Pyrite Varieties at Pobeda Hydrothermal Fields, Mid-Atlantic Ridge 17°07′–17°08′ N: LA-ICP-MS Data Deciphering
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Isocubanite-Pyrite and Pyrite-Wurtzite-Isocubanite Crust Microfacies
4.2. Pyrite Microfacies
4.3. Marcasite-Pyrite Microfacies
5. Discussion
5.1. The Mineral Evolution in the Suite of Pyrite-Bearing Microfacies
5.2. Trace Element Concentration, Forms, and Associations in Pyrite Varieties
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Large, R.R.; Maslennikov, V.V.; Robert, F.; Danyushevsky, L.V. Multistage sedimentary and metamorphic origin of pyrite and gold in the Giant Sukhoi Log deposit, Lena Gold Province, Russia. Econ. Geol. 2007, 102, 1233–1267. [Google Scholar] [CrossRef]
- Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ. Geol. 2009, 104, 635–668. [Google Scholar]
- Large, R.R.; Gregory, D.D.; Steadman, J.A.; Tompkins, A.G.; Lounjeva, E.; Danyushevsky, L.D.; Halpin, J.A.; Maslennikov, V.V.; Sack, P.J.; Mukherjee, I.; et al. Gold in the oceans through time. Earth Planet. Scie. Lett. 2015, 428, 139–150. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Maslennikova, S.P.; Large, R.R.; Danyushevsky, L.V. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy VHMS (the Southern Urals, Russia) using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Econ. Geol. 2009, 104, 1111–1141. [Google Scholar] [CrossRef]
- Thomas, H.V.; Large, R.R.; Bull, S.W.; Maslennikov, V.V.; Berry, R.F.; Fraser, R.; Froud, S.; Moye, R. Pyrite and pyrrhotite textures and composition in sedimentary rocks, laminated quartz veins, and gold reefs, at Bendigo Mine, Australia: Insights for ore genesis. Econ. Geol. 2011, 105, 1–40. [Google Scholar] [CrossRef]
- Revan, M.K.; Genc, Y.; Maslennikov, V.V.; Ünlü, T.; Delibas, O.; Hamzaçebi, S. Original finding on the ore-bearing facies of volcanogenic massive sulfide deposits in the Eastern Black Sea region (NE Turkey). Bull. Miner. Res. Explor. 2013, 147, 73–89. [Google Scholar]
- Steadman, J.A.; Large, R.R.; Meffre, S.; Olin, P.H.; Danyushevsky, L.V.; Gregory, D.D.; Belousov, I.; Lounejeva, E.; Ireland, T.R.; Holden, P. Synsedimentary to early diagenetic gold in black shale-hosted pyrite nodules at the Golden Mile deposit, Kalgoorlie, Western Australia. Econ. Geol. 2015, 110, 1157–1191. [Google Scholar] [CrossRef]
- Mukherjee, I.; Large, R. Aplication of pyrite trace element chemistry to exploration for SEDEX type Zn-Pb deposits: McArthur Basin, Nothern Territory, Australia. Ore Geol. Rev. 2017, 81, 1249–1270. [Google Scholar] [CrossRef]
- Belousov, I.; Large, R.R.; Meffre, S.; Danyushevsky, L.V.; Steadman, J.; Beardsmore, T. Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: Implications for gold and copper exploration. Ore Geol. Rev. 2016, 79, 474–499. [Google Scholar] [CrossRef]
- Large, R.R.; Halpin, J.A.; Danyushevsky, L.V.; Maslennikov, V.V.; Bull, S.W.; Long, J.A.; Gregory, D.D.; Lounejeva, E.; Lyons, T.W.; Sack, P.J.; et al. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution. Earth Planet. Sci. Lett. 2014, 389, 209–220. [Google Scholar] [CrossRef]
- Halbach, P.; Blum, N.; Münch, U.; Plüger, W.; Garbe-Schönberg, D.; Zimmer, M. Formation and decay of a modern massive sulfide deposit in the Indian Ocean. Miner. Deposita. 1998, 33, 302–309. [Google Scholar] [CrossRef]
- Butler, I.B.; Nesbitt, R.W. Trace element distributions in the chalcopyrite wall of a black smoker chimney; insights from laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS). Earth Planet. Sci. Lett. 1999, 167, 335–345. [Google Scholar] [CrossRef]
- Houghton, J.L.; Shanks, W.C.; Seyfried, W.E., Jr. Massive sulfide deposition and trace element remobilization in the Middle Valley sediment-hosted hydrothermal system, northern Juan de Fuca Ridge. Geochim. Cosmochim. Acta 2004, 68, 2863–2873. [Google Scholar] [CrossRef]
- Bogdanov, Y.A.; Lein, A.Y.; Maslennikov, V.V.; Syaoli, L.; Ulyanov, A.A. Mineralogical-geochemical features of sulfide ores from the Broken Spur hydrothermal field. Oceanology. 2008, 48, 679–700. [Google Scholar] [CrossRef]
