint-Etienne. Ph.D. Thesis, Grenoble INPG, Grenoble, France, 1998. [Google Scholar]
- Marincea, Ș.; Dumitraș, D.-G. Contrasting types of boron-bearing deposits in magnesian skarns from Romania. Ore Geol. Rev. 2019, 112. [Google Scholar] [CrossRef]
- Criddle, A.J.; Stanley, C.J. Quantitative Data File for Ore Minerals, 3th ed.; Criddle, A.J., Stanley, C.J., Eds.; Springer: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Sugaki, A.; Hayashi, K.; Kitakaze, A. Hydrothermal synthesis and phase relations of the polymetallic sulphide system. In Materials Science of the Earth’s Interior; Sunagawa, I., Ed.; Terra Scientific Pub. Co.: Tokyo, Japan, 1984; pp. 545–585. [Google Scholar]
- Herzig, P.M. A Mineralogical, Geochemical and Thermal Profile Through the Agrokipia “B” Hydrothermal Sulfide Deposit, Troodos Ophiolite Complex, Cyprus. In Base Metal Sulfide Deposits in Sedimentary and Volcanic Environments; Friedrich, G.H., Herzig, P.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1988; pp. 182–215. [Google Scholar]
- Cook, N.J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Shimizu, M.; Danyushevsky, L.; Saini-Eidukat, B.; Melcher, F. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochim. Cosmochim. Acta 2009, 73, 4761–4791. [Google Scholar] [CrossRef]
- Udubaşa, G.; Medesan, A.; Ottemann, J. Über Geochemie und Einfluss von Fe, Mn, Cd und Cu auf die Gitterkonstanten natürlicher Zinkblenden. Neues Jahrb. Mineral. Abh. 1974, 121, 229–251. [Google Scholar]
- Springer, G. Electronprobe analyses of stannite and related tin minerals. Mineral. Mag. J. Mineral. Soc. 1968, 36, 1045–1051. [Google Scholar] [CrossRef]
- Springer, G. The pseudobinary system Cu2FeSnS4-Cu2ZnSnS4 and its mineralogical significance. Can. Mineral. 1972, 2, 535–541. [Google Scholar]
- Harris, D.C.; Owens, D.R. A stannite-kesterite exsolution from British Columbia. Can. Mineral. 1972, 11, 531–534. [Google Scholar]
- Hall, S.R.; Szymanski, J.T.; Stewart, J.M. Kesterite, Cu2(Zn,Fe)SnS4, and stannite, Cu2(Fe,Zn)SnS4, structurally similar but distinct minerals. Can. Mineral. 1978, 16, 131–137. [Google Scholar]
- Kissin, S.A. A re-investigation of the stannite (Cu2FeSnS4)-kesterite (Cu2ZnSnS4) pseudobinary system. Can. Mineral. 1989, 27, 689–697. [Google Scholar]
- Kissin, S.A.; Owens, D.A.R. The relatives of stannite in the light of new data. Can. Mineral. 1989, 27, 673–688. [Google Scholar]