- Lein, A.Y.; Bogdanov, Y.A.; Maslennikov, V.V.; Li, S.; Ulyanova, N.V.; Maslennikova, S.P.; Ulyanov, A.A. Sulfide minerals in the Menez Gwen nonmetallic hydrothermal field (Mid-Atlantic Ridge). Lithol. Miner. Resour. 2010, 45, 305–323. [Google Scholar] [CrossRef]
- Li, B.; Yang, Y.; Shi, X.; Ye, J.; Gao, J.; Zhu, A.; Shao, M. Characteristics of a ridge-transform inside corner intersection and associated mafic-hosted seafloor hydrothermal field (14.0°S, Mid-Atlantic Ridge). Mar. Geophys. Res. 2014, 35, 55–68. [Google Scholar] [CrossRef]
- Melekestseva, I.Y.; Tret’yakov, G.A.; Nimis, P.; Yuminov, A.M.; Maslennikov, V.V.; Maslennikova, S.P.; Kotlyarov, V.A.; Beltenev, V.E.; Danyushevsky, L.V.; Large, R. Barite-rich massive sulfides from the Semenov-1 hydrothermal field (Mid-Atlantic Ridge, 13°30.87’N): Evidence for phase separation and magmatic input. Mar. Geol. 2014, 349, 37–54. [Google Scholar] [CrossRef]
- Wohlgemuth-Ueberwasser, C.C.; Viljoen, F.; Petersen, S.; Vorster, C. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study. Geochim. Cosmochim. Acta 2015, 159, 16–41. [Google Scholar] [CrossRef]
- Keith, М.; Häckel, F.; Haase, K.M.; Schwarz-Schampera, U.; Klend, R. Trace elements systematics of pyrite from submarine hydrothermal vents. Ore Geol. Rev. 2016, 72, 728–745. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Maslennikova, S.P.; Ayupova, N.R.; Zaykov, V.V.; Tseluyko, A.S.; Melekestseva, I.Y.; Large, R.R.; Danyushevsky, L.V.; Herrington, R.J.; Lein, A.T.; et al. Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: Mineral and trace element comparison with modern black, grey, white and clear smokers. Ore Geol. Rev. 2017, 85, 64–106. [Google Scholar] [CrossRef]
- Melekestseva, I.Y.; Maslennikov, V.V.; Tret’yakov, G.A.; Nimis, P.; Beltenev, V.E.; Rozhdestvenskaya, I.I.; Maslennikova, S.P.; Belogub, E.V.; Danyushevsky, L.; Large, R.; et al. Gold- and Silver-Rich Massive Sulphides from the Semenov-2 Hydrothermal Field, 13°31.13’ N, Mid-Atlantic Ridge: A Case of Magmatic Contribution? Econ. Geol. 2017, 112, 741–773. [Google Scholar] [CrossRef]
- Wang, H.; He, M.; Chen, B.; Hu, B. Advances in ICP-MS-based techniques for trace elements and their species analysis in cells. J. Anal. At. Spectrom. 2017, 32, 1650–1659. [Google Scholar] [CrossRef]
- Ayupova, N.R.; Melekestseva, I.Y.; Maslennikov, V.V.; Tseluyko, A.S.; Blinov, I.A.; Beltenev, V.E. Uranium accumulation in modern and ancient Fe-oxide sediments: Examples from the Ashadze-2 hydrothermal sulfide field (Mid-Atlantic Ridge) and Yubileynoe massive sulfide deposit (South Urals, Russia). Sediment. Geol. 2018, 367, 167–174. [Google Scholar] [CrossRef]
- Dekov, V.M.; Garbe-Schonberg, D.; Kamenov, G.D.; Gueguen, B.; Bayon, G.; Bindi, L.; Asael, D.; Fouquet, Y. Redox changes in a seafloor hydrothermal system recorded in hematite-chalcopyrite chimneys. Chem. Geol. 2018, 483, 351–371. [Google Scholar] [CrossRef]
- Yuan, B.; Hongjun, Y.; Yang, Y.; Zhao, Y.; Yang, J.; Xu, Y.; Lin, Z.; Tang, X. Zone refinement related to the mineralization process as evidenced by mineralogy and element geochemistry in a chimney fragment from the Southwest Indian Ridge at 49.6° E. Chem. Geol. 2018, 482, 46–60. [Google Scholar] [CrossRef]
- Grant, H.L.J.; Hannington, M.D.; Petersen, S.; Frische, M.; Fuchs, S.H. Constraints on the behavior of trace elements in the actively-forming TAG deposit, Mid-Atlantic Ridge, based on LA-ICP-MS analyses of pyrite. Chem. Geol. 2018, 498, 45–71. [Google Scholar] [CrossRef]
- Melekestseva, I.; Maslennikov, V.V.; Safina, N.P.; Nimis, P.; Maslennikova, S.P.; Beltenev, V.; Rozhdestvenskaya, I.; Danyushevsky, L.V.; Large, R.; Artemyev, D.A.; et al. Sulfide breccias from the Semenov-3 hydrothermal field, Mid-Atlantic Ridge: Authigenic mineral formation and trace element pattern. Minerals 2018, 8, 321. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Li, X.; Chu, F.; Zhu, J.; Lei, J.; Li, Z.; Wang, H.; Chen, L.; Zhu, Z. Trace element and sulfur isotope compositions for pyrite across the mineralization zones of a sulfide chimney from the East Pacific Rise (1–2° S). Ore Geol. Rev. 2020, 116, 1–15. [Google Scholar] [CrossRef]
- Klaus, K.E.; Neuendorf, J.P.; Mehl, Jr.; Jackson, J.A. Glossary of Geology. Am. Geol. Inst. Alex. Va. 2005, 779. [Google Scholar]
- Flügel, E. Microfacies of Carbonate Rocks (Analysis, Interpretation and Application. Springer: Berlin/Hedelberg, Germany, 2004; 976p. [Google Scholar]
- Beltenev, V.E.; Narkevsky, E.V.; Dobretsova, I.G.; Gablina, I.F.; Galkin, S.V.; Molodtsova, T.N.; Layba, A.A. The results of Professor Logatchev-37 cruise, MAR. In Proceedings of the XXI International Scientific Conference (School) on Marine Geology, Moscow, Russia, 16–20 November 2015; GEOS: Moscow, Russia, 2015; pp. 126–128. (In Russian). [Google Scholar]
- Beltenev, V.E.; Rozhdestvenskay, I.I.; Samsonov, I.K. Exploration work on the Russian exploration area in the Atlantic Ocean with an estimate forecast resources of GPS of categories P2 and P3 in blocks 31-45. Report of Professor Logachev-37 cruise; Lomonosov, Russia; PMGRE: Saint Petersburg, Russia, 2016. (In Russian) [Google Scholar]
- Cherkashov, G.; Kuznetsov, V.; Kuksa, K.; Tabuns, E.; Maksimov, F.; Bel’tenev, V. Sulfide geochronology along the Northern Equatorial Mid-Atlantic Ridge. Ore Geol. Rev. 2017, 87, 147–154. [Google Scholar] [CrossRef]
- Amplieva, E.E.; Bortnikov, N.S.; Kovalchuk, E.V.; Beltenev, V.E. The Pobeda modern submarine hydrothermal sulfide edifice cluster (Mid-Atlantic Ridge, 17°08’ N): Mineralogy and chemical composition. In Proceedings of the 14th SGA Biennial Meeting. Mineral Resources to Discover, Quebec Citi, QC, Canada, 20–23 August 2017; Volume 1–4, pp. 649–652. [Google Scholar]
- Gablina, I.F.; Dobretzova, I.G.; Narkevsky, E.V.; Maksimov, F.E.; Kuznetsov, V.Y. Specific features of sulfide ores in the Pobeda hydrothermal cluster, Mid-Atlantic rise 17°07′–17°08′ N. Lithol. Miner. Resour. 2018, 53, 431–454. [Google Scholar] [CrossRef]
- Smirnov, V.I. Correlation Methods in Paragenetic Analysis; Nedra Publishers: Moscow, Russia, 1981; p. 174. (In Russian) [Google Scholar]
- George, L.L.; Ciik, N.J.; Ciobanu, C.I.; Wade, B.P. Trace and minor elements in galena: A reconnaissance LA-ICP-MS study. Am. Mineral. 2015, 100, 548–569. [Google Scholar] [CrossRef]
- Rickard, D. Sulfidic Sediments and Sedimentary Rocks, Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 2012; p. 801. [Google Scholar]
- Murowchick, J.B.; Barnes, H.L. Marcasite precipitation from hydrothermal solutions. Geochim. Cosmochim. Acta 1986, 50, 2615–2629. [Google Scholar] [CrossRef]
- Xia, F.; Detitius, A.P.; Brugger, J.; Pearse, M.A. The mechanism and kinetics of the transformation from marcasite to pyrite: In situ and ex situ experiments and geological implications. Contrib. Mineral. Petrol. 2020, 175, 1–25. [Google Scholar]
- Auclair, M.; Fouquet, Y.; Bohn, M. Distribution of selenium in high-temperature hydrothermal sulfide deposits at 13° North, East Pacific Rise. Canad. Mineral. 1987, 25, 577–587. [Google Scholar]
- Halbach, P.E.; Fouquet, Y.; Herzig, P. Mineralization and compositional patterns in deep-sea hydrothermal systems. In Energy and Mass Transfer in Marine Hydrothermal; Halbach, P.E., Tunnicliffe, V., Hein, J.R., Eds.; Dahlem Univ. Press: Berlin, Germany, 2003; pp. 85–122. [Google Scholar]
- Huston, D.L.; Sie, S.H.; Sutter, G.F.; Cook, D.R.; Both, R.A. Trace elements in sulfide minerals from Eastern Australian volcanic-hosted massive sulfide deposits. Part I, proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II. Selenium levels in pyrite. comparison with δS34 values and implication for the source of sulfur in volcanogenic hydrothermal systems. Econ. Geol. 1995, 90, 1167–1196. [Google Scholar]
- Hannington, M.D.; Bleeker, W.; Kjarsgaard, I. Sulfide mineralogy, geochemistry, and ore genesis of the Kidd Creek Deposit: Part II. The bornite zone. In The giant Kidd Creek Volcanogenic Massive Sulfide Deposit, Western Abitibi Subprovince, Canada; Hannington, M.D., Barrie, C.T., Eds.; Economic Geology Monograph: Ottawa, ON, Canada, 1999; Volume 10, pp. 225–267. [Google Scholar]
- Toffolo, T.; Nimis, P.; Tret’yakov, G.A.; Melekestseva, I.Y.; Beltenev, V.E. Seafloor massive sulfides from mid-ocean ridges: Exploring the causes of their geochemical variability with multivariate analysis. Earth-Sci. Rev. 2020, 102958. [Google Scholar] [CrossRef]
- Urusov, V.S. Theoretical Crystal Chemistry; Moscow State University: Moscow, Russia, 1987; p. 275. [Google Scholar]