- Kissin, S.A.; Owens, D.R. New data on stannite and related tin sulphide minerals. Can. Mineral. 1979, 27, 686–697. [Google Scholar]
- Moore, F.; Howie, R.A. Tin-bearing sulphides from St Michael’s Mount and Cligga Head, Cornwall. Mineral. Mag. 1984, 48, 389–396. [Google Scholar] [CrossRef]
- Bernardini, G.P.; Bonazzi, P.; Corazza, M.; Corsini, F.; Mazzetti, G.; Poggi, L.; Tanelli, G. New data on the Cu2FeSnS4-Cu2ZnSnS4 pseudobinary system at 750° and 550 °C. Eur. J. Mineral. 1990, 2, 219–225. [Google Scholar] [CrossRef]
- Watanabe, M.; Hoshino, K.-I.; Myint, K.K.; Miyazaki, K.; Nishido, H. Stannite from the Otoge kaolin-pyrophyllite deposits, Yamagata Prefecture, NE Japan and its genetical significance. Resour. Geol. 1994, 44, 439–444. [Google Scholar]
- Bonazzi, P.; Bindi, L.; Bernardini, G.P.; Menchetti, S. A model for the mechanism of incorporation of Cu, Fe and Zn in the stannite–kësterite series, Cu2FeSnS4–Cu2ZnSnS4. Can. Mineral. 2003, 41, 639–647. [Google Scholar] [CrossRef] [Green Version]
- Corazza, M.; Corsini, F.; Tanelli, G. Stannite group minerals: Investigations on stannite and kesterite. Rend. Soc. Ital. Mineral. Petrol 1986, 41, 217–222. [Google Scholar]
- Petruk, W. Tin sulphides from the deposit of Brunswick Tin Mines Limited. Can. Mineral. 1973, 12, 46–54. [Google Scholar]
- Ivanov, V.V.; Pyatenko, Y.A. On the so-called kёsterite (kesterite). Zap. Vses. Mineral. Obshch. 1958, 88, 165–168. [Google Scholar]
- Bogdanov, K.; Tsonev, D.; Popov, K. Mineral assemblages and genesis of the Cu-Au epithermal deposits in the southern part of the Panaguyrishte Ore District, Bulgaria. Bull. Geol. Soc. Greece 2004, 36, 406–415. [Google Scholar] [CrossRef] [Green Version]
- Nekrasov, I.J.; Sorokin, V.I.; Osadchii, E.G. Fe and Zn partitioning between stannite and sphalerite and its application in geothermometry. Phys. Chem. Earth 1979, 11, 739–742. [Google Scholar] [CrossRef]
- Taylor, R.G. Geology of Tin Deposits; Elsevier Science: Amsterdam, The Netherlands, 1979; Volume 1. [Google Scholar]
- Shimizu, M.; Shikazono, N. Iron and zinc partitioning between coexisting stannite and sphalerite: A possible indicator of temperature and sulfur fugacity. Miner. Deposita 1985, 20, 314–320. [Google Scholar] [CrossRef]
- Nakamura, Y.; Shima, H. Fe and Zn partitioning between sphalerite and stannite (Abstr.). In Proceedings of Joint Meeting of Society of Mining Geologists of Japan; The Japanese Association of Mineralogists, Petrologists and Economic Geologists and the Mineralogical Society of Japan: Sendai, Japan, 1982. [Google Scholar]