- Hannington, M.; Herzig, P.; Scott, S.; Thompson, G.; Rona, P. Comparative mineralogy and geochemistry of gold-bearing sulfide deposits on the mid-ocean ridges. Mar. Geol. 1991, 101, 217–248. [Google Scholar] [CrossRef]
- Hannington, M.D.; Jonasson, I.R.; Herzig, P.M.; Petersen, S. Physical, chemical processes of sea- floor mineralization at mid-ocean ridges. In Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions; Humphris, S.E., Zierenberg, R.A., Mullineaux, L.S., Thomson, R.E., Eds.; Geophisical. Monoraph Series: Washington, DC, USA, 1995; Volume 91, pp. 115–157. [Google Scholar]
- Rouxel, O.; Fouquet, Y.; Ludden, J.N. Subsurface processes at the Lucky Strike hydrothermal field, Mid-Atlantic ridge: Evidence from sulfur, selenium, and iron isotopes. Geochim. Cosmochim. Acta 2004, 68, 2295–2311. [Google Scholar] [CrossRef]
- Spooner, E.T.C. Magmatic sulfide volatile interaction as a mechanism for producing chalcofile element enriched, Archean Au-quartz, epitermal Au-Ag and Au-skarn hydrothermal ore fluids. Ore Geol. Rev. 1993, 7, 359–379. [Google Scholar] [CrossRef]
- Berkenbosh, H.A.; De Ronde, C.E.J.; Gemmel, J.B.; McNel, A.W.; Goemann, K. Mineralogy and formation of black smoker chimneys from Brothers submarine volcano, Kermadec arc. Econ. Geol. 2012, 107, 1613–1633. [Google Scholar] [CrossRef]
- Janecky, D.R.; Seyfried, W.F., Jr. Formation of massive sulfide deposits on oceanic ridge crests: Incremental reaction models for mixing between hydrothermal solutions and sea water. Geochim. Cosmochim. Acta 1984, 48, 2723–2738. [Google Scholar] [CrossRef]
- Tret’yakov, G.A. Mineral assemblages and behavior of ore-forming elements at rock-seawater interaction in hydrothermal conditions. Lithosphere 2015, 6, 142–147. (In Russian) [Google Scholar]
- Vaughan, D.J.; Rosso, K.M. Chemical bonding in sulfide minerals. Rev. Mineral. Geochem. 2006, 61, 231–264. [Google Scholar] [CrossRef]
- De Ronde, C.E.J.; Massoth, G.J.; Butterfield, D.A.; Christenson, B.W.; Ishibashi, J.; Ditchburn, R.G.; Hannington, M.D.; Brathwaite, R.L.; Lupton, J.E.; Kamenetsky, V.S.; et al. Submarine hydrothermal activity and gold-rich mineralization at Brothers volcano, Kermadec Arc, New Zealand. Miner. Depos. 2011, 46, 541–584. [Google Scholar] [CrossRef]
- Metz, S.; Trefry, J.H. Chemical and mineralogical influences on concentration of trace metals in hydrothermal fluids. Geochim. Cosmochim. Acta 2000, 64, 2267–2279. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Maslennikova, S.P.; Large, R.R.; Danyushevsky, L.V.; Herrington, R.J.; Stanley, C.J. Tellurium-bearing minerals in zoned sulfide chimneys from Cu-Zn massive sulfide deposits of the Urals, Russia. Mineral. Petrol. 2013, 107, 67–99. [Google Scholar] [CrossRef]
- Ye, L.; Cook, N.J.; Ciobanu, C.L.; Liu, Y.P.; Zang, Q.; Liu, T.-G.; Gao, W.; Yang, Y.-L.; Danyushevsky, L. Trace elements in sphalerite from base metal deposits in South China: A LA-ICPMS study. Ore Geol. Rev. 2011, 39, 188–217. [Google Scholar] [CrossRef]
- Mozgova, N.N.; Borodaev, B.N.; Yu, S.; Efimov, A.V.; Krasnov, S.G.; Stepanova, T.V.; Samovarov, M.L. Features of the chemical composition of fahlores from hydrothermal deposits of the mid-ocean ridges (MIR construction, TAG field 26° N. of the Mid-Atlantic ridge). Proc. Russ. Mineral. Soc. 1995, 124, 77–84. [Google Scholar]
- Almodovar, G.R.; Yesares, L.; Saez, R.; Toscano, M.; Gonzalez, F.; Pons, J.M. Massive sulfide ores in the Iberian Pyrite Belt: Mineralogical and textural evolution. Minerals 2019, 9, 653. [Google Scholar] [CrossRef] [Green Version]
- Evrard, С.; Fouquet, Y.; Moelo, Y.; Rinnert, E.; Etoubleau, J.; Langlade, J.A. Tin concentration in hydrothermal sulfides related to ultramafic rocks along the Mid-Atlantic Ridge: A mineralogical study. Eur. J. Miner. 2015, 27, 627–638. [Google Scholar] [CrossRef]
- Fouquet, Y.; Cambon, P.; Etoubleau, J.; Charlou, J.L.; Ondréas, H.; Barriga, F.; Cherkashov, G.; Semkova, T.; Poroshina, I.; Bohn, M.; et al. Geodiversity of hydrothermal processes along the mid-atlantic ridge and ultramafic-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. In Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges; Geophisical. Monoraph Series: Washington, DC, USA, 2010; Volume 188, pp. 321–367. [Google Scholar]
- Cook, N.J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Shimizu, M.; Danyushevsky, L.; Saini-Eidukat, B.; Melcher, F. Trace and minor elements in sphalerite: A LA-ICP-MS study. Geochim. Cosmochim. Acta 2009, 73, 4761–4791. [Google Scholar] [CrossRef]
- Hein, J.R.; Mizell, K.; Koschinsky, A.; Conrad, T.A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- Minubayeva, Z.; Seward, T.M. Molybdic acid ionisation under hydrothermal conditions to 300 °C. Geochim. Cosmochim. Acta 2010, 74, 4365–4374. [Google Scholar] [CrossRef]
- Wiliams-Jones, A.E.; Migdisov, A.A. Experimental Constraints on the Transport and Deposition of Metals in Ore-Forming Hydrothermal Systems. In Buiding Exploration Capability for the 21st Century; Kelley, K.D., Golden, H.C., Eds.; Society of Economic Geologists: Ottawa, ON, Canada, 2014; Volume 18, pp. 77–95. [Google Scholar]
- Monecke, T.; Petersen, S.; Hannington, M.D.; Grant, H.; Samson, I.M. The minor element endowment of modern sea-floor massive sulfides and comparison with deposits hosted in ancient volcanic successions. Econ. Geol. 2016, 18, 245–306. [Google Scholar]
- McManus, J.; Berelson, W.B.; Severmann, S.; Poulson, R.L.; Hammond, D.E.; Klinkhammer, G.P.; Holm, C. Molybdenum and uranium geochemistry in continental margin sediments: Paleoproxy potential. Geochim. Cosmochim. Acta 2006, 70, 4643–4662. [Google Scholar] [CrossRef]
- Berner, Z.A.; Puchelt, H.; Nöltner, T.; Kramar, U. Pyrite geochemistry in the Toarcian Posidonia Shale of southwest Germany: Evidence for contrasting trace-element patterns of diagenetic and syngenetic pyrites. Sedimentology 2013, 60, 548–573. [Google Scholar] [CrossRef]
- Helz, G.R.; Vorlicek, T.P. Precipitation of molybdenum from euxinic waters and the role of organic matter. Chem. Geol. 2019, 509, 178–193. [Google Scholar] [CrossRef]
- Sukhanova, A.; Firstova, A.; Stepanova, T.; Cherkashov, G. Uranium in seafloor massive sulfides at the Mid-Atlantic Ridge. In Proceedings of the Sustanable Development of Seabed Mineral Resources: Environment, Regulations and Technologies, UMS 2019 48th Underwater Mining Conference, Sanya, China, 22 September 2019; p. 3.
- Mills, R.A.; Thomson, J.; Elderfield, H.; Hinton, R.W.; Hyslop, E. Uranium enrichment in metalliferous sediments from the Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 1994, 124, 35–47. [Google Scholar] [CrossRef]
- Thomson, J.; Higgs, N.C.; Croudace, I.W.; Colley, S.; Hydes, D.J. Redox zonation of elements at an oxic/postoxic boundary in deep-sea sediments. Geochim. Cosmochim. Acta 1993, 57, 579–595. [Google Scholar] [CrossRef]
- Wersin, P.; Hochella, M.F., Jr.; Perrson, P.; Redden, G.; Leckie, J.O.; Harris, D.W. Interaction between aqueous uranium (VI) and sulphide minerals: Spectroscopic evidence for sorption and reduction. Geochim. Cosmochim. Acta 1994, 58, 2829–2844. [Google Scholar] [CrossRef]
Values | V | Mn | Fe | Co | Ni | Cu | Zn | As | Se | Mo | Ag | Cd | Sn | Sb | Te | Au | Tl | Pb | Bi | U |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pyrite-3—coarse-grained subhedral to euhedral unzoned (n = 34) | ||||||||||||||||||||
Mean | 2.6 | 4.7 | 45.6 | 2489 | 171 | 0.58 | 0.02 | 61 | 108 | 35 | 5.6 | 1.0 | 0.9 | 1.9 | 2.0 | 0.2 | 1.7 | 29 | 4.0 | 6.3 |
Std | 2.0 | 12 | 0.7 | 1171 | 85 | 0.73 | 0.04 | 41 | 59 | 48 | 4.3 | 0.9 | 0.6 | 1.5 | 1.7 | 0.1 | 1.3 | 21 | 3.7 | 17 |
Max | 7.8 | 65 | 46.4 | 5220 | 346 | 3.9 | 0.2 | 171 | 311 | 270 | 19 | 3.6 | 2.4 | 7.2 | 6.1 | 0.5 | 6.2 | 107 | 16 | 75 |
Med | 2.1 | 1.4 | 45.8 | 2271 | 178 | 0.3 | 0.01 | 55 | 103 | 21 | 4.5 | 0.6 | 0.7 | 1.6 | 1.4 | 0.2 | 1.4 | 24 | 2.4 | 0.9 |
Isocubanite (+ chalcopyrite) (n = 47) | ||||||||||||||||||||
Mean | 0.8 | 15 | 35 | 1954 | 65 | 23.3 | 0.25 | 15 | 700 | 41 | 10 | 9.3 | 26 | 1.3 | 33 | 0.3 | 2.0 | 48 | 3.8 | 2.8 |
Std | 0.8 | 6.1 | 5 | 1402 | 231 | 4.1 | 0.24 | 20 | 602 | 192 | 6.0 | 5.4 | 26 | 2.7 | 43 | 0.3 | 5.6 | 101 | 7.2 | 17 |
Max | 3.7 | 36 | 41 | 11100 | 1580 | 38.6 | 1.63 | 70 | 2000 | 1250 | 30 | 22 | 81 | 18 | 184 | 2.2 | 29 | 525 | 38 | 116 |
Med | 0.7 | 15 | 36.9 | 1636 | 15 | 23.3 | 0.2 | 6 | 490 | 0.9 | 10 | 9 | 10 | 0.5 | 14 | 0.3 | 0.3 | 6.2 | 1.3 | 0.1 |