- Wagner, T.; Mlynarczyk, M.S.J.; Williams-Jones, A.E.; Boyce, A.J. Stable isotope constraints on ore formation at the San Rafael tin-copper deposit, Southeast Peru. Econ. Geol. 2009, 104, 223–248. [Google Scholar] [CrossRef]
- Osadchiy, Y.G.; Sorokin, V.I.; Gorbachev, N.S.; Nikulin, V.N. Physicochemical Conditions of Formation of Sulfide-Oxide Tin Mineralization; Nauka Press: Moscow, Russia, 1983; pp. 180–194. [Google Scholar]
- Kołodziejczyk, J.; Pršek, J.; Voudouris, P.; Melfos, V.; Asllani, B. Sn-bearing minerals and associated sphalerite from lead-zinc deposits, Kosovo: An electron microprobe and LA-ICP-MS study. Minerals 2016, 6, 42. [Google Scholar] [CrossRef] [Green Version]
- George, L.; Cook, N.J.; Bryony, B.P.C.; Ciobanu, C.L. Trace elements in hydrothermal chalcopyrite. Mineral. Mag. 2018, 82, 59–88. [Google Scholar] [CrossRef]
- Stefanova, V.; Genevski, K.; Stefanov, B. Mechanism of oxidation of pyrite, chalcopyrite and bornite during flash smelting. Can. Metall. Q. 2004, 43, 78–88. [Google Scholar] [CrossRef]
- Majuste, D.; Ciminelli, V.S.T.; Osseo-Asare, K.; Dantas, M.S.S.; Magalhães-Paniago, R. Electrochemical dissolution of chalcopyrite: Detection of bornite by synchrotron small angle X-ray diffraction and its correlation with the hindered dissolution process. Hydrometallurgy 2012, 111, 114–123. [Google Scholar] [CrossRef]
Mineral (Analyses/Grains) | Element (wt%) * | Calculated Formula | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
bornite (6/3) | S | Ag | Fe | Cu | Zn | Mn | Cd | Sn | Total | ||
(based on 10 apfu) | |||||||||||
1 | 26.32 | bdl | 11.47 | 62.61 | bdl | bdl | bdl | 0.47 | 100.87 | (Cu4.89,Sn0.02)Σ = 4.91Fe1.02S4.07 | |
2 | 26.16 | 0.27 | 10.84 | 63.37 | bdl | bdl | bdl | bdl | 100.64 | (Cu4.96,Ag0.01)Σ = 4.97Fe0.97S4.06 | |
3 | 26.69 | 0.24 | 11.49 | 62.77 | bdl | bdl | bdl | 0.10 | 101.29 | (Cu4.87,Ag0.01,Sn0.004)Σ = 4.88Fe1.01S4.10 | |
4 | 26.64 | 0.31 | 10.13 | 58.14 | 1.12 | bdl | 0.07 | 2.83 | 99.24 | (Cu4.64,Sn0.12,Ag0.02)Σ = 4.78(Fe0.92,Zn0.09,Cd0.003)Σ = 1.01S4.21 | |
5 | 27.18 | bdl | 8.96 | 49.39 | 3.16 | bdl | 0.12 | 9.80 | 98.62 | (Cu4.05,Sn0.43)Σ = 4.48(Fe0.84,Zn0.25,Cd0.006)Σ = 1.10S4.42 | |
6 | 26.10 | 0.79 | 3.02 | 69.70 | 0.43 | bdl | bdl | 0.23 | 100.27 | (Cu5.54,Sn0.01)Σ = 5.55(Fe0.27,Zn0.03)Σ = 0.30S4.11 | |
(based on 2 apfu) | |||||||||||
7 | sphalerite (3/1) | 32.99 | bdl | 5.23 | 7.37 | 52.02 | 0.50 | 0.70 | 0.13 | 98.94 | (Zn0.78,Cu0.11,Fe0.09,Mn0.009,Cd0.006,Sn0.001)Σ = 1.00S1.00 |
8 | 32.80 | bdl | 7.05 | 3.20 | 52.32 | 1.74 | 1.04 | bdl | 98.15 | (Zn0.79,Fe0.12,Cu0.05,Mn0.03,Cd0.009)Σ = 1.00S1.00 | |
9 | 32.28 | bdl | 4.37 | 10.42 | 50.04 | 0.29 | 0.73 | 0.87 | 99.00 | (Zn0.75,Cu0.16,Fe0.08,Mn0.005,Sn0.007,Cd0.006)Σ = 1.01S0.99 |
Mineral (Analyses/Grains) | Element (wt%) * | Calculated Formula | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
native bismuth (5/2) | S | Ag | Fe | Cu | Sb | Bi | Sn | Total | ||
(based on 1 apfu) | ||||||||||
1 | bdl | bdl | bdl | bdl | 0.09 | 98.04 | bdl | 98.13 | (Bi1.00,Sb0.002)Σ = 1.00 | |
2 | bdl | bdl | bdl | bdl | bdl | 98.38s | bdl | 98.38 | Bi1.00 | |
3 | bdl | bdl | bdl | bdl | bdl | 99.88 | bdl | 99.88 | Bi1.00 | |
4 | bdl | bdl | bdl | 0.34 | bdl | 98.03 | bdl | 98.03 | (Bi0.99,Cu0.01)Σ = 1.00 | |
5 | bdl | bdl | bdl | bdl | bdl | 99.29 | bdl | 99.29 | Bi1.00 | |
(based on 7 apfu) | ||||||||||
6 | wittichenite (9/3) | 19.82 | 0.24 | 0.12 | 38.65 | bdl | 41.63 | bdl | 100.46 | (Cu2.97,Ag0.01,Fe0.01)Σ = 2.99Bi0.98S3.03 |
7 | 19.73 | 0.31 | 0.06 | 38.50 | bdl | 41.80 | bdl | 100.40 | (Cu2.97,Ag0.01,Fe0.005)Σ = 2.99Bi0.98S3.02 | |
8 | 19.70 | 0.47 | 0.12 | 38.55 | bdl | 40.73 | bdl | 99.57 | (Cu2.99,Ag0.02,Fe0.01)Σ = 3.00Bi0.96S3.02 | |
9 | 19.82 | 0.22 | 0.04 | 38.23 | bdl | 40.64 | bdl | 98.95 | (Cu2.97,Ag0.01,Fe0.004)Σ = 3.00Bi0.96S3.05 | |
10 | 19.68 | 0.34 | 0.10 | 38.58 | bdl | 41.13 | bdl | 99.83 | (Cu2.99,Ag0.02,Fe0.009)Σ = 3.02Bi0.97S3.01 | |
11 | 20.02 | 0.27 | 0.09 | 38.59 | bdl | 40.62 | bdl | 99.59 | (Cu2.97,Ag0.01,Fe0.008)Σ = 2.99Bi0.95S3.06 | |
12 | 19.45 | bdl | 0.22 | 38.19 | bdl | 41.16 | bdl | 99.02 | (Cu2.98,Ag0.007,Fe0.02)Σ = 3.01Bi0.98S3.01 | |
13 | 19.17 | 0.22 | 0.40 | 37.82 | bdl | 41.79 | bdl | 99.40 | (Cu2.97,Ag0.01,Fe0.04)Σ = 3.02Bi1.00S2.98 | |
14 | 19.97 | 0.24 | bdl | 37.90 | bdl | 40.16 | 0.23 | 98.50 | (Cu2.95,Ag0.01,Sn0.01)Σ = 2.99Bi0.95S3.08 | |
(based on 4 apfu) | ||||||||||
15 | emplectite (4/4) | 19.85 | bdl | bdl | 18.56 | bdl | 60.20 | bdl | 98.61 | Cu0.97Bi0.96S2.06 |
16 | 19.70 | bdl | 0.12 | 18.34 | bdl | 59.62 | bdl | 97.78 | (Cu0.97,Fe0.007)Σ = 0.98Bi0.96S2.07 | |
17 | 19.59 | bdl | bdl | 18.18 | bdl | 60.45 | bdl | 98.22 | (Cu0.97,Fe0.002)Σ = 0.97Bi0.96S2.06 | |
18 | 20.12 | bdl | bdl | 18.32 | bdl | 59.35 | bdl | 97.79 | Cu0.96Bi0.95S2.09 |