Values | V | Mn | Fe | Co | Ni | Cu | Zn | As | Se | Mo | Ag | Cd | Sn | Sb | Te | Au | Tl | Pb | Bi | U |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pyrite2—anhedral porous(n = 17) | ||||||||||||||||||||
Mean | 10 | 13 | 44.8 | 1012 | 55 | 1.1 | 0.4 | 205 | 53 | 86 | 17 | 4.4 | 1.6 | 8.2 | 0.8 | 0.3 | 5.8 | 60 | 1.4 | 18 |
Std | 5.9 | 24 | 1.1 | 455 | 27 | 0.9 | 0.7 | 110 | 35 | 49 | 11 | 6.3 | 1.4 | 5.1 | 0.6 | 0.2 | 4.3 | 41 | 1.1 | 30 |
Max | 24 | 100 | 46.4 | 1950 | 129 | 2.7 | 2.5 | 404 | 161 | 182 | 40 | 17 | 6 | 18 | 2.6 | 0.9 | 17 | 130 | 4 | 123 |
Med | 8.6 | 5.3 | 44.7 | 953 | 46 | 0.8 | 740 | 190 | 43 | 69 | 15 | 0.8 | 1.4 | 8.7 | 0.8 | 0.2 | 6.0 | 47 | 1.0 | 7.2 |
Pyrite-3—subhedral slightly zoned to anzoned (n = 28) | ||||||||||||||||||||
Mean | 6.2 | 3.6 | 45.5 | 921 | 50 | 0.8 | 0.1 | 107 | 52 | 59 | 11 | 0.8 | 0.8 | 4.2 | 0.6 | BDL | 2.2 | 33 | 1.0 | 17 |
Std | 5.2 | 4.3 | 1.0 | 317 | 25 | 0.9 | 0.2 | 94 | 28 | 64 | 7.1 | 1.2 | 0.8 | 4.1 | 0.6 | - | 1.4 | 31 | 0.9 | 38 |
Max | 19 | 22 | 46.4 | 1786 | 134 | 3.8 | 1.0 | 323 | 127 | 295 | 30 | 5.4 | 4.0 | 19 | 3 | 0.4 | 5 | 117 | 3.8 | 190 |
Med | 4.7 | 2.3 | 45.8 | 875 | 46 | 0.6 | 192 | 72 | 44 | 40 | 9.0 | 0.4 | 0.5 | 2.3 | 0.4 | 0.1 | 1.9 | 18 | 0.7 | 3.3 |
Pyrite-1,2—fine-grained later masses (n = 21) | ||||||||||||||||||||
Mean | 8.6 | 70 | 45.5 | 963 | 40 | 0.3 | 0.5 | 253 | 4.2 | 73 | 31 | 3.4 | 0.6 | 16 | 0.3 | 0.4 | 61 | 161 | BDL | 6.3 |
Std | 2.0 | 52 | 1.2 | 524 | 27 | 0.3 | 0.9 | 142 | 3.5 | 58 | 13 | 5.4 | 0.8 | 7 | 0.2 | 0.6 | 29 | 142 | - | 12 |
Max | 13 | 182 | 46.3 | 2230 | 102 | 1.4 | 3.9 | 489 | 12 | 280 | 66 | 24 | 3 | 36 | 0.8 | 3 | 148 | 475 | BDL | 59 |
Med | 9.2 | 54 | 46 | 856 | 28 | 0.3 | 0.2 | 227 | 4.1 | 58 | 31 | 1.0 | 0.4 | 13 | 0.1 | 0.2 | 55 | 110 | 0.01 | 2.9 |
Isocubanite (+chalcopyrite) (n = 23) | ||||||||||||||||||||
Mean | 0.2 | 8.8 | 38.7 | 1754 | 56 | 25.4 | 0.6 | 2.2 | 218 | 3.3 | 20 | 19 | 3.9 | 0.3 | 11.4 | BDL | 0.1 | 6.4 | 0.30 | 0.2 |
Std | 0.2 | 1.8 | 1.9 | 326 | 92 | 1.9 | 0.4 | 4.2 | 115 | 5.3 | 11 | 4.9 | 3.1 | 0.9 | 9.1 | - | 0.2 | 21 | 0.39 | 0.4 |
Max | 0.8 | 12 | 43.6 | 2576 | 330 | 27.9 | 2.5 | 20 | 471 | 23 | 59 | 27 | 11 | 4 | 36.8 | 0.3 | 0.9 | 102 | 1.57 | 1.3 |
Med | 0.2 | 9.0 | 38.6 | 1730 | 22 | 25.5 | 4581 | 0.8 | 221 | 0.5 | 16 | 20 | 2.5 | 0.1 | 10 | 0.1 | 0.0 | 1.1 | 0.1 | 0.2 |
Würtzite (n = 38) | ||||||||||||||||||||
Mean | 0.6 | 72 | 11.8 | 439 | 6.4 | 0.8 | 54.3 | 74 | 16 | 9.3 | 15 | 837 | 54 | 196 | 0.4 | 0.4 | 0.3 | 193 | BDL | 0.3 |
Std | 1.3 | 21 | 3.4 | 283 | 12 | 0.9 | 3.7 | 70 | 20 | 23 | 9.3 | 439 | 81 | 176 | 0.4 | 0.9 | 0.6 | 198 | - | 0.9 |
Max | 7.8 | 110 | 18.4 | 1290 | 47 | 4.4 | 60.0 | 284 | 96 | 131 | 33 | 2116 | 256 | 783 | 1.8 | 5.1 | 2.5 | 869 | 0.23 | 5.0 |
Med | 0.1 | 70 | 11 | 333 | 0.9 | 0.5 | 55.4 | 60 | 6.9 | 0.4 | 16 | 752 | 10 | 147 | 0.2 | 0.1 | 0 | 141 | 0.01 | 0.05 |
Bornite+sphalerite mixture fine-grained (n = 11) | ||||||||||||||||||||
Mean | 4.1 | 26 | 31.2 | 1944 | 187 | 15.9 | 18.1 | 165 | 100 | 180 | 88 | 133 | 11 | 37 | 2.8 | 0.5 | 8.8 | 257 | 0.7 | 67 |
Std | 2.9 | 9.3 | 4.8 | 443 | 141 | 4.0 | 4.4 | 119 | 18 | 228 | 23 | 65 | 4 | 18 | 2.8 | 0.2 | 12 | 111 | 0.9 | 126 |
Max | 9.4 | 48 | 39.6 | 3150 | 580 | 21.9 | 22.8 | 405 | 127 | 764 | 141 | 274 | 17 | 67 | 10 | 0.9 | 43 | 447 | 3.0 | 400 |
Med | 3.6 | 27 | 30 | 1793 | 140 | 16.8 | 19.5 | 155 | 99 | 88 | 81 | 120 | 11 | 34 | 2.2 | 0.5 | 6 | 253 | 0.37 | 13 |
Digenite (n = 11) | ||||||||||||||||||||
Mean | 3.4 | 23 | 6.7 | 2064 | 314 | 61.1 | 4.2 | 152 | 121 | 287 | 145 | 26 | 13 | 54 | 1.7 | 0.9 | 15 | 259 | BDL | 93 |
Std | 1.8 | 3.1 | 6.1 | 399 | 121 | 7.5 | 3.4 | 35 | 24 | 132 | 34 | 20 | 6.3 | 11 | 1.0 | 0.3 | 6.9 | 84 | - | 91 |
Max | 8.0 | 27 | 20.0 | 2750 | 499 | 71.8 | 9.7 | 214 | 175 | 530 | 210 | 66 | 31 | 70 | 3.3 | 1.4 | 28 | 408 | 0.7 | 263 |
Med | 3.1 | 23 | 4.4 | 2170 | 310 | 60.5 | 3.8 | 144 | 116 | 246 | 135 | 23 | 12 | 55 | 1.3 | 0.8 | 12 | 235 | 0.15 | 45 |
Values | V | Mn | Fe | Co | Ni | Cu | Zn | As | Se | Mo | Ag | Cd | Sn | Sb | Te | Au | Tl | Pb | Bi | U |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Greigite—Fe3S4 (1) | ||||||||||||||||||||
content | 4.1 | 85 | 56.6 | 19.7 | 6.9 | 0.16 | 0.09 | 1284 | 1.8 | 128 | 25 | 5.3 | 3.8 | 1.8 | 0.21 | 0.7 | 1.1 | 119 | BDL | 1.2 |
2.Pyrite-1 fine-grained (44) | ||||||||||||||||||||
Mean | 5.5 | 100 | 46.2 | 12 | 2.9 | 0.14 | 0.13 | 320 | 4.1 | 91 | 8.8 | 3.5 | 2.7 | 1.3 | 0.2 | 0.5 | 3.0 | 64 | BDL | 5.8 |
Std | 3.9 | 160 | 0.2 | 13 | 3.2 | 0.07 | 0.23 | 440 | 3.8 | 42 | 6.0 | 5.0 | 2.2 | 0.8 | 0.2 | 0.7 | 2.0 | 40 | – | 8.1 |
Max | 16 | 866 | 46.5 | 52 | 19 | 0.34 | 1.35 | 2398 | 17 | 181 | 23 | 29 | 13 | 3.8 | 1.1 | 3.7 | 7.7 | 153 | 1.8 | 38 |
Med | 4.6 | 36 | 46.2 | 6.0 | 2.0 | 0.13 | 0.05 | 185 | 3.6 | 86 | 7.0 | 1.7 | 2.1 | 1.2 | 0.1 | 0.3 | 2.4 | 54 | 0.01 | 3.0 |
3.Pyrite-2 coarse banding oscillatory-zoned (30) | ||||||||||||||||||||
Mean | 3.2 | 177 | 46.4 | 2.5 | 1.0 | 0.01 | 0.02 | 176 | 1.7 | 68 | 0.4 | 0.4 | 0.4 | 0.6 | 0.2 | 0.1 | 7.6 | 17 | BDL | 1.2 |
Std | 1.0 | 141 | 0.0 | 2.6 | 0.7 | 0.01 | 0.02 | 136 | 2.0 | 28 | 0.6 | 0.5 | 0.4 | 0.3 | 0.1 | 0.1 | 5.2 | 22 | – | 1.1 |
Max | 5.5 | 449 | 46.5 | 10 | 2.9 | 0.04 | 0.12 | 820 | 7.9 | 110 | 2.2 | 1.6 | 2.0 | 1.4 | 0.4 | 0.7 | 30 | 72 | BDL | 3.8 |
Med | 2.9 | 133 | 46.4 | 1.5 | 0.7 | 0.01 | 0.01 | 172 | 1.0 | 71 | 0.2 | 0.2 | 0.3 | 0.5 | 0.1 | 0.04 | 6.0 | 9.0 | 0.00 | 0.8 |
4.Pyrite-2 coarse banding oscillatory-zoned with inclusions of isocubanite and würtzite (21) | ||||||||||||||||||||
Mean | 6.0 | 44 | 46.0 | 40 | 10 | 0.09 | 0.34 | 212 | 6.4 | 112 | 5.1 | 5.1 | 7.3 | 1.3 | 0.2 | 0.2 | 5.2 | 36 | BDL | 15 |
Std | 8.4 | 26 | 0.4 | 77 | 19 | 0.04 | 0.43 | 136 | 7.2 | 46 | 3.0 | 5.5 | 15 | 0.6 | 0.1 | 0.1 | 2.7 | 21 | - | 27 |
Max | 42 | 93 | 46.4 | 317 | 79 | 0.17 | 1.49 | 580 | 31 | 183 | 11 | 18 | 68 | 2.5 | 0.7 | 0.5 | 11 | 69 | 0.9 | 96 |
Med | 4.2 | 38 | 46.2 | 8.3 | 2.0 | 0.08 | 0.13 | 185 | 3.9 | 116 | 5.8 | 2.6 | 2.0 | 1.1 | 0.1 | 0.2 | 4.0 | 39 | 0.01 | 5.1 |
Values | V | Mn | Fe | Co | Ni | Cu | Zn | As | Se | Mo | Ag | Cd | Sn | Sb | Te | Au | Tl | Pb | Bi | U |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Pyrrhotite-Po (32) | ||||||||||||||||||||
Mean | 1.1 | 46 | 63 | 0.3 | 7.5 | 0.11 | 0.06 | 12 | 3.2 | 8.0 | 5.7 | 0.7 | 3.3 | 0.2 | 1.0 | 0.2 | 0.7 | 80 | 0.3 | 0.7 |
Std | 0.8 | 11 | 0.9 | 0.2 | 2.4 | 0.07 | 0.12 | 28 | 3.0 | 13 | 5.7 | 1.8 | 2.4 | 0.3 | 1.7 | 0.1 | 1.0 | 98 | 0.2 | 1.5 |
Max | 2.8 | 78 | 64 | 0.9 | 13 | 0.33 | 0.70 | 164 | 15 | 51 | 30 | 10 | 12 | 1.3 | 8.0 | 0.6 | 4.3 | 453 | 0.7 | 6.9 |
Med | 1.0 | 42 | 63 | 0.2 | 6.9 | 0.1 | 0.03 | 5.0 | 2.2 | 3.1 | 4.4 | 0.1 | 2.9 | 0.0 | 0.2 | 0.2 | 0.3 | 43 | 0.2 | 0.1 |
2. Framboidal pyrite—Py1f (23) | ||||||||||||||||||||
Mean | 26 | 1597 | 45.8 | 2.1 | 19.4 | 0.4 | 0.1 | 37 | BDL | 207 | 2.7 | BDL | 6.7 | 2.4 | BDL | 1.3 | 85 | 11 | 0.2 | 32 |
Std | 6.4 | 1454 | 0.4 | 1.3 | 7.9 | 0.4 | 0.03 | 14 | - | 144 | 1.5 | - | 3.3 | 1.1 | – | 0.5 | 46 | 8.1 | 0.1 | 18 |
Max | 40 | 7460 | 46.2 | 5.2 | 41 | 1.7 | 0.2 | 66 | BDL | 726 | 7.7 | BDL | 19 | 5.6 | BDL | 2.2 | 164 | 34 | 0.5 | 94 |
Med | 25 | 1073 | 46 | 1.6 | 19 | 0.3 | 0.06 | 36 | 8.0 | 160 | 2.8 | 0.9 | 6.4 | 2.3 | 3.1 | 1.3 | 91 | 7.7 | 0.1 | 28 |
3. Fine-grained pyrite-1,2ap in boxy pseudomorphs after pyrrhotite—Py1,2 (36) | ||||||||||||||||||||
Mean | 5.3 | 1912 | 46.1 | 4.0 | 36 | 0.2 | 0.04 | 26 | 4.0 | 107 | 4.9 | 0.2 | 2.4 | 2.0 | 0.5 | 0.3 | 7.8 | 39 | 0.11 | 11 |
Std | 3.2 | 930 | 0.2 | 2.6 | 34 | 0.1 | 0.04 | 29 | 2.7 | 120 | 2.8 | 0.2 | 1.4 | 2.6 | 0.4 | 0.4 | 9.0 | 22 | 0.08 | 7.1 |
Max | 16 | 4420 | 46.3 | 11 | 187 | 0.5 | 0.16 | 121 | 14 | 580 | 13 | 1.2 | 7.3 | 15 | 1.8 | 2.1 | 38 | 104 | 0.34 | 37 |
Med | 4.9 | 1775 | 46.1 | 3.5 | 24 | 0.1 | 0.02 | 14 | 3.1 | 71 | 4.2 | 0.1 | 2.2 | 1.9 | 0.3 | 0.2 | 4.3 | 34 | 0.1 | 8.9 |
4. Pyrite coarse banding oscillatory-zoned—Py2 (15) | ||||||||||||||||||||
Mean | 8.4 | 1972 | 46.2 | 0.9 | 6.0 | 0.12 | 0.02 | 6.3 | 3.1 | 30 | 0.8 | 0.6 | 2.6 | 0.5 | 0.2 | 0.9 | 191 | 9.3 | BDL | 11 |
Std | 3.2 | 1338 | 0.2 | 0.7 | 4.7 | 0.14 | 0.01 | 7.1 | 1.4 | 27 | 1.1 | 0.8 | 2.6 | 0.5 | 0.2 | 0.4 | 83 | 15 | - | 8.7 |
Max | 14 | 4450 | 46.5 | 2.1 | 16 | 0.57 | 0.05 | 25 | 6.0 | 84 | 4.1 | 3.0 | 11 | 1.7 | 0.7 | 1.9 | 333 | 52 | 0.1 | 29 |
Med | 6.9 | 1740 | 46 | 0.5 | 3 | 0.1 | 0.01 | 3.3 | 2.5 | 17 | 0.4 | 0.1 | 1.8 | 0.2 | 0.2 | 0.7 | 166 | 3.6 | 0.04 | 7.4 |