Mineral (Analyses/Grains) | Element (wt%) * | Calculated Formula | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
joséite-B (15/1) | S | Fe | Cu | Sb | Bi | Te | Se | Total | ||
(based on 7 apfu) | ||||||||||
1 | 2.85 | bdl | bdl | 0.13 | 72.85 | 22.18 | bdl | 98.01 | (Bi3.98,Sb0.01)Σ = 3.99Te1.99S1.02 | |
2 | 2.82 | bdl | 0.14 | 0.14 | 72.30 | 22.43 | bdl | 97.83 | (Bi3.95,Cu0.03,Sb0.01)Σ = 3.96Te2.01S1.00 | |
3 | 2.91 | bdl | bdl | 0.16 | 73.40 | 21.30 | bdl | 97.77 | (Bi4.03,Sb0.02)Σ = 4.05Te1.91S1.04 | |
4 | 2.77 | bdl | 0.13 | 0.11 | 73.91 | 22.30 | bdl | 99.22 | (Bi4.01,Cu0.02,Sb0.01)Σ = 4.04Te1.98S0.98 | |
5 | 2.77 | 0.13 | 0.50 | 0.12 | 72.40 | 22.62 | bdl | 98.54 | (Bi3.90,Cu0.09,Fe0.03,Sb0.01)Σ = 4.03Te2.00S0.97 | |
6 | 2.99 | bdl | 0.21 | 0.10 | 73.00 | 22.23 | bdl | 98.53 | (Bi3.94,Cu0.04,Sb0.009)Σ = 3.99Te1.96S1.05 | |
7 | 2.80 | 0.07 | 0.37 | 0.15 | 71.84 | 22.68 | bdl | 97.91 | (Bi3.90,Cu0.07,Fe0.01,Sb0.01)Σ = 3.99Te2.02S0.99 | |
8 | 2.86 | bdl | 0.14 | 0.17 | 73.76 | 22.84 | bdl | 99.77 | (Bi3.95,Cu0.02,Sb0.02)Σ = 3.99Te2.01S2.00 | |
9 | 2.65 | bdl | 0.26 | 0.17 | 75.47 | 20.69 | bdl | 99.24 | (Bi4.13,Cu0.05,Sb0.02)Σ = 4.20Te1.85S0.95 | |
10 | 2.97 | bdl | 0.18 | 0.14 | 72.77 | 22.38 | 0.13 | 98.57 | (Bi3.92,Cu0.03,Sb0.01)Σ = 3.96Te1.98(S1.04,Se0.02)Σ = 1.06 | |
11 | 2.88 | 0.11 | 0.44 | 0.13 | 73.45 | 22.22 | 0.21 | 99.44 | (Bi3.92,Cu0.08,Fe0.02,Sb0.01)Σ = 4.03Te1.94(S1.00,Se0.03)Σ = 1.03 | |
12 | 2.99 | bdl | 0.11 | 0.12 | 72.90 | 21.97 | 0.37 | 98.46 | (Bi3.93,Cu0.02,Sb0.01)Σ = 3.96Te1.94(S1.05,Se0.05)Σ=1.10 | |
13 | 2.83 | bdl | 0.49 | 0.13 | 73.13 | 21.88 | 0.81 | 99.27 | (Bi3.90,Cu0.09,Sb0.01)Σ = 4.00Te1.91(S0.98,Se0.11)Σ=1.09 | |
14 | 2.90 | bdl | 0.09 | 0.12 | 73.15 | 22.27 | 0.17 | 98.70 | (Bi3.96,Cu0.02,Sb0.01)Σ = 3.98Te1.97(S1.02,Se0.02)Σ=1.04 | |
15 | 2.94 | bdl | 0.19 | 0.11 | 72.16 | 22.52 | bdl | 97.92 | (Bi3.92,Cu0.03,Sb0.01)Σ = 3.96Te2.00S1.04 |
Mineral (Analyses/Grains) | Analyzed Chemical Element (wt%) * | Calculated Chemical Formula | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
kësterite (5/2) | S | Fe | Cu | Zn | Mn | Cd | Sn | Se | Total | ||
(based on 8 apfu) | |||||||||||
1 | 29.16 | 2.68 | 32.24 | 11.60 | bdl | 0.46 | 25.10 | na | 101.24 | Cu2.18(Zn0.76,Fe0.21,Cd0.02)Σ = 0.99Sn0.91S3.92 | |
2 | 29.09 | 3.05 | 32.61 | 10.46 | bdl | 0.75 | 25.27 | na | 101.23 | Cu2.21(Zn0.69,Fe0.24,Cd0.03)Σ = 0.96Sn0.92S3.91 | |
3 | 28.84 | 4.38 | 35.11 | 6.25 | bdl | 1.66 | 25.06 | na | 101.30 | Cu2.39(Zn0.41,Fe0.34,Cd0.06)Σ = 0.81Sn0.91S3.89 | |