Values | V | Mn | Fe | Co | Ni | Cu | Zn | As | Se | Mo | Ag | Cd | Sn | Sb | Te | Au | Tl | Pb | Bi | U |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Spongy pseudomorphic pyrite-1 after suhedral pyrrhotite (20) | ||||||||||||||||||||
Mean | 3.5 | 4.9 | 46.3 | 178 | 96 | 0.11 | 0.01 | 259 | 52 | 69 | 31 | 0.7 | 2.7 | 2.0 | 1.0 | 0.5 | 9.0 | 169 | 2.4 | 4.5 |
Std | 0.7 | 9.0 | 0.03 | 21 | 15 | 0.03 | 0.01 | 74 | 18 | 35 | 22 | 0.3 | 1.9 | 0.9 | 0.4 | 0.1 | 2.7 | 34 | 0.9 | 3.4 |
Max | 4.7 | 42 | 46.4 | 219 | 125 | 0.23 | 0.04 | 455 | 96 | 173 | 93 | 1.6 | 10 | 4.9 | 1.8 | 0.9 | 14 | 226 | 4.5 | 11 |
Med | 3.7 | 2.4 | 46.3 | 175 | 94 | 0.10 | 0.01 | 262 | 47 | 57 | 26 | 0.6 | 2.1 | 1.8 | 1.0 | 0.5 | 8.3 | 172 | 2.2 | 3.5 |
2. Pyrite-2 anhedral to subhedral poor-zoned (20) | ||||||||||||||||||||
Mean | 2.5 | 75 | 46.4 | 34 | 17 | 0.08 | 0.01 | 91 | 20 | 134 | 1.9 | 0.2 | 0.5 | 0.7 | 0.9 | 0.1 | 6.4 | 20 | 3.8 | 28 |
Std | 2.1 | 108 | 0.2 | 44 | 26 | 0.16 | 0.01 | 65 | 19 | 340 | 1.9 | 0.2 | 0.5 | 0.6 | 3.0 | 0.1 | 7.1 | 16 | 12 | 87 |
Max | 9.1 | 429 | 46.5 | 173 | 104 | 0.72 | 0.03 | 231 | 73 | 1570 | 6.8 | 0.8 | 2.3 | 2.4 | 14 | 0.4 | 22 | 57 | 55 | 390 |
Med | 2.0 | 35 | 46.5 | 18 | 10 | 0.02 | 0.00 | 70 | 15 | 49 | 1.1 | 0.1 | 0.2 | 0.6 | 0.2 | 0.04 | 3.3 | 15.1 | 0.6 | 3.7 |
3. Colloform-like macasite-1 (18) | ||||||||||||||||||||
Mean | 2.1 | 1511 | 46.3 | 1.5 | 2.1 | 0.02 | 0.01 | 30 | 5.1 | 76 | 12 | 0.3 | 4.2 | 0.5 | 0.8 | 0.1 | 4.0 | 9 | BDL | 0.9 |
Std | 1.9 | 1030 | 0.1 | 2.0 | 2.2 | 0.02 | 0.01 | 32 | 2.3 | 47 | 15 | 0.2 | 8.9 | 0.4 | 0.7 | 0.1 | 3.9 | 15 | - | 1.1 |
Max | 8.6 | 4120 | 46.4 | 7.0 | 8.3 | 0.10 | 0.06 | 137 | 10 | 219 | 48 | 0.8 | 38 | 1.1 | 2.2 | 0.3 | 15 | 61 | 1.2 | 3.7 |
Med | 1.5 | 1470 | 46.3 | 0.4 | 1.3 | 0.01 | 0.01 | 15 | 5.5 | 70 | 3.7 | 0.3 | 0.6 | 0.2 | 0.8 | 0.1 | 2.5 | 2.5 | 0.1 | 0.3 |
4. Radial marcasite—Ms2r (30) | ||||||||||||||||||||
Mean | 1.5 | 793 | 46.4 | 1.1 | 1.6 | 0.00 | 0.02 | 16 | 5.8 | 81 | 2.5 | 0.4 | 0.5 | 0.8 | 1.1 | 0.05 | 2.5 | 1.4 | BDL | 0.5 |
Std | 0.7 | 608 | 0.1 | 1.9 | 2.1 | 0.01 | 0.07 | 7.3 | 3.3 | 30 | 3.8 | 0.3 | 0.6 | 0.5 | 1.2 | 0.03 | 1.9 | 1.2 | - | 0.7 |
Max | 3.4 | 2730 | 46.5 | 9.3 | 9.7 | 0.03 | 0.33 | 40 | 16 | 168 | 16 | 1.9 | 2.8 | 2.1 | 4.1 | 0.16 | 7.5 | 4.6 | 0.23 | 3.3 |
Med | 1.4 | 560 | 46.4 | 0.5 | 0.9 | 0.00 | 0.01 | 15 | 5.5 | 72 | 0.9 | 0.2 | 0.3 | 0.6 | 0.7 | 0.05 | 2.3 | 1.3 | 0.1 | 0.2 |
5. Marcasite anhedral to subhedral–Ms2 (21) | ||||||||||||||||||||
Mean | 0.9 | 401 | 46.5 | 0.1 | 0.4 | 0.00 | 0.00 | 19 | 5.2 | 94 | 0.7 | 0.5 | 0.2 | B | 2.1 | 0.07 | 3.6 | 1.1 | BDL | 0.2 |
Std | 0.3 | 186 | 0.0 | 0.1 | 0.3 | 0.00 | 0.00 | 7.5 | 2.5 | 44 | 0.6 | 0.3 | 0.3 | 0.1 | 1.3 | 0.05 | 5.4 | 1.8 | - | 0.2 |
Max | 1.6 | 743 | 46.5 | 0.4 | 1.3 | 0.00 | 0.01 | 45 | 11 | 229 | 2.1 | 1.4 | 1.3 | 0.3 | 4.7 | 0.23 | 26 | 8.7 | 0.10 | 1.0 |
Med | 0.9 | 370 | 46.5 | 0.1 | 0.5 | 0.00 | 0.00 | 18 | 5.5 | 83 | 0.4 | 0.3 | 0.2 | 0.1 | 1.7 | 0.1 | 1.7 | 0.6 | 0.0 | 0.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maslennikov, V.V.; Cherkashov, G.; Artemyev, D.A.; Firstova, A.; Large, R.R.; Tseluyko, A.; Kotlyarov, V. Pyrite Varieties at Pobeda Hydrothermal Fields, Mid-Atlantic Ridge 17°07′–17°08′ N: LA-ICP-MS Data Deciphering. Minerals 2020, 10, 622. https://doi.org/10.3390/min10070622
Maslennikov VV, Cherkashov G, Artemyev DA, Firstova A, Large RR, Tseluyko A, Kotlyarov V. Pyrite Varieties at Pobeda Hydrothermal Fields, Mid-Atlantic Ridge 17°07′–17°08′ N: LA-ICP-MS Data Deciphering. Minerals. 2020; 10(7):622. https://doi.org/10.3390/min10070622
Chicago/Turabian StyleMaslennikov, Valeriy V., Georgy Cherkashov, Dmitry A. Artemyev, Anna Firstova, Ross R. Large, Aleksandr Tseluyko, and Vasiliy Kotlyarov. 2020. "Pyrite Varieties at Pobeda Hydrothermal Fields, Mid-Atlantic Ridge 17°07′–17°08′ N: LA-ICP-MS Data Deciphering" Minerals 10, no. 7: 622. https://doi.org/10.3390/min10070622
APA StyleMaslennikov, V. V., Cherkashov, G., Artemyev, D. A., Firstova, A., Large, R. R., Tseluyko, A., & Kotlyarov, V. (2020). Pyrite Varieties at Pobeda Hydrothermal Fields, Mid-Atlantic Ridge 17°07′–17°08′ N: LA-ICP-MS Data Deciphering. Minerals, 10(7), 622. https://doi.org/10.3390/min10070622