4 | 28.75 | 2.82 | 33.65 | 11.33 | bdl | 0.26 | 23.19 | na | 100.00 | Cu2.29(Zn0.75,Fe0.22,Cd0.01)Σ = 0.98Sn0.85S3.88 | |
5 | 28.68 | 3.27 | 34.85 | 10.63 | bdl | 0.25 | 22.20 | na | 99.88 | Cu2.37(Zn0.70,Fe0.25,Cd0.01)Σ = 0.96Sn0.81S3.86 | |
(based on 8 apfu) | |||||||||||
6 | ferrokësterite (2/1) | 28.92 | 6.10 | 33.01 | 3.38 | bdl | 3.20 | 26.73 | na | 101.34 | Cu2.26(Fe0.48,Zn0.23,Cd0.12)Σ = 0.83Sn0.98S3.93 |
7 | 28.89 | 5.45 | 33.22 | 4.50 | bdl | 2.77 | 26.11 | na | 100.94 | Cu2.28(Fe0.43,Zn0.30,Cd0.11)Σ = 0.84Sn0.96S3.93 | |
(based on 8 apfu) | |||||||||||
8 | stannite (6/2) | 29.99 | 9.79 | 30.78 | 2.66 | 0.07 | 1.93 | 24.72 | 0.25 | 100.19 | Cu2.08(Fe0.75,Zn0.17,Cd0.07,Mn0.005)Σ = 1.00Sn0.89(S4.01,Se0.01)Σ = 4.02 |
9 | 30.50 | 10.23 | 30.53 | 2.22 | 0.09 | 0.85 | 24.86 | 0.26 | 99.31 | Cu2.05(Fe0.78,Zn0.15,Cd0.03,Mn0.007)Σ = 0.97Sn0.90(S4.07,Se0.01)Σ = 4.08 | |
10 | 30.05 | 9.85 | 30.34 | 1.85 | 0.09 | 1.47 | 24.75 | 0.27 | 98.40 | Cu2.07(Fe0.77,Zn0.12,Cd0.06,Mn0.007)Σ = 0.95Sn0.90(S4.06,Se0.01)Σ = 4.07 | |
11 | 29.98 | 9.36 | 30.63 | 3.13 | 0.05 | 2.09 | 24.07 | 0.32 | 99.31 | Cu2.08(Fe0.72,Zn0.21,Cd0.08,Mn0.004)Σ = 1.01Sn0.87(S4.03,Se0.02)Σ = 4.04 | |
12 | 30.20 | 10.48 | 30.64 | 1.87 | 0.06 | 1.23 | 24.19 | 0.26 | 98.67 | Cu2.08(Fe0.81,Zn0.12,Cd0.05,Mn0.005)Σ = 0.98Sn0.88(S4.05,Se0.01)Σ = 4.06 | |
13 | 30.21 | 10.20 | 30.52 | 2.10 | bdl | 1.27 | 24.28 | 0.22 | 98.58 | Cu2.07(Fe0.79,Zn0.14,Cd0.05)Σ = 0.98Sn0.88(S4.06,Se0.01)Σ = 4.07 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tămaș, C.G.; Andrii, M.-P. Mineralogy of Skarn Ores from Băița-Bihor, Northern Apuseni Mountains, Romania: A Case Study of Cu-, Bi-, and Sn-minerals. Minerals 2020, 10, 436. https://doi.org/10.3390/min10050436
Tămaș CG, Andrii M-P. Mineralogy of Skarn Ores from Băița-Bihor, Northern Apuseni Mountains, Romania: A Case Study of Cu-, Bi-, and Sn-minerals. Minerals. 2020; 10(5):436. https://doi.org/10.3390/min10050436
Chicago/Turabian StyleTămaș, Călin Gabriel, and Mădălina-Paula Andrii. 2020. "Mineralogy of Skarn Ores from Băița-Bihor, Northern Apuseni Mountains, Romania: A Case Study of Cu-, Bi-, and Sn-minerals" Minerals 10, no. 5: 436. https://doi.org/10.3390/min10050436
APA StyleTămaș, C. G., & Andrii, M. -P. (2020). Mineralogy of Skarn Ores from Băița-Bihor, Northern Apuseni Mountains, Romania: A Case Study of Cu-, Bi-, and Sn-minerals. Minerals, 10(5), 436. https://doi.org/10.3390/min10050